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Abstract

Background: In recent years, capabilities for genotyping large sets of single nucleotide polymorphisms (SNPs) has increased
considerably with the ability to genotype over 1 million SNP markers across the genome. This advancement in technology has
led to an increase in the number of genome-wide association studies (GWAS) for various complex traits. These GWAS have
resulted in the implication of over 1500 SNPs associated with disease traits. However, the SNPs identified from these GWAS
are not necessarily the functional variants. Therefore, the next phase in GWAS will involve the refining of these putative loci.

Methodology: A next step for GWAS would be to catalog all variants, especially rarer variants, within the detected loci,
followed by the association analysis of the detected variants with the disease trait. However, sequencing a locus in a large
number of subjects is still relatively expensive. A more cost effective approach would be to sequence a portion of the
individuals, followed by the application of genotype imputation methods for imputing markers in the remaining individuals.
A potentially attractive alternative option would be to impute based on the 1000 Genomes Project; however, this has the
drawbacks of using a reference population that does not necessarily match the disease status and LD pattern of the study
population. We explored a variety of approaches for carrying out the imputation using a reference panel consisting of
sequence data for a fraction of the study participants using data from both a candidate gene sequencing study and the
1000 Genomes Project.

Conclusions: Imputation of genetic variation based on a proportion of sequenced samples is feasible. Our results indicate
the following sequencing study design guidelines which take advantage of the recent advances in genotype imputation
methodology: Select the largest and most diverse reference panel for sequencing and genotype as many ‘‘anchor’’ markers
as possible.
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Introduction

In the last five years, the capabilities and technology for

genotyping large sets of single nucleotide polymorphisms (SNPs)

has increased significantly. Current genome-wide SNP arrays have

the capability to genotype over one million SNP markers across

the genome. This advancement in technology has led to an

increased number of completed and on-going genome-wide

association studies (GWAS) for various complex disease and

drug-related phenotypes. These GWAS have resulted in more

than 350 publications and over 1500 SNPs implicated for

association with multiple (.80) disease phenotypes or traits [1].

However, the SNPs identified are not necessarily the functional

variant and many GWAS studies are moving into the next phase

of disease mapping involving the validation, augmentation and

refining of these putative regions or loci [2]. The task of

determining the ‘‘causative’’ variant(s) is difficult since 43% of

associated SNPs are located in intergenic regions, and 45% are

located within intronic regions of known genes [1].

Indirect association, as a result of linkage disequilibrium (LD), is

a key factor in the success of genetic association studies. As a result

of LD, a disease-susceptibility SNP need not be genotyped, as long

as it is ‘‘tagged’’ by a SNP or set of SNPs that are genotyped (i.e.,

SNPs in LD with the disease-susceptibility SNP are genotyped).

Recently this concept has been further exploited by the

introduction of methods to impute genotypes at untyped markers,

based on genotypes at typed markers and information about LD

within the region [3,4,5,6,7,8,9,10,11,12]. These methods are

particularly useful in the context of failed genotyping and

combining data across multiple platforms and recently have been

extended to untyped markers using a reference data set [8,10,11].

One approach for following up replicated findings from a

GWAS would be to determine all genetic variation within the

locus, especially rarer variants not currently included on GWAS

SNP arrays, as they may play an important role in the etiology of

the disease [13]. This could be accomplished using the 1000

Genomes Project. However, one limitation of the use of 1000

Genomes Project for imputation of markers in a locus of interest is
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that the possible ‘‘deleterious’’ or ‘‘protective’’ alleles may not be

represented in this relatively ‘‘healthy’’ cohort. An alternative

approach would be to catalog all variants by sequencing the locus

in the study subjects [14], followed by association analysis of each

variant in the locus. However, sequencing is still relatively

expensive and it may be cost prohibitive to sequence a region

on a large set of individuals. A more cost effective approach would

be to sequence a portion of the individuals, possibly selected based

on the distribution of the phenotype and/or haplotypes, and then

employ genotype imputation methods [15,16,17,18] for imputing

the sequenced markers in the remaining individuals. This

approach could also be augmented with the additional inclusion

of data from the 1000 Genomes Project.

In this manuscript we explore the use of the recently developed

genotype imputation method implemented in MACH [16] for

sequencing studies with the goal of localizing possible functional

variants through statistical analysis. In doing so, we explore a

variety of approaches for carrying out the imputation of untyped

markers using a reference panel consisting of sequencing data for a

fraction of the study participants. The various approaches are

implemented using data from a candidate gene sequencing study

conducted at the Mayo Clinic and data from the 1000 Genomes

Project (http://www.1000genomes.org) [19].

Materials and Methods

Mayo Sequencing Study: GENE1
To explore various approaches for imputation of untyped

markers using a reference panel determined from sequencing data,

we utilized a recently completed sequencing study for a gene

which we will denote as GENE1 (unpublished data). Little is known

in regard to common genetic variations within GENE1, and even

Table 1. Summary of sequence data for GENE1 for variants with MAF.1% or in HapMap.

African American White non-Hispanic American Han Chinese American

Marker Position ObsHET MAF ObsHET MAF ObsHET MAF

1* 1270 0.385 0.203 0.415 0.303 0.474 0.416

5* 1541 0.365 0.182 0.427 0.307 0.479 0.417

6 1753 0 0 0.021 0.01 0 0

8 1811 0.021 0.01 0.031 0.026 0 0

9* 1812 0.062 0.031 0.104 0.062 0.26 0.193

10 1962 0 0 0.021 0.01 0 0

11* 1968 0 0 0 0 0.135 0.068

16 2829 0.021 0.01 0 0 0 0

17 3092 0 0 0 0 0.021 0.01

18 3145 0 0 0 0 0.021 0.01

19 3150 0.083 0.052 0 0 0 0

21 3456 0.521 0.396 0.417 0.312 0.469 0.411

22 3525 0 0 0 0 0.052 0.036

24 4399 0.115 0.057 0 0 0.146 0.083

25* 4467 0.052 0.026 0 0 0.146 0.083

27 4893 0.042 0.021 0 0 0 0

28* 5016 0.01 0.005 0 0 0 0

29* 5031 0 0 0.052 0.026 0 0

33* 5523 0.053 0.026 0.083 0.042 0.26 0.193

37 5974 0.021 0.011 0.042 0.021 0 0

39* 6166 0.385 0.203 0.469 0.432 0.365 0.224

40 6237 0.021 0.01 0 0 0 0

41 6265 0 0 0 0 0.062 0.031

42* 6311 0.01 0.005 0 0 0 0

44 6862 0 0 0.052 0.026 0 0

45 7036 0.031 0.016 0 0 0 0

48 7262 0 0 0 0 0.073 0.057

57* 7975 0.031 0.016 0 0 0 0

58 8057 0.021 0.01 0.094 0.047 0.011 0.005

59 8187 0.021 0.01 0 0 0 0

60 8230 0.021 0.01 0 0 0 0

*SNP Marker in HapMap; used as typed genotypes in all samples (i.e., markers on a GWAS SNP array).
MAF = minor allele frequency based on imputed ‘‘dosage’’ or expected genotype, position = physical base-pair location of the SNP based on build 36,
ObsHET = observed heterozygote rate.
doi:10.1371/journal.pone.0011018.t001
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less is known in regard to the relationship of GENE1 genotypes

with protein function or clinical phenotypes. In an attempt to

address these issues, we have sequenced GENE1 in 288 samples

from the Coriell Institute’s publically available ‘‘Human Varia-

tion Panel’’ (http://ccr.coriell.org/Sections/Collections/NIGMS/

Populations.aspx?PgId = 177&coll = GM), consisting of 96 Afri-

can American (AA), 96 Caucasian American (CA), and 96 Han

Chinese American (HCA). DNA was extracted by the Coriell

Institute from EBV transformed lymphoblastoid cell lines.

As a consequence of GENE1 being a relatively short gene (5 kb),

the entire gene was sequenced using Sanger sequencing technol-

ogy. PCR primers were designed to span the entire gene plus 1 kb

beyond the 59 and 39 UTR. PCR products were bi-directionally

sequenced on an Applied Biosystems 3730 DNA Analyzer and

analyzed with SoftGenetic’s Mutation Surveyor software. Sixty

variants were cataloged across the three racial groups; eleven of

these variants were previously-known SNPs that have entries in

dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/). Table 1
presents a summary of the 31 polymorphisms that are either

contained in HapMap (www.hapmap.org) or have a minor allele

frequency (MAF).1%.

1000 Genomes Project: COMT
The initial goal of the 1000 Genomes Project was to sequence

the entire genome in approximately 1200 individuals as a means of

documenting all human genetic variation. Recently, the number of

samples to be sequenced has increased to over 2000 samples [20].

As of September 20, 2009 (release 2009_04), there were 172

HapMap samples sequenced from three racial groups (57 U.S.

residents with northern and western European ancestry (CEU), 56

Yoruba people of Ibadan, Nigeria (YRI) and 59 individuals from

the Tokyo, Japan and Beijing, China (JPNCHB)) available for

download and analysis from the 1000 Genomes Project. The data

was part of a Pilot Project, in which samples were sequenced at, on

average, 2x–4x coverage using ABI’s SOLiD, Roche’s 454 and

Illumina’s Solexa sequencing technologies. This pilot study was

completed by the 1000 Genomes Consortium to evaluate the use

of LD information and sequence data from multiple samples to aid

in the genotype calling from low coverage, whole genome

sequencing (http://www.genome.gov/26524516). Once down-

loaded, we focused on the region of the genome where the gene

COMT is located based on the March 2006 build of the human

genome as shown on the UCSC genome browser at http://

genome.ucsc.edu/ (chromosome 22, 18243040–18336530). Four-

hundred and six SNP markers were determined to be in the CEU

population, 517 SNP markers in the YRI population and 290 SNP

markers in the JPTCHB population.

Genotype Imputation using Sequencing Data
To explore various approaches for imputing untyped markers to

augment sequence data, using a reference panel determined from

sequencing a portion of the study participants, we will utilize

sequence data available for GENE1 and COMT. To assess the

various approaches, we have created the following hypothetical

experiment. A SNP marker within a gene (e.g., GENE1 or COMT)

has been determined to be associated with a disease phenotype

based on a large GWAS, in which all subjects have been

genotyped for a set of SNPs on a large SNP array (e.g., Affymetrix

Genome-Wide Human SNP Array 6.0 or Illumina human1M-duo

array). The GWAS consists of subjects from three different racial

groups. To follow-up the association findings, denser genotyping

of the gene using sequencing technologies (Sanger or Next-

Generation) was completed in a proportion of the individuals from

each racial group. Based on the sequence data for the subset of the

study participants, we wish to impute untyped markers for the

remaining subjects using current genotype imputation methods.

Based on previous reports regarding comparison of genotype

imputation methods [21,22,23], we have elected to use MACH for

the imputation [16].

In assessing the use of sequence data for genotype imputation,

the experiment varied: the proportion of samples sequenced (or

the size of the reference data), the number of markers genotyped

for all subjects (‘‘anchor’’ SNPs) and how these markers were

selected, imputation based on the sequenced participants (‘‘refer-

ence panel’’) unphased genotypes or most-likely phased haplotypes

and imputation based on race specific reference haplotypes or all

reference haplotypes (regardless of race). The various simulation

scenarios investigated using GENE1 from the Mayo Study and

COMT from the 1000 Genomes Project are outlined in the

following sections.

To assess the accuracy of the various simulation scenarios, we a

priori determined the samples to be considered the reference panel,

Table 2. Imputation Scenario Design Summary.

Factors Varied for Imputation Scenario

1 2 3 4

Use of Phased Reference Haplotypes for Imputation

Most likely phase reference haplotypes X X X

Unphased genotypes X

Reference Haplotypes

Race specific reference haplotypes X X

All reference haplotypes, regardless of race X

Number of Markers Genotyped on All Subjects

GENE1 Three X

Five X

Seven X

Ten X X X

COMT Tag SNPs X X X

SNPs on GWAS array X

doi:10.1371/journal.pone.0011018.t002

Table 3. Concordance values between the ‘‘true’’ genotype
and most likely imputed genotype for GENE1 for Scenarios 1,
2 and 3.

Proportion Sequenced

Scenario Race 0.1 0.2 0.3 0.4 0.5

1 AA 0.962 0.965 0.973 0.962 0.974

CA 0.988 0.991 0.968 0.989 0.964

HCA 0.963 0.973 0.969 0.964 0.97

2 AA 0.975 0.971 0.975 0.972 0.971

CA 0.985 0.978 0.978 0.976 0.977

HCA 0.98 0.975 0.976 0.975 0.978

3 AA 0.969 0.971 0.973 0.975 0.97

CA 0.977 0.972 0.972 0.971 0.972

HCA 0.968 0.972 0.972 0.972 0.972

doi:10.1371/journal.pone.0011018.t003
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using all of their sequencing data. For the rest of the sample

considered the ‘‘observed’’ sample, non-anchor SNPs were masked,

but retained and considered to be the ‘‘true’’ genotypes. These

‘‘true’’ genotypes could then be compared to the imputed markers

arrived at using MACH’s most likely genotype call, with anchor

SNPs in common between the reference population and ‘‘ob-

served’’ sample. In addition to computing the concordance rates

based on most likely genotype call, we also used the –mask option in

MACH to compute quality measures for the imputed markers and

estimated MAF based on the expected genotype (i.e., dosage).

Imputation Scenarios for GENE1
Table 2 displays the various genotype imputation scenarios

investigated for use with sequence data. The first simulation

scenario (Scenario 1) was one in which the reference haplotypes

for the sequenced samples was determined using the most likely

haplotypes produced by fastPHASE [24]. The eleven prior known

SNP markers were treated as the ‘‘anchor’’ markers genotyped on

all subjects with the remaining markers sequenced in a portion of

the subjects. The haplotype estimation and the genotype

imputation were both completed by race.

In Scenario 2, imputation was completed by race (as for

Scenario 1), but imputation was based on all reference haplotypes

for all three races. To assess the variation in haplotype assignment

and impact on imputation accuracy, imputation Scenario 3 was

completed, by race, with only unphased genotypes for the

sequenced samples (i.e., no phased reference haplotypes used). It

should be noted that not all genotype imputation methods allow

for the use of only unphased genotypes and may require reference

haplotypes. Lastly, Scenario 4 assessed the impact of the number

of ‘‘anchor’’ markers genotyped for all subjects, with either 3

markers (Scenario 4.3), 5 markers (Scenario 4.5), or 7 markers

(Scenario 4.7) used in the imputation with the same design as

Scenario 1.

Imputation Scenarios for COMT
For the COMT study, based on data from the 1000 Genomes

Project, the ‘‘anchor’’ markers were selected for two situations: a

candidate gene study (Scenarios 1, 2 and 3) and a genome-wide

association study (Scenario 4) (Table 2). Scenarios 1, 2 and 3 were

similar to the corresponding scenarios for GENE1. For scenario 4

the COMT and GENE1 scenarios differed in implementation.

Scenario 4 for GENE1 was used to assess the impact of varying the

number of anchor markers (either 3, 5 or 7), while for COMT this

scenario assessed the impact of how the ‘‘anchor’’ markers were

selected: one based on candidate gene study in which SNPs were

Figure 1. Comparison of mean SNP imputation quality score between the various imputation scenarios for GENE1. The proportion of
the sample used as the reference panel is displayed on the X-axis and the mean SNP imputation quality score is displayed on the Y-axis.
doi:10.1371/journal.pone.0011018.g001
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selected by tagging the region and one based on a priori defined

SNPs on a GWAS SNP array. SNPs were defined to be on the

GWAS panel if they were contained in HapMap, as many large

GWAS SNP arrays are designed based on HapMap SNPs.

To mimic the candidate gene scenario, we consider the

common situation where the anchor markers, genotyped on all

subjects, would be LD based tag SNPs. Therefore, to determine

anchor markers for COMT, tagging was completed by race using

Haploview v4.1 [25] with a minimum inclusion minor allele

frequency (MAF) of 0.05 and a r2 of 0.8. This resulted in 125, 187

and 117 tagSNPs selected for CEU, YRI, and JPNCHB

populations, respectively. These markers, for each race, were

then taken to be the ‘‘anchor’’ markers genotyped on all samples in

the candidate gene study. To mimic the case in which the

‘‘anchor’’ markers were on a genome-wide SNP array (Scenario

4), SNPs were chosen as any SNPs present in HapMap, resulting

in 25 for the CEU population, 50 SNPs in the JPTCHB

population and 32 SNPs in the YRI population [26].

Results

Genotype Imputation for GENE1
Sequencing of GENE1, using Sanger Sequencing technology,

detected five novel variants with MAF greater than 5% and 20

novel variants with MAF greater than 1% not previously reported

(Table 1). None of the SNP genotypes deviated from Hardy-

Weinberg equilibrium, where HWE was tested by race using

Haploview [25]. By using our study population consisting of

Caucasian Americans (CA), African Americans (AA) and Han-

Chinese Americans (HCA), we are able to ensure the compara-

bility of LD structure used in the imputation. This may not be true

if the 1000 Genomes Project data were to be used, as the

Figure 2. Comparison of minimum SNP imputation quality score between the various imputation scenarios for GENE1. The proportion
of the sample used as the reference panel is displayed on the X-axis and minimum SNP imputation quality score is displayed on the Y-axis.
doi:10.1371/journal.pone.0011018.g002

Table 4. Concordance values between the ‘‘true’’ genotype
and most likely imputed genotype for GENE1 for various
number of ‘‘anchor’’ markers.

Number of Anchor Markers

Race 3 5 7 11

AA 0.966 0.972 0.973 0.974

CA 0.952 0.960 0.962 0.964

HCA 0.958 0.962 0.972 0.970

Table presents results for scenario with 50% of the samples sequenced.
doi:10.1371/journal.pone.0011018.t004
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population of interested may not be represented. The various

scenarios for genotype imputation using sequence data for

polymorphic markers in gene GENE1 was completed using

MACH 1.0 (http://www.sph.umich.edu/csg/abecasis/mach/in-

dex.html) using the commands: mach1 -d markers.dat -p
pedigree.ped -h hap.haplos -s all.snp --rounds
150 --greedy --mask 0.02 --geno --dosage --
quality -o machOut for scenarios using reference haplotypes

and mach1 -d markers.dat -p pedigree.ped --rounds
150 --greedy --mask 0.02 --geno --dosage --
quality -o machOut for the scenarios in which only unphased

genotypes were used in the imputation (Scenario 3). Percent of

concordant genotype calls was computed by comparing the

imputed genotypes to the ‘‘true’’ observed genotypes.

Table 3 displays the concordance rates for Scenarios 1, 2, and

3, while Figures 1 and 2 display the mean and minimum SNP

quality score, as provided by MACH (based on expected imputed

genotype), for the three races and three scenarios. In the AA and

HCA groups, using only race specific reference haplotypes

(Scenario 1) produced the lowest mean quality scores and

concordance for imputation. This observation agrees with other

publications, which state that a more diverse set of reference

haplotypes increases the accuracy in imputation [27]. For

imputation of CA, the results were similar between the three

methods for imputation, with Scenarios 1 and 2 producing the best

concordance and Scenarios 1 and 3 producing the highest mean

and minimum quality score. In terms of the impact of the number

of ‘‘anchor’’ markers on imputation, the greater the number of

markers, the higher the quality and concordance in imputation.

Table 4 shows the concordance as a function of number of

‘‘anchor’’ markers when 50% of the samples where sequenced; the

same trend was observed when a smaller proportion of samples

were sequenced and used as the reference (data not shown).

Lastly, in general, as the proportion (or number) of samples

sequenced increased (i.e., larger set of reference haplotypes), the

quality of the imputation increased. Thus, not only does number

of markers genotyped on all subject impact the accuracy of

imputation, so does the size of the reference sample. In addition to

variation in results due to the number of markers genotyped on all

subjects and size of the reference set, two different reference sets of

the same size (i.e., different samples selected for sequencing)

resulted in slightly different imputation accuracy (data not shown).

Genotype Imputation with 1000 Genomes Project
The various scenarios for genotype imputation using the 1000

Genomes Project sequence data for polymorphic markers in

Figure 3. Comparison of concordance rates between the various imputation scenarios for COMT. The proportion of the sample used as
the reference panel is displayed on the X-axis and the percent concordant between the ‘‘true’’ genotype and the imputed most likely genotype is
displayed on the Y-axis.
doi:10.1371/journal.pone.0011018.g003
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COMT was completed using MACH 1.0 using the commands

using the commands: mach1 -d markers.dat -p pedi-
gree.ped -h hap.haplos -s all.snp --rounds 150 --
greedy --mask 0.02 --geno --quality -o machOut for

all scenarios.

As completed for GENE1, we looked at the SNP concordance

rates and SNP quality score for COMT for the various imputation

scenarios (Figures 3 and 4). Figures 3 and 4 display the

relationship between the concordance and minimum quality score

for the four scenarios in relation to the proportion of the

population sequenced. In terms of highest minimum quality score,

imputation based on reference haplotypes for all races (Scenario 2)

was the ‘‘best’’; however in terms of concordance between the

observed and imputed most likely genotype, imputation based on

race specific reference haplotypes was ‘‘best’’ (Scenario 1). The

range (minimum – maximum) in mean concordance rates for

Scenario 1 was 0.82–0.87 for CEU, 0.86–0.88 for JPTCHB and

0.87–0.92 for YRI.

The figures and table show that anchor SNPs based on a tag

SNP approach dramatically outperformed the approach where

anchor SNPs were based on a large SNP array (Scenario 4), in

terms of both concordance rates and minimum SNP quality

scores. In terms of highest minimum quality score, imputation

based on reference haplotypes for all races (Scenario 2) was the

‘‘best’’; however in terms of concordance between the observed

and imputed most likely genotype, imputation based on race

specific reference haplotypes was ‘‘best’’ (Scenario 1). The figures

also show a slight increase in imputation performance as the size of

the reference panel increased.

Lastly, with one goal of sequencing to be to detect rare variants,

we compared, for the three races, the relationship between the

estimated MAF, based on the imputed dosage, after imputation

and the quality of imputation (Figure 5). We observed the mean

quality score decreased as the MAF increased and that as the

proportion of samples sequenced increased, the average imputa-

tion accuracy improved for common variants.

Discussion

In this manuscript present the use of the recently developed

genotype imputation method for sequencing studies, where the

reference panel consisting of sequencing data for a fraction of the

study participants. By sequencing only a portion of the samples for

the follow-up of signals detected from a GWAS, followed by

imputation in the remaining samples, one can significantly reduce

the cost to localize the punitive variant involved in the etiology of

complex disease and pharmacogenomic phenotypes. In addition,

by utilizing sequence data on a portion of individuals in the study,

Figure 4. Comparison of minimum SNP imputation quality score between the various imputation scenarios for COMT. The proportion
of the sample used as the reference panel is displayed on the X-axis and the minimum SNP imputation quality score is displayed on the Y-axis.
doi:10.1371/journal.pone.0011018.g004
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we are able to have a perfectly matched reference panel, in terms

of linkage disequilibrium, without relying on the assumption that

the HapMap populations represent our study population (as

HapMap based haplotypes are the current standard reference data

used for genotype imputation).

Sequencing a portion of our study population also allows us to

determine and assess association of rare variants not present in the

HapMap database. Upon completion of the 1000 Genomes

project (http://www.1000genomes.org), incorporation of this

information can also be utilized to determine variants not already

identified in public databases. However, one limitation of the use

of 1000 Genomes project for imputation for all subjects is the

possibly that this ‘‘healthy’’ cohort does not adequately represent

the genetic diversity observed in the affected individuals (i.e.,

individuals with the disease). Thus, there will still be a need to

sequence individuals, in particular, those individuals with the

disease or phenotype of interest.

Our results, based on a Sanger sequencing study of a candidate

gene and preliminary data from the 1000 Genomes Project for

COMT, show that imputation of untyped markers based on

sequencing a portion of the study participants is a reasonable, cost-

saving approach for disease mapping and refinement of putative

regions detected with GWAS. However, there was not a clear

scenario that was the ‘‘best’’ for genotype imputation across the

two genes and three races. At the completion of the 1000

Genomes Project, future research will be needed to determine

optimal approaches to incorporate this valuable information to

inform future genetic association studies. In addition, further

research is needed to develop cost effective sequencing study

designs and analysis methods that incorporate the uncertainty in

the reference haplotypes and imputation into the association

analysis. Based on results from this study, we recommend a few

guidelines in designing sequencing studies to take advantage of the

recent advances in genotype imputation methodology:

(1) Select the largest and most diverse reference panel for

sequencing, with respect to both haplotypes and phenotype.

One can also use sequencing data from the 1000 Genomes

data in addition to the sequencing of a portion of the study

participants (i.e., reference panel consists of data from

sequencing a portion of individuals with the disease/

phenotype of interest and data from the 1000 Genomes

Project)

(2) Given that sequencing produces unphased genotypes, if

possible, imputation should be carried out on the unphased

genotypes in the reference panel as opposed to the most likely

Figure 5. Comparison of mean SNP imputation quality score versus MAF for COMT imputation scenario 1. The MAF (group 1:
0#MAF#0.05, group 2: 0.05,MAF#0.10, group 3: 0.10,MAF#0.20, group 4: 0.20,MAF#0.30, group 5: 0.30,MAF#0.40, group 6: 0.40,MAF#0.50)
is displayed on the X-axis and the mean SNP imputation quality score is displayed on the Y-axis.
doi:10.1371/journal.pone.0011018.g005
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phase haplotypes to account for the uncertainty in haplotype

assignment.

(3) Genotype as many ‘‘anchor’’ markers as possible, in that, the

number of markers genotyped on all subjects impacts

accuracy. Therefore, additional genotyping of a few common

SNP markers not already genotyped on all subjects using a

cost effective platform, like Taqman, may be needed if the

GWAS SNP array does not provide adequate coverage in the

locus to be sequenced.
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