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Abstract

We consider threshold Boolean gene regulatory networks, where the update function of each gene is described as a
majority rule evaluated among the regulators of that gene: it is turned ON when the sum of its regulator contributions is
positive (activators contribute positively whereas repressors contribute negatively) and turned OFF when this sum is
negative. In case of a tie (when contributions cancel each other out), it is often assumed that the gene keeps it current state.
This framework has been successfully used to model cell cycle control in yeast. Moreover, several studies consider stochastic
extensions to assess the robustness of such a model. Here, we introduce a novel, natural stochastic extension of the
majority rule. It consists in randomly choosing the next value of a gene only in case of a tie. Hence, the resulting model
includes deterministic and probabilistic updates. We present variants of the majority rule, including alternate treatments of
the tie situation. Impact of these variants on the corresponding dynamical behaviours is discussed. After a thorough study
of a class of two-node networks, we illustrate the interest of our stochastic extension using a published cell cycle model. In
particular, we demonstrate that steady state analysis can be rigorously performed and can lead to effective predictions;
these relate for example to the identification of interactions whose addition would ensure that a specific state is absorbing.
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Introduction

Cellular processes are driven by large and heterogeneous

interaction networks that are being uncovered thanks to tremen-

dous technological advances. In this context, a range of modelling

frameworks has been deployed to represent and analyse biological

networks, aiming at better understanding these complex systems

[1,2]. Among these frameworks, Boolean Genetic Regulatory

Networks (GRN) introduced more than forty years ago provide a

convenient qualitative formalism [3,4], which has since been the

subject of numerous theoretical studies and extensions [5,6].

Boolean GRNs, including their generalisation to account for

multi-valued variables [7], have proved useful for modelling and

analysing regulatory and signalling networks for which precise

quantitative data are often scarce (see e.g. [8–13] for this

framework applied to cell cycle modelling).

Briefly, a Boolean GRN is defined by a signed, directed graph,

where the nodes represent genes (or more generally regulatory

components) and signed edges represent the regulatory interac-

tions between these components: positive (resp. negative) edges

denote activations (resp. inhibitions). Each node is associated with

a Boolean variable that accounts for the expression state (ON/

OFF) of the corresponding gene, and a logical function specifies

the evolution of this variable, depending on the variables

associated with the regulators of the gene. More precisely, at

each time step, gene values are updated according to the results

returned by their logical functions. There is a variety of Boolean

GRN models that differ in their classes of logical functions (e.g.

additive, canalizing, unrestricted), in their structural properties (e.g.

fixed, bounded or unrestricted indegrees), or in their updating

scheme (e.g. synchronous, asynchronous, block-sequential).

To define a model, in addition to the already challenging

problem of identifying the wiring of the (signed) regulatory

network, one has to specify the logical functions associated to the

nodes. That is to say to specify how regulatory effects are

combined. In this context, some authors choose to rely on

functions uniquely defined from the regulatory structure [8,10,14].

In particular, in Boolean threshold networks, regulatory effects are

assumed to be additive: each function is defined as a majority rule

where the decision to activate a gene follows from the comparison

of the sum of the (possibly weighted) contributions from the

regulators to a specific threshold. Boolean threshold networks have

been successfully used to model the control of cell cycle [8,10].

Zañudo et al. have performed a thorough study of random Boolean

threshold networks defined as a subset of the ensemble of

Kauffman’s random Boolean networks, where regulators and

regulatory functions are randomly chosen [15]. Finally, it is worth

noting that Boolean threshold networks originate from the

McCulloch-Pitts neural model [16], which gave rise to countless

studies and applications.

To account for the inherent stochasticity of regulation processes,

stochastic versions of Boolean GRNs have been proposed in the

literature [17–22]. Schlumevitch and colleagues define Probabi-

listic Boolean Networks, where a set of regulatory functions is

assigned to each gene and, at each time step, one function is
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randomly chosen within this set [17]. This setting results in

dynamics that can be represented as a Markov chain. Other

authors propose to update each gene according to its regulatory

function with a given probability [18–21]. Garg et al. discuss this

model they call Stochasticity In Nodes (SIN), indicating that it can

lead to noise overrepresentation. They propose an alternate

model, called Stochasticity In Functions (SIF), that differently

accounts for the stochasticity of the function failure: it associates

different failure probability to different logical gates and

stochasticity also depends on the state of the regulators [22]. We

finally refer to [23] for a seminal discussion of the complete

probabilistic version of such models in the context of neural

networks.

Here, focussing on threshold Boolean networks, we propose that

the majority rule is particularly suitable to combine deterministic

and probabilistic updates. Indeed, the combined contribution of

the regulators at a given time is not always conclusive to enable an

unambiguous choice of the gene evolution. Hence, we propose a

stochastic tie-breaking that associates a probability to the update

value when positive effects countervail negative effects. Further-

more, various majority rule settings can be devised that are

specified and discussed in this paper. We extensively study a class

of two gene networks, considering different majority rule settings.

We show that this simple motif gives rise to a wide variety of

behaviours and that the regulatory structure plays a role in the

degree of stochasticity exhibited by the dynamics. We further

revisit the Li et al.’s deterministic Boolean threshold model of the

budding yeast cell cycle [8]. Interestingly, several studies have

considered stochastic versions of this model, with intent to explore

the model robustness (e.g. [18,24,25]). Here, we illustrate the

interest of our approach to tackle this question. In particular, we

demonstrate that steady state analysis can be rigorously performed

and lead to effective predictions; these relate to the identification of

interactions whose addition would ensure that a specific state is an

absorbing state.

Methods

Boolean Gene Regulatory Networks (GRN) are defined by a

directed graph where the nodes represent the regulatory compo-

nents (genes or their products) and the edges represent the

regulatory interactions. We denote the nodes x1, . . . xi, . . . xN (N,

the number of nodes). Each node is associated with a level of

expression (or of activity) referred to as xi for simplicity. This level

may change in time, taking the value 1 (ON) or {1 (OFF). An

edge from xj to xi is denoted (j,i) and is associated with a sign

s(j,i), which is positive for an activation s(j,i)~z1 or negative

for a repression s(j,i)~{1. The source of the edge (j,i) is thus a

regulator of gene xi. If xj does not regulate xi then s(j,i)~0.

The dynamics takes place in the configuration space

V~f{1,z1gN
(DVD~2N ) and configuration x[V is defined by

the values of the N nodes: x~(x1, . . . xi, . . . xN ).

The evolution of each node is defined by an updating rule, which

depends on the regulators of that node and the time variable is

discrete: t~0,1,2, . . .. Note that there is an edge from xj to xi if,

for some fixed values of the other regulators of xi, changing the

value of xj has an effect on the value of xi at the next time step:

such regulatory interactions are said functional (e.g. [26]).

We first introduce the Majority Rule (MR) that, given the

configuration of the system at time t, x(t)~(x1(t), . . . xN (t)),
defines the configuration at the next time tz1:

MR

if
P

j s(j,i)xj(t)w0, xi(tz1)~1,

if
P

j s(j,i)xj(t)v0, xi(tz1)~{1,

if
P

j s(j,i)xj(t)~0,
xi(tz1)~1 with probability pi ,

xi(tz1)~{1 with probability 1{pi:

�
8>>><
>>>: ð1Þ

Hence, in Equation 1, an activator (resp. a repressor) has a

positive contribution if it is present (resp. absent). When the sum of

the contributions is zero (i.e. there are as many positive and

negative contributions), rather to arbitrarily opt for a value, the

MR sets xi(tz1)~z1 with probability pi and xi(tz1)~{1
with probability 1{pi. A node is deterministic if its updating rule is

deterministic for any configuration, and probabilistic if its updating

rule is probabilistic for some configurations. Therefore, in the case

of the MR, a node is deterministic if it has an odd in-degree (i.e. an

odd number of regulators) and probabilistic if it has an even in-

degree.

If there is at least one probabilistic node, the dynamics of the

model can be represented by a finite Markov chain on the

configuration space V; otherwise, we have a deterministic

dynamical system in V. Extending the usual notion of absorbing

chains [27], we say that the chain is absorbing if all ergodic sets are

deterministic: either fixed points (i.e. configurations such that

x(tz1)~x(t) with probability one) or cycles (i.e. sets of

configurations such that there exists a T for which

x(tzT)~x(t) with probability one). Hence, with this definition,

the set of absorbing states includes states that are members of

deterministic cycles. It corresponds to the usual definition applied

to a power of the transition matrix. Moreover, we will often refer

to the terminology of the dynamical systems community by calling

attractors the (minimal) ergodic sets of a chain, that are also defined

as the terminal strongly connected components of the transition

diagram.

For completeness, we also investigate two variants of the MR.

The first variant, referred to as Inertial Majority Rule (IMR),

considers the current state of a probabilistic node to define its next

value in the case of equal number of positive and negative

contributions:

I M R

if
P

j s(j,i)xj(t)w0, xi(tz1)~1,

if
P

j s(j,i)xj(t)v0, xi(tz1)~{1,

if
P

j s(j,i)xj(t)~0,
xi(tz1)~xi(t) with probability pi ,

xi(tz1)~{xi(t) with probability 1{pi:

�
8>>><
>>>: ð2Þ

We designate this rule inertial because its deterministic version

(when pi~1) specifies that nodes keep their current values when

activations and repressions cancel each other out. It is worth

noting that this rule amounts to adding a functional self-activation

on each node: when the sum of the contributions from all other

regulators is zero, it is the value of the proper node that determines

its next level.

In the next MR variant, referred to as Null Majority Rule (NMR),

the nodes take values 0 and 1. Hence the configuration space is

V~f0,1gN
and we denote xi the level of the ith node, to

distinguish from xi, which takes values {1 and 1:

Majority Rule and Random Tie-Breaking in GRNs

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e69626



N M R

if
P

j s(j,i)xj(t)w0, xi(tz1)~1,

if
P

j s(j,i)xj(t)v0, xi(tz1)~0,

if
P

j s(j,i)xj(t)~0,
xi(tz1)~1 with probability pi,

xi(tz1)~0 with probability 1{pi:

�
8>>><
>>>: ð3Þ

Hence, under the NMR, when the level of a regulator is zero, it

plays no role in the regulatory function. As a consequence,

whatever the sign of the interaction (activation or inhibition), the

absence of a regulator results to the same (lack of) contribution in

contrast to the MR, where e.g. the absence of a repressor has a

positive contribution. Importantly, whatever their in-degree, all

nodes are probabilistic.

These two variants of the majority rule can be combined in an

Inertial Null Majority Rule (INMR) as in the model of the cell

cycle control in yeast specified by Li et al. [8] (see below, the section

devoted to the yeast cell cycle model).

Because the evolution of any node only depends on its

regulators, it will be convenient to focus on structures that we

call modules, which are composed by one node xj and its incoming

interactions.

Finally, it is worth noting that the majority rules defined above

are special cases of the regulatory functions considered in

threshold Boolean networks, where the sums of contributions

include interaction weights aij (
P

j s(j,i)ajixj(t)) and compare to

activation thresholds hi [15]. Here, all interaction weights are set

to 1, and all thresholds are zero.

Results

Two-node Gene Regulatory Networks
Here, we consider connected Gene Regulatory Networks

(GRNs) encompassing two nodes x1 and x2. There are three

classes of such two-node GRNs that include respectively two, three

and four interactions. The first class contains three elementary

cross-regulatory circuits; two circuits are positive circuits (i.e. the

product of the interaction signs is positive) and one circuit is

negative with a node activating its repressor. There are indeed two

such circuits which are equivalent up to exchanging node labels:

x1 activates x2, which inhibits x1 or x1 inhibits x2, which activates

x1. In these models, both nodes are deterministic under the

Majority Rule (MR). The second class encompasses the networks

made by cross-interactions and a single self-interaction (six such

networks, up to exchanging node labels). Under the MR, the self-

regulated node is probabilistic, whereas the other node is

deterministic. These models give rise to: 1) bi-stable dynamics

(when both circuits are positive), 2) an absorbing period-2 cycle

(when the cross-regulatory circuit is positive and the self-regulation

is negative) and 3) combination of cycles over the four

configurations (when the cross-regulatory circuit is negative).

We choose to thoroughly study the third class, for which both

nodes are probabilistic. We thus consider all the GRNs defined by

cross-interactions between nodes x1 and x2, which are both self-

regulated (for convenience, we use free variables i and j such that

i,j[f1,2g and i=j). We start by considering the MR. Then, we

point out the differences with the inertial and null MR variants

(IMR and NMR).

We denote by ½s(j,j),s(i,j)T the module where xj is self-

regulated (with sign s(j,j)) and is regulated by the node xi (with

sign s(i,j)); there are four modules of this type. We are thus

interested in the networks that result from the composition

(denoted +) of two such modules.

In what follows, the Markov transition matrices M are 4|4
matrices with entries corresponding to configurations ({1,{1),
({1,z1), (z1,z1), (z1,{1) (in this order, which facilitates the

description of the rotation that transforms one model into another,

see below).

Figure 1 summarises the dynamical rules for the four modules,

considering the MR as defined by Equation 1. There are 16

models corresponding to the different combinations of two

modules. Notice that a row rotation (modulo 4, from top to

bottom) transforms each module (column) into the next one.

Denoting by U this transformation and arbitrarily denoting by m
the ½z,zT module, we refer to the remaining modules as

indicated in Figure 1: Um, U2m and U3m (U0m~m).

We first observe a node symmetry that relates Ukm+Ulm and

Ulm+Ukm by exchanging x1,p1 and x2,p2. Referring to the

relation between the two modules that define a two-node GRN,

we partition the set of the models fUkm+Ulm,k,l~0, . . . ,3g in

two subsets: eight models are said in phase (IP), when

k{l~0,2(mod 4), that is when the probabilistic choices are

located in the same row in Figure 1; the remaining eight models

are out of phase (OP), when k{l~1,3(mod 4). In the former case

(IP), the Markov matrix has two rows with four probabilistic

entries each combining the two parameters (p1,p2) and two rows

with a deterministic entry (i.e. with probability one). This defines

10 transitions in the corresponding dynamical diagrams. Whereas

in the later case (OP), each row has two probabilistic entries (either

Figure 1. The four modules and their evolutions for the majority rule (MR). The sign [ corresponds to the probabilistic choice: z1 with
probability pj and {1 with probability 1{pj . In each column, ½s(j,j),s(i,j)T is the symbol associated to the module (sign of the self-regulation and
sign of the cross-interaction).
doi:10.1371/journal.pone.0069626.g001
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pi or 1{pi), giving rise to eight transitions in the dynamical

diagrams.

We search for other symmetries to reduce the case studies of our

two-node models. From a mathematical standpoint, which does

not always fit the functional perspective, two models are equivalent

when their Markov matrices are the same up to a renaming of the

state space and a bijective correspondence of the parameters pi.

Clearly, a necessary condition for this equivalence is that the

diagonal elements of the matrices are the same up to parameter

exchanges. In particular, an IP model cannot be isomorphic to an

OP model. By inspection of the diagonal entries of each model and

elementary computations, we end up with a complete classification

of all the models.

There are eight IP models grouped into three isomorphic

classes, IP1, IP2 and IP3. They are characterised by the existence

of two deterministic transitions whose specific locations govern the

dynamics of the model. There are also eight OP models grouped

into three isomorphic classes, OP1, OP2 and OP3. Contrary to

the IP models, all the transitions are probabilistic and depend on

only one of the parameters (p1 or p2), allowing a complete

flexibility of the mean visit times associated to each connected

component of the dynamical graph.

Model class IP1. It includes the two models

½z,zT+½z,zT (i.e. m+m) and 0½z,{T+½z,{T (i.e.

U3m+U3m). From the structural symmetry point of view, this

class contains the models with self-activations and symmetrical

cross-interactions (i.e. positive two-node circuits). The transition

matrix of ½z,zT+½z,zT is:

M½z,zT+½z,zT~

1 0 0 0

(1{p1)(1{p2) (1{p1)p2 p1p2 p1(1{p2)

0 0 1 0

(1{p1)(1{p2) (1{p1)p2 p1p2 p1(1{p2)

���������

���������
: ð4Þ

The model ½z,zT+½z,zT together with its dynamics

depending on the values of the parameters p1 and p2 are depicted

in Figure 2. The transition matrix of 0½z,{T+½z,{T can be

deduced from the matrix of ½z,zT+½z,zT by permuting the

entries ({1,{1)?(z1,{1)?(z1,z1)?({1,z1)?({1,{1)

Figure 2. The dynamics of the IP1 model ½z,zT+½z,zT.
doi:10.1371/journal.pone.0069626.g002
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and changing p1 to p2 and p2 to (1{p1):

M½z,{T+½z,{T~

(1{p1)(1{p2) (1{p1)p2 p1p2 p1(1{p2)

0 1 0 0

(1{p1)(1{p2) (1{p1)p2 p1p2 p1(1{p2)

0 0 0 1

���������

���������
:ð5Þ

Therefore the dynamics of ½z,{T+½z,{T is isomorphic to

that of 0½z,zT+½z,zT. These models are self-symmetric by

node symmetry. The two deterministic transitions (i.e. with

probability one) are loops on single states (i.e. diagonal elements

in the transition matrix). In other words, the corresponding

Markov chains are absorbing with two fixed point attractors. The

fundamental matrix is [27]:

F½z,zT+½z,zT~
1

(1{p1)(1{p2)zp1p2

|
1{p1(1{p2) p1(1{p2)

(1{p1)p2 1{(1{p1)p2

�����
�����:

ð6Þ

where the first entry is for ({1,z1) and the second for (z1,{1).

Recall that the fundamental matrix F of an absorbing chain is

defined as the inverse of the matrix (1{Q), where Q is the sub-

matrix of the transition matrix M restricted to the set of transient

states [27]. Entry Fij of the fundamental matrix has a nice

probabilistic interpretation: it corresponds to the mean time spent

by the process in configuration j if it starts in i. Note that this value

is finite because F is defined on the transient states. Relying on our

extended notion of absorbing chains, when ergodic sets are

deterministic cycles, we can similarly define a fundamental matrix

and use the same rationale by simply considering a power of M
instead of M.

Therefore, starting in the configuration ({1,z1) (or

(z1,{1)), for typical values of the parameters around 0:5

(p1~p2~
1

2
), the mean time spent by the process in one of the

transient configurations is of order one (actually
3

2
). It diverges

when the parameters tend to opposite extreme values (p1?0,

p2?1) or (p1?1, p2?0), where at the limit, a third fixed point

appears. Instead, when both parameters are close to 0 or 1, the

dynamics still encompasses two absorbing configurations, while

expected times to reach these configurations tend to 0 or 1.

When p1 and p2 are fixed to their extreme values (0 or 1), the

system is deterministic, and the rules governing the evolution of

the nodes can be defined by means of logical connectors. Here,

N p1~p2~0 corresponds to an AND rule on both nodes (the

presence of the two activators is required to reach level 1);

N p1~p2~1 corresponds to an OR rule on both nodes (the

presence of at least one activator is required to reach level 1);

N p1~1, p2~0 corresponds to an OR rule on node x1 and an

AND rule on node x2;

N p1~0, p2~1 corresponds to an AND rule on node x1 and an

OR rule on node x2.

A remarkable feature of this type of models is its ability to

continuously exchanging two logical connectors by weighting the

respective probabilities of implementation. For instance when

p2~0, p1 is the probability to activate the dynamical connection

corresponding to an OR rule on node x1 and (1{p1) is the

probability corresponding to an AND rule. This is clearly

illustrated in the dynamical graphs in Figure 2. In this sense, we

can say that the border of the parameter domain constitutes a

continuous family of Stochasticity In Functions models (SIF) following

the definition in [22]. The whole parameter domain can thus be

seen as a generalisation of these stochastic models, also

corresponding to the probabilistic Boolean networks proposed by

Schmulevich et al. [17].

In fact, by a theorem on random map realisations of Markov

chains (see [28], chapter 1.2), our two-node models can be realised

as random walks on the set of the dynamical graphs of the four

extreme models (i.e. for which the parameters p1 and p2 equal 0 or

1). Let us denote these dynamical graphs by D00 (for p1~p2~0),

D01, D11 and D10 (see Figure 2). Notice that, in the dynamics of

these deterministic models, any configuration has a unique

outgoing transition. At each time step, one extreme model is

randomly and independently selected and the next configuration is

chosen according to the (unique) transition leaving the current

configuration of the corresponding dynamical graph. D00 is taken

with probability (1{p1)(1{p2), D01 with probability p1(1{p2),
D11 is taken with probability p1p2 and D10 with probability

(1{p1)p2. This random walk has exactly the same probabilistic

transitions as the original IP1 model depicted in Figure 2.

Model class IP2. It includes the two models

½{,{T+½{,{T and ½{,zT+½{,zT. From the structural

symmetry point of view, this class contains the models with self-

inhibitions and symmetrical cross-interactions (i.e. positive two-

node circuits).

The model ½{,{T+½{,{T is changed into ½{,zT+½{,zT
by permuting the entries

({1,{1)?(z1,{1)?(z1,z1)?({1,z1)?({1,{1) and

changing p1 to p2 and p2 to (1{p1). The two models are also

self-symmetric by node symmetry. Because the two deterministic

arrows (i.e. with probability 1) interchange two states, the

corresponding Markov chains are absorbing with a unique

attractor, a period-2 cycle (see Figure 3). Therefore, regardless

the initial configuration, all the realisations end up in this cycle,

with probability one.

Because F½{,{T+½{,{T~F½z,zT+½z,zT, the transient dynamics

of ½{,{T+½{,{T and of ½z,zT+½z,zT are identical and

the analysis of the parameter space follows along the same lines as

for the previous class.

Model class IP3. It includes four models: ½z,zT+½{,{T,

½{,zT+½z,{T, and their homologous node symmetric

½{,{T+½z,zT and ½z,{T+½{,zT. From the structural

symmetry point of view, this class contains all the models

asymmetrical with respect either to the self-interaction or to the

cross-interactions. By permuting the entries: ({1,{1)?(z1,{1)
?(z1,z1)?({1,z1)?({1,{1) and by changing p1 to p2, p2

to (1{p1), ½{,zT+½z,{T is changed in ½z,zT+½{,{T.

Notice that an IP2 model cannot be isomorphic to an IP3 model,

even if they share the same diagonal elements. This is because, in

the IP2 class, the deterministic arrows deal with two states while in

the IP3 class, four states are concerned and this property is

invariant by isomorphism of the state space. IP3 models define

regular chains (the four states constitute a unique ergodic set,

unless the parameters take extreme values), but the presence of the

two deterministic transitions put an extra weight on the corres-

pondent target states.

Figure 4 shows that there are many cycles, giving rise to

oscillations that can visit any configuration in any order and with

different return times. The mean return times to each configura-

tion t, kind of a mean period of the oscillations, can be computed

from the invariant probability distribution and reads:

Majority Rule and Random Tie-Breaking in GRNs
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t({1,{1)~
1zp1zp2{2p1p2

(1{p2)
,

t({1,z1)~
1zp1zp2{2p1p2

p2(1{p1)
,

t(z1,z1)~
1zp1zp2{2p1p2

p2

,

t(z1,{1)~
1zp1zp2{2p1p2

p1(1{p2)
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7Þ

We recall that ti, the mean time taken by a regular chain that

starts at i to return to its starting point (the mean return time at i),
is given by the inverse of the ith component of the limiting

probability vector (see [27], Theorem 4.4.5). It is also possible to

compute this value using the fundamental matrix of the process

([27], Theorem 4.4.7). Note that, for a regular Markov chain, the

definition of the fundamental matrix slightly differs from that of an

absorbing chain (see [27], Definition 4.3.2).

In Figure 5, the values of the mean return times t are depicted

as functions of p2, for p1~1=2. Not surprisingly, due to the

deterministic transitions, the mean return time to ({1,z1) (resp.

(z1,{1)) is always larger than that to (z1,z1) (resp. ({1,{1)).

When p2 tends to an extreme value, the system turns into an

absorbing chain and the return times of the transient configura-

tions diverge. As for the other IP models, the extreme cases

correspond to models where rules are defined by means of logical

connectors. Hence, Figure 5 is a further illustration of a continuous

parameter swap between different logical rules.

Model class OP1. It includes ½z,zT+½z,{T and its node

symmetric counterpart ½z,{T+½z,zT. From the structural

symmetry point of view, the class contains all the models with self-

activations and asymmetrical cross-interactions. OP1 models are

the probabilistic counterpart of the negative circuits studied in

[29]: the dynamics is built on a fundamental period-4 cycle

combined with fluctuating sojourns in each configuration. The

transition matrix M½z,zT+½z,{T is:

M½z,zT+½z,{T~

(1{p2) p2 0 0

0 (1{p1) p1 0

0 0 p2 (1{p2)

(1{p1) 0 0 p1

���������

���������
: ð8Þ

Figure 3. The dynamics of the IP2 model ½{,{T+½{,{T.
doi:10.1371/journal.pone.0069626.g003
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Figure 6 illustrates the relevant features of the dynamics of this

model. Notice that, by changing the parameters, it is possible to

modulate the time spent in each configuration and therefore the

mean period of the oscillations. This observation is corroborated

by the computation of the mean return times:

t({1,{1)~
p1(1{p1)zp2(1{p2)

p1(1{p1)(1{p2)
,

t({1,z1)~
p1(1{p1)zp2(1{p2)

(1{p1)p2(1{p2)
,

t(z1,z1)~
p1(1{p1)zp2(1{p2)

p1(1{p1)p2
,

t(z1,{1)~
p1(1{p1)zp2(1{p2)

p1p2(1{p2)
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ

For extreme values of the parameters, the system is bistable.

Model class OP2. It includes the two models

½{,zT+½{,{T and its node symmetric counterpart

½{,{T+½{,zT. From the structural symmetry point of view,

the class contains all the models with self-inhibitions and

asymmetrical cross-interactions (negative circuits between the

two nodes).

Figure 7 shows the existence of synchronous transitions where

both nodes change simultaneously their values, inducing various

period-2, 3 and 4 cycles. Combinations of these cycles lead to

oscillations of any order. The extreme cases display four

deterministic periodic dynamics, each including one synchronous

transition that involves simultaneous updates of the two nodes.

The analytical expressions of the mean return times are:

t({1,{1)~
3{p1(1{p1){p2(1{p2)

1{p2z(1{p1)p2
2

,

t({1,z1)~
3{p1(1{p1){p2(1{p2)

(1{p1)(1{p2)zp1p2z(1{p1)2p2

,

t(z1,z1)~
3{p1(1{p1){p2(1{p2)

(1{p2)zp2
2{(1{p1)(1{p2)2

,

t(z1,{1)~
3{p1(1{p1){p2(1{p2)

(1{p1)2(1{p2)zp1

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð10Þ

Figure 4. The dynamics of the IP3 model ½{,zT+½z,{T.
doi:10.1371/journal.pone.0069626.g004
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The set of equations (10) fully supports the idea of continuous

parametric transitions among these dynamics: while the probabil-

ity of a period-3 cycle increases as parameters tend to their

extreme values (0 or 1), for intermediate parameter values, higher

values of t indicate that the period-4 orbits become prominent.

Model class OP3. It includes four models, ½{,{T+½z,{T
and ½z,zT+½{,zT and their node symmetric counterparts.

From the structural symmetry point of view, the class contains all

the models with self asymmetrical interactions and symmetrical

cross-interactions. By permuting the entries: ({1,{1)?({1,z1)
?(z1,z1)?(z1,{1)?({1,{1) and changing p1 to p2 and

p2 to (1{p1), model ½{,{T+½z,{T is changed into

½z,zT+½{,zT. The dynamics of these models alternate chains

of period-1 to 4 cycles. It may thus be viewed as a transition

between OP1 and OP2 models.

Figure 8 exhibits the dynamical properties of this model. In

particular, in the extreme cases, we observe the existence of

deterministic fixed points possibly combined with a period-2 cycle.

The existence of oscillations of any period is also shown in

Figure 8 and Equation (11) points to a large variety of time scales

of the oscillations when parameters are changed:

t({1,{1)~
p1(2{p1){p2(2p1{p2)

p1(1{p1)(1{p2)
,

t({1,z1)~
p1(2{p1){p2(2p1{p2)

(1{p1)p2
2

,

t(z1,z1)~
p1(2{p1){p2(2p1{p2)

p1(1{p1)p2

,

t(z1,{1)~
p1(2{p1){p2(2p1{p2)

p1(1{p2)2
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð11Þ

Two Majority Rule variants
Here, we briefly analyse the cases of the two variants previously

introduced: the Inertial Majority Rule (IMR) and the Null

Majority Rule (NRM).

The Inertial Majority Rule. This rule defines that, when-

ever activations and repressions cancel each other out, the next

level of a node depends on its current level (Equation (2)). For our

two-node models under the IMR, we can define the same

isomorphism classes as those of the MR. From Figure 9, one can

observe that the symmetry for the IMR is slightly different from

that of the MR. There are two types of probabilistic choices,

introducing a row reflection R besides the rotation U to relate the

modules. For example, Rm’ evolution in Figure 9 is obtained by

rotating module m’ rows (transforming {1,[,z1,] into

],z1,[,{1). As a consequence, the isomorphism between

models under the IMR relies on a different parameter change

when compared to the MR: p1 is changed to p2 and p2 to p1.

However, IMR and MR have exactly the same model classes and

similar dynamics. Only differences regarding transition probabil-

ities arise for the models combining an even and an odd module,

i.e. an even and an odd column of Figure 1 (for the MR model) and

Figure 9 (for the corresponding IMR model). For instance, in the

case of the OP3 model ½{,{T+½z,{T, defined by the third and

fourth columns of Figures 1 and 9, the two loop transition

probabilities are different for the MR (namely p1 and (1{p1)),
whereas they are identical for the IMR (namely p1). The

probabilities of the transitions connecting configurations

(z1,z1) and ({1,{1) similarly differ between the MR and

the IMR. The reason for this clearly appears in the Figures 1 and 9

where the probabilistic choices are identical in both columns for

the MR whereas they are opposite for the IMR.

The Null Majority Rule. The majority determined under

the NMR is quite different as compared to that of the MR and the

IMR (see Equation (3)). Indeed, a node whose level is 0 has no

contribution in the updating decision of its targets. Still, one can

define a bijection between both representations. In any configu-

ration, let si denote the (global) contribution of the regulators

targeting node i (i.e. si(x)~
P

j s(j,i)xj ). We have:

Figure 5. Mean return times of the IP3 model ½{,zT+½z,{T as a function of p2, with p1 fixed to 1=2. In this plot, one can observe for
instance, that the mean return times to ({1,{1) varies from 0 (when p2~0) to z? (when p2~1).
doi:10.1371/journal.pone.0069626.g005
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Vxi[f0,1g,

2xi{1~xi[f{1,z1g and si(x)~2si(x){
X

j

s(j,i):
ð12Þ

Note that the very same change of variables was defined by F.

Robert, coming up with two equivalent formulations for threshold

networks [30]. However, to ensure equal dynamics, the threshold

functions and the thresholds were accordingly modified. Here, our

purpose is different and amounts to revising the semantics of

repression contributions (therefore the zero threshold is main-

tained for all the nodes).

The modules ½{,zT and ½z,{T are identical under the MR

and NMR because, in these cases,
P

j s(j,i)~0 (see Figure 10). As

a consequence, the four NMR models built with these modules

have the very same dynamics as their MR counterparts.

Moreover, considering the NMR, if at a given time, x1~x2~0,

then s(x1)~s(x2)~0 and the sixteen models have the same

probabilistic updating for this configuration. Finally, it is easy to

check that starting at time t from the remaining configurations

(0,1), (1,1) or (1,0), the updating process leads to x~1 in the

module ½z,zT and x~0 in ½{,{T. From these observations, it

turns out that NMR models have more deterministic transitions

than their MR analogs. Not surprisingly, there are thus more

absorbing models under the NMR than under the MR. This is a

remarkable difference from the biological perspective since under

the NMR, in eleven out of sixteen models, the dynamics converge

to a fixed point or a small cycle. Hence the NMR displays robust,

restricted behaviours. Moreover, changes in parameters values

only impact times for convergence to attractors whose identities

are conserved. In contrast, the MR is more flexible, leading to

models with a larger variety of behaviours.

Finally, with the INMR that results from the combination of the

inertial and null majority rules, the module evolutions are similar

to those defined in Figure 10, except that for configuration (0,0),
pj and 1{pj are interchanged (i.e. for all the modules, value 1 is

chosen with probability 1{pj and 0 with probability pj ).

The yeast cell cycle network revisited
The original model. The eukaryotic cell cycle defines a

series of phases undergone by cells that divide, giving rise to

daughter cells. G1 is a growing phase, known as gap 1 phase,

Figure 6. The dynamics of the OP1 model ½z,zT+½z,{T.
doi:10.1371/journal.pone.0069626.g006

Majority Rule and Random Tie-Breaking in GRNs

PLOS ONE | www.plosone.org 9 July 2013 | Volume 8 | Issue 7 | e69626



followed by the S phase of DNA synthesis and chromosome

replication. Then, after the gap phase G2, the M phase proceeds

with the separation of the chromosomes and culminates with cell

division. In [8], Li et al define a Boolean Gene Regulatory Network

that encompasses the main regulators of the cell cycle progression

in the budding yeast. The network supporting this model is

depicted in Figure 11. The authors use a deterministic Inertial

Null Majority Rule, hence the 11 variables xi take values 0 or 1,

and xi(tz1)~xi(t) when si(x(t))~0 with probability 1. Interest-

ingly, Davidich and Bornhold’s Boolean model of the fission yeast

cell cycle uses the very same rule [10]. Recently, Fauré and

Thieffry describe and compare logical models of the molecular

networks controlling the cell cycle in different eukaryotic

organisms [11].

Cyclin Cln3 is known to be crucial for the cell commitment to S

phase, i.e. for the cell cycle progression. In this model, Cln3 (x1)

thus acts as an input of the network (possibly stimulated by a start

signal). As a key feature, the model has a fixed point denoted G1,

which corresponds to the G1 phase and that attracts most of the

trajectories, considering all possible initial conditions. There are

other six fixed points in the model, but those have a rather

restricted basin of attraction and no meaningful biological

counterparts. Moreover, starting from the state G1, and artificially

switching Cln3 ON, the model follows a trajectory matching the

cell cycle progression until reaching back the state G1.

Li et al considered the large size of the basin of attraction of the

biological fixed point G1 as a good indication of the robustness of

the network to perform its function. This is confirmed by showing

that the size of this basin of attraction is mostly preserved under

perturbations that randomly remove or introduce a regulatory

interaction. In [25], Stoll et al. propose another type of

perturbations: 1) shuffling the wiring yet keeping the connectivity

at each node or 2) removing one to several regulatory interactions.

Using Li et al.’s model as a case study, they consider the size

distribution of the basins of attraction and distance to a reference

attractor as useful measures to assess impact of these perturbations.

Zhang and colleagues assess the effect of stochasticity on the Li et

al. model by turning it to a probabilistic model where all

transitions in the configuration space are made possible [18].

In the framework of the present work, it is natural to consider

the model described above as an extreme case of its stochastic

version and to study the robustness of the dynamical behaviour

faced to perturbations in the probability parameter space.

Figure 7. The dynamics of the OP2 model ½{,zT+½{,{T.
doi:10.1371/journal.pone.0069626.g007
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Figure 8. The dynamics of the OP3 model ½{,{T+½z,{T.
doi:10.1371/journal.pone.0069626.g008

Figure 9. The four modules and their evolutions for the Inertial Majority Rule (IMR). The sign [ corresponds to the probabilistic choice:
z1 with probability pj and {1 with probability 1{pj whereas the sign ] corresponds to the opposite probabilistic choice: {1 with probability pj

and z1 with probability 1{pj . R is a reflection, U is a rotation as for MR in Figure 1.
doi:10.1371/journal.pone.0069626.g009
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Therefore, we consider the stochastic version of this model

under the Inertial Null Majority Rule: when si(x(t))~0 (the sum

of the contributions is zero) we have xi(tz1)~xi(t) with

probability pi, otherwise xi(tz1)~1{xi(t) with probability

(1{pi). As for the two-node models under the NMR, all the

modules are probabilistic. In particular, when all the node values

equal zero (see Figure 10). In the configuration G1, all genes are

inactive but x5 (which negatively regulates x6 and x8) and x7

(which negatively regulates x8). We have thus that s6(G1)v0,

hence x6~0 is stable in G1, similarly for x8. Consequently, G1 is

not absorbing, except if p1~p2~p3~p4~p5~p7~p9~p10~

p11~1. When these parameters are closed to 1, the system may be

steady in G1 long enough to match the biological situation, but it

will eventually (after a finite time, with probability 1) leave G1,

following a trajectory different from the cycle described in [8].

In the deterministic case, the INMR favours the existence of

steady states including those with active genes whose regulators are

all inactive; as discussed in [15], the fact that a node keeps its

current value when the sum of the contributions is zero leads to

frozen nodes. As already mentioned, the inertial rule amounts to

add a self-activation on every node. It is worth mentioning that the

self-inhibitions of the model (see Figure 11) are not functional (see

[26]), they merely cancel out these self-activations, which are

hidden in Li et al.’s model. In other words, for nodes that are only

positively regulated, the NMR is applied.

In contrast to the deterministic INMR, the stochastic model

does not display such a stability. The aforementioned property of

the inertial deterministic rule that generates frozen nodes does not

hold anymore. In particular, when regulators are absent,

activations and inhibitions are not discriminated, giving rise to a

large number of probabilistic configurations. This is the main

reason why G1, together with the other steady configurations of

the INMR model, are not robust to the stochastic extension and

are not absorbing states.

The model revised, considering the stochastic MR. We

now consider Li et al.’s model under the stochastic MR as defined

by Equation (1). Node values are thus set to {1 or z1 (and

denoted by x rather than x). We recall that when the sum of its

input contributions equals zero (si(x)~0), xi takes the value z1
with probability pi and {1 with probability (1{pi).

In order to analyse the dynamical features of the model, in

particular regarding its steady states, we take advantage of the

combination of deterministic and probabilistic operation modes.

As we shall see, the deterministic part of the dynamics imposes

strict restrictions that are worth to inspect prior to follow up the

study. We describe the strategy in some detail because it can be

Figure 10. The four modules and their evolutions for the null majority rule (NMR). The sign [ corresponds to a probabilistic choice: 1 with
probability pj and 0 with probability 1{pj . Node levels take values 0 and 1.
doi:10.1371/journal.pone.0069626.g010

Figure 11. The yeast cell cycle model as defined in [8]. Green arrows denote activations, whereas red T-ended edges denote inhibitions. In Li et
al.’s model, self-degradations (dashed red loops) were added to the nodes that have no negative regulators. When considering the stochastic MR
rule, these self-loops can be discarded (see text). With the addition of the two activatory edges in blue, G1 becomes the unique attractor of the model
when x1~{1. The table on the right indicates molecular counterparts of nodes xi as well as their values in the G1 configuration.
doi:10.1371/journal.pone.0069626.g011
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easily generalised and thus used to study any model under the

same rule.

Recall that a configuration of the module xi includes the values

of all the regulators xj of xi. Beside the input node x1, the yeast

cell-cycle network has five deterministic modules, i.e. with odd in-

degree, the remaining five being probabilistic. For a probabilistic

module xi, only configurations such that si(x)~0 have a

probabilistic outcome. An absorbing configuration x, i.e for which

M(x,x), the element of the transition matrix equals 1, verifies:

Vxi,si(x)=0 and xi~sign(si(x)):

We first search for the steady configurations of the deterministic

modules (they strongly restrict the number of candidates of

absorbing configurations). Among the 32 configurations of the five

deterministic nodes, we easily end up with only two candidates. All

the other 30 configurations are discarded because they are not

steady for at least one deterministic module. These two remaining

configurations, steady for all the five deterministic modules, are

Gdet
1 = (x5~z1, x6~{1, x8~{1, x9~{1, x10~{1) andfG1G1

det

= (x5~{1, x6~z1, x8~z1, x9~z1, x10~z1). The

former matches the biological fixed point G1 for the five

deterministic modules, and the latter corresponds to its mirror

image. Notice that the existence of these two solutions is a

consequence of the correspondent symmetry of the MR (x versus

~xx~{x).

We then look for all the possible extensions to the remaining six

probabilistic nodes of these two solutions. The number of such

extensions may be reduced if the values of the deterministic

regulators of a probabilistic module determine the value of the

corresponding node. Because fG1G1
det

implies that x3~{1, which is

not compatible with x6~z1, we conclude that fG1G1
det

has no steady

extensions.

Let us now explore the possible steady extensions of Gdet
1 . Recall

that x1~{1 in G1. Clearly, from the already known inputs of

module x11 (that are x8,x9 and x10), it follows that x11~{1.

Looking now to the five known values for module x5 (i.e x6, x8,

x10, x11 and x5 itself), we conclude that x4~{1, which in turn

implies x7~z1. It remains to investigate x2 and x3. In order to

have x4~{1 with non-zero probability (in fact (1{p4)) we

should have x2~{1. For module x2, we have x2~{1 with

probability (1{p2). On the other hand, in order to be consistent

with the values already fixed for module x6, we need to set

x3~{1, which is the case with probability (1{p3). Therefore G1

is steady with probability (1{p2)(1{p3)(1{p4). Remarkably,

this analysis shows that the only steady configuration is G1, even if

it is not absorbing; no other configuration remains steady with a

non-zero probability.

This encouraging result naturally leads us to search for minimal

changes in the interaction network that would turn G1 into an

absorbing configuration. The first simple modification consists in

eliminating the self-inhibition of x4, making this module deter-

ministic with the proper outcome. Note that, because the MR

accounts for the absence of a regulator, we could safely clean up

the model by discarding the self-inhibitions of x1, x4, x9, x10 and

x11. These were artificially added in the original model to ensure

self-degradation of components that are not subject to other

inhibition, under the INRM, and their elimination does not

modify the results presented here. It remains the drawback of

modules x2 and x3. They can be fixed with probability one either

by adding a positive interaction from a node whose values is {1 in

the configuration G1, or by adding a negative interaction from a

node whose value is z1 in G1. Interestingly, a modification that

fulfils these constraints was mentioned by Fauré and Thieffry who

propose to account for biological data suggesting that Cln1/2 and

Clb5/6 positively their own transcription factors [11]. Adding

these positive interactions from x4 to x2 (Cln1/2 to SBF) and from

x6 to x3 (Clb5/6 to MBF), G1 is the only steady configuration that

turns out to be absorbing, that is to say to have a maximal

robustness in the Markov chain context.

A subsequent question arises that concerns the existence of

other absorbing trajectories in this modified model. By generating

the state transition diagram of the corresponding Markov chain,

we could verify that, when x1~{1, the G1 state is the unique

attractor and thus, as mentioned above, for x1~z1, it is easy to

deduce that the unique attractor is fG1G1, the mirror state of G1.

Hence, with probability 1, the system will reach either G1 or fG1G1,

depending on the value of the input node x1. We have thus a full

characterisation of the asymptotical behaviour of the model.

In this section, the cell cycle model of Li et al. has been used to

illustrate the interest of our stochastic majority rule. Detailed

biological interpretation of the model properties and further study

to assess transient behaviours go beyond the scope of this paper.

Discussion

In this work, we have presented a stochastic extension of

threshold Boolean networks that includes both deterministic and

probabilistic rules. In contrast to other studies where all transitions

are made stochastic (e.g. [18]), a probabilistic choice is made only

when the sum of the contributions equals the threshold (often set to

0), otherwise, the update is deterministic. This is rather natural

from the biological view point. Indeed, it is reasonable to assign a

probability to the update choice when regulatory effects cancel

each others.

The originality of this model lies in the coexistence of

deterministic and probabilistic nodes (or modules) in the same

gene network; the former have a deterministic outcome for any

input configuration, while the latter have probabilistic choice in

certain configurations. This natural ambivalence open new

interesting dynamical characteristics, yet avoiding a useless

combinatorial explosion of trajectories. This point allows a

rigorous analysis of certain dynamical properties of the model.

In particular, we have shown how all the steady configurations

may be identified and their properties modified in agreement with

biological observations. More specific features of the dynamics, as

for instance the mean sojourn and return times, can be studied in

this formalism, allowing an almost complete description of the

dynamical properties of the models.

We have introduced the majority rule (MR) as a convenient

setting, compared to the null (inertial) majority rule: variables

taking values {1 and 1 amount to consider that the absence of a

regulator has an effect opposite to that observed when the

regulator is present. When variables take values 0 and 1, the

absence of a regulator is not accounted for in the rule. This has

serious consequences: if a node is exclusively subject to inhibitions,

there is no configuration for which its value is updated to 1, except

under the inertial majority rule. The inertial majority rule

introduces a self-activation on all the nodes and, for this reason,

Li et al. as Davidich and Bornholdt, have introduced self-

inhibitions on genes that are not negatively regulated otherwise

[8,10].

By thoroughly exploring the properties of simple two-node

motifs, we could demonstrate the variety of the behaviours

induced by our stochastic extension. Its application to Li et al.’s

model indicates that it can be used to propose modifications of the
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model: here, we have shown that to turn the biological state G1

into an absorbing state, one needs to add specific regulatory arcs to

the network.

As shortly demonstrated for the cell cycle model, a systematic,

efficient method to search for steady (absorbing) states should be

relatively easy to implement. Moreover, this method can provide

useful indications for model revision in order to ensure that a given

state is absorbing. To search for other steady complex behaviours

of the revised model, we have generated the corresponding

transition diagram. Noticeably, we have verified that G1 and its

mirror states are the sole ergodic states. Future work would focus

on a more detailed analysis of the properties of the model such as

the nature of the transient dynamics, e.g. providing measures on

mean return times.

Extension of the present work also includes the consideration of

non-zero thresholds in the majority rule. Importantly, the

stochastic extension presented here applies for integer thresholds

(considering integer interaction weights); indeed, threshold real

values avoid the case of equality in the sum of the regulatory

contributions [15]. Note however that, in this case, the probabi-

listic alternative may be considered as a consequence of

uncertainty when gene expression is too close to the theoretical

threshold, specially due to local inhomogeneities of protein

concentrations.
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