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Abstract

Data from the 1000 genomes project (1KGP) and Complete Genomics (CG) have dramatically increased the numbers of
known genetic variants and challenge several assumptions about the reference genome and its uses in both clinical and
research settings. Specifically, 34% of published array-based GWAS studies for a variety of diseases utilize probes that
overlap unanticipated single nucleotide polymorphisms (SNPs), indels, or structural variants. Linkage disequilibrium (LD)
block length depends on the numbers of markers used, and the mean LD block size decreases from 16 kb to 7 kb,when
HapMap-based calculations are compared to blocks computed from1KGP data. Additionally, when 1KGP and CG variants are
compared, 19% of the single nucleotide variants (SNVs) reported from common genomes are unique to one dataset; likely
a result of differences in data collection methodology, alignment of reads to the reference genome, and variant-calling
algorithms. Together these observations indicate that current research resources and informatics methods do not
adequately account for the high level of variation that already exists in the human population and significant efforts are
needed to create resources that can accurately assess personal genomics for health, disease, and predict treatment
outcomes.
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Introduction

A primary goal of the human genome project was to produce

a high quality DNA sequence that could serve as a common

reference for understanding the genetic basis of health and disease.

The reference sequence has been a guiding principle for the

development of a vast array of reagents, arrays, genotyping assays,

computational tools, and clinical resources. Moreover, the

reference sequence is the foundation for databases and bioinfor-

matics algorithms that are used to define target regions for

resequencing, perform genome wide association studies, or

measure inter-species conservation. Thus, the reference sequence

has become essential for clinical applications, and is used to

determine alleles for risk, protection, or treatment-specific re-

sponse in human disease [1]. Yet, the current reference sequence,

being based on a limited number of samples, neither adequately

represents the full range of human diversity, nor is complete [2,3].

Because so much work is currently based on the concept of

a standardized reference sequence, we have evaluated the extent

to which our growing knowledge of human genome variation

should alter this paradigm. New data emerging from the 1000

Genomes Project (1KGP) [4] and public release of genomes from

Complete Genomics (CG) [5] have dramatically increased the

numbers of known genetic variants by tens of millions [6]. Using

the 1KGP and CG genome datasets, we have evaluated several

genomics tools and assays that have been developed with the

reference sequence. In addition to identifying a high frequency of

confounding issues with microarrays, multiple instances where

bioinformatics programs rely on invalid assumptions to un-

derestimate variability or possibly misidentify the functional effects

of mutations were found. Additional comparisons of the inter- and

intra-population variance within the CG and the lower coverage

1KGP experiments identified a striking degree of difference

(.19%) between the variants called on the same genomes. These

findings have implications for the study of human variation and

medical genetics, and resolving and correcting these discrepancies

will be essential for creating the era of personalized medicine.

Importantly, the results of these studies are stored in dbSNP and

are regarded as the true lists of variants for the genotyped

individuals. This is extremely problematic due to the high false-

positive rates of the technologies and the diversity of results [4].

Further development of genotype calling techniques and methods

for validation are required in order to make these data usable and

reliable.

Results

Most Microarray Probes are Confounded by Genetic
Variation
Microarrays have been one of the most utilized tools in genetic

research and are the basic platform for Genome-Wide Association
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Studies (GWAS). These arrays contain millions of DNA probes

that are used to determine the genotypes of polymorphic loci. The

optimal genotyping capacity is predicated on two basic assump-

tions concerning genomic sequences. First, the genotyped samples

are completely identical at all locations within the probe, except

for the targeted SNP. Second, the SNP must be one of the two

variants for which the array was designed as variants are assumed

to be biallelic. If either of these two conditions are violated, then

the microarray probe will not function as well, or at all, and lead to

false negative or false positive results for some individuals [7].

Using the 1KGP dataset (25 million single nucleotide poly-

morphisms (SNPs) from 629 individuals), we evaluated the extent

to which these assumptions are violated for each of four commonly

used microarray platforms, the Illumina Human Omni1M-quad,

Illumina Omni 2.5 M, Affymetrix 6.0, and the Affymetrix Axiom

CEU array, which takes into account new knowledge concerning

variation within the genome [8]. For each probe, we tested

whether there were any SNPs or indels detected in the 1KGP data

within 10bp of the targeted SNP on either the 59 or 39 side of the

probe. We also tested whether the probe was contained within an

annotated structural variant (SV). Overall, a substantial percent-

age of probes (51%) are affected by one or more of these problems

(Table 1). The summary columns indicate the number of probes

that have any of the listed deficiencies and certain probes are

problematic for more than one reason. It is also worth noting that

the distribution of untyped SNPs surrounding the probed SNP is

reasonably constant with the exception of a higher number of

SNPs the +1 and -1 locations (Figure 1B), because base differences

closer to the probe base are more likely to affect hybridization than

those further away. The higher level of variants at the +1 and -1

locations is likely due to the potential mis-mapping of reads and

probes to the genome [9,10]. In order to determine whether we

have found the majority of problematic probes, we took

subsamples of the 1KGP SNPs and counted how many probes

on arrays were affected (Figure 2). We found that as the number of

SNPs sampled increases, the number of probes with un-probed

SNPs increases and the plot shows no sign of flattening. If the plot

was reaching an asymptote, then we would have found most of the

problematic probes and the rest of the probes could be confidently

utilized. Thus, when all of the SNPs have been found in the

human genome, there will be few if any locations where

a microarray probe could be confidently utilized across all

populations.

Next, we examined polyallelic SNPs, where there are more than

2 possible alleles at a locus. The 1KGP data contained 496 loci

over 629 genomes, whereas the Complete Genomics (CG) data

contained 61,153 loci in just 69 genomes, representing a 123-fold

increase in detection. Polyallelic SNPs are more difficult to

investigate because many variant calling pipelines are biased

toward biallelic SNPs [11,12], which in part accounts for the large

observed discrepancy. There were also a substantial number of

positions where an individual is heterozygous, and yet neither base

matched the reference. Such ‘‘heterozygous, dual non-reference’’

calls occur an average of 1,189 times per genome (sd = 288).

We then compared the ‘‘heterozygous, dual non-reference’’

SNP locations to lists of the probe bases on the standard

microarrays and found thousands of instances where the

microarray probe assumed a biallelic context but is instead

polyallelic (Table S1). This presence of more than 2 alleles at a site

has been found to be problematic for many different genotyping

platforms [13,14], and these types of errors have also been shown

to affect variant calling accuracy in exome sequencing [15]. We

observed 2,928, 1,993, 2,918, and 2,118 probes were affected on

the Affymetrix 6.0, Axiom CEU, Illumina 1 M, and Illumina

2.5 M arrays, respectively.

Table 1. List of Probes on Common array platforms adversely affected by variants detected through sequencing and not probed
on the array.

Number of Microarray probes overlapping

Array

Number of
autosomal
SNP probes
on the array

Unprobed
SNPs Indels

Structural
Variants

Total number of
probes affected by
either un-probed
SNPs or Indels

Total number of probes
affected by either un-probed
SNPs, Indels or Structural
Variants

Affymetrix 6.0 894,240 119,341 (13%) 7,720 (1%) 359,592 (40%) 125,785 (14%) 434,702 (49%)

Affymetrix Axiom CEU 607,555 100,339 (17%) 11,983 (2%) 247,944 (41%) 111,150 (18%) 312,736 (51%)

Illumina 1 M 940,876 144,431 (15%) 9,996 (1%) 378,809 (40%) 153,192 (16%) 469,417 (50%)

Illumina 2.5 M 2,390,395 379,271 (16%) 35,494 (1%) 944,510 (40%) 410,355 (17%) 1,191,584 (50%)

doi:10.1371/journal.pone.0040294.t001

Figure 1. Location of SNPs relative to the probed base in
microarrays. Histogram showing the number of SNPs in upstream and
downstream positions relative to the probed SNP on the Illumina1 M
array. The red line indicates the location of the probed SNP.
doi:10.1371/journal.pone.0040294.g001
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The impact of the above issues is that they can confound GWAS

studies due to false homozygous or negative calls. Hence, we next

sought to examine which of these problematic probes appear in

published GWAS studies. 34% of the studies (1,708/4,972 from

the UCSC genome browser) have significant hits with a microarray

probe affected by neighboring un-probed SNPs, SVs, indels or

polyallelic SNPs (Table S1). Though many of these studies take

great care to avoid non-random genotyping errors, current

methods to detect such errors would not incorporate these types

of changes. Thus, we caution that replication of future GWAS

studies should attempt to be robust to both population stratifica-

tion as well as genomic variation, by using additional probes and/

or orthogonal technologies for genotyping top candidates. A list of

all microarray probes that were found to be problematic along

with the reasons for their deficiency are listed in Table S2.

Genes and Exons with Multiple Variants
Widely used bioinformatics tools for examining the effect of

a specific mutation on a protein’s structure, such as PolyPhen [16]

or SIFT [17], also depend on the reference sequence. Such

programs take the reference sequence and a polymorphism and

predict the likely effects of the variant on the modified protein’s

structure and functional capability. While the ability of these

programs to fully predict the functional consequence of a mutation

is not perfect [18,19], they are still widely utilized for variant

stratification and prioritization. Yet, these programs were designed

to examine only one deleterious variant at a time, and thus,

complex intra-protein interactions between multiple variants are

lost, such as compensatory, additive, or exacerbating effects [20–

22].

We utilized the high-depth CG genomes to evaluate the extent

to which there are multiple SNPs within an exon or the full coding

regions of a gene. For each individual, there is an average of 6,077

genes (sd = 570) having multiple SNPs and an average of 3,320

(sd = 341) individual exons having multiple SNPs. The vast

majority of exons with multiple SNPs only have two SNPs, but

there are some exons with a larger number of SNPs. BRCA1, one

of the most well studied breast cancer genes, contains numerous

genetic variants. In the CG data 36 of 69 individuals have multiple

(2–5) non-synonymous variants within their BRCA1 gene.

Intra-Population Variation and Linkage Disequilibrium
Haplotype blocks can, in theory, reduce genotyping measure-

ments by using one SNP to ‘‘tag’’ other SNPs [23,24]. Using

HapMap [25] data, large regions of linkage disequilibrium (LD)

have been determined for different human populations to create

haplotype blocks that organized SNPs into co-segregating groups.

The larger number of SNP loci provided by the 1KGP allowed us

to investigate how the number of loci affects LD block size. The

CEU (Caucasian American) datasets from HapMap and 1KGP

Figure 2. Problematic probes on microarrays. The number of probes on the Affymetrix Axiom CEU (blue) and Illumina 2.5 M(red) arrays that are
found to contain an un-probed SNP for sub-samples of the 1KGP SNPs.
doi:10.1371/journal.pone.0040294.g002
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were used to compare the respective LD and homozygosity of

genomes. Both datasets contain 90 individuals and many of the

samples are shared between the two studies. Because LD

calculations are sensitive to missing data, the two datasets were

trimmed to only include SNP loci that had genotype calls of at

least 99%. This resulted in the HapMap set having 2,297,650

SNPs and the 1KGP set having 13,289,610 SNPs. For the

HapMap set, the mean LD block was 16.4 kb in size (sd = 27.4)

whereas the 1KGP dataset had a mean LD block size of 7.0 kb

(sd = 15.7 kb). Thus, by increasing the number of markers used,

the mean LD block decreased in size by half.

To further determine the extent to which both the number of

SNPs and the number of individuals analyzed affected LD

calculations, we separately selected random samples of different

percentages of individuals and SNPs from the 1KGP data for

chromosome 20. As the number of SNPs increased (with a constant

number of individuals), the average size of an LD block decreased

from 16 kb (sd = 26 kb) to 5.4 kb (sd = 13 kb) (Figure 3). Based

upon the figure, LD block size appears to be reaching an

asymptote, but the size will continue to decrease as the number of

identified SNPs increases. A clinically relevant example of how the

decreased LD lengths can affect impact SNP-tagging is observed in

the BRCA1 and JAK2 cancer genes (Figure 4 and Table 2). The

HapMap data show extensive LD throughout the genes, whereas

1KGP data show many fewer strong blocks of LD. In particular,

from the HapMap data, each gene, has four blocks, while from the

1KGP data, BRCA1 has seven haplotype blocks and JAK2 has 17

haplotype blocks.

While it is understood that increasing variation will decrease LD

block size, the impact of increased variation has not been

documented. This decreased LD has strong implications for the

diagnostic genotyping of these genes and association studies [26].

Regions previously presumed to be in LD [27,28] can no longer be

automatically considered strongly linked, and ideally the entirety

of the gene should be considered for clinical work. For example,

previous work on JAK2 was based on 92 haplotypes that were

presumed tagged by individual SNPs [29], including one SNP that

tagged the JAK2 46/1 haplotype and correlated with essential

thrombocythemia [30]. Similarly, the finding that individual SNPs

can tag BRCA1 haplotypes [31,32] needs to be re-evaluated in

light of the multiple haplotypes.

An additional measure used for studying population variation is

the presence of runs of homozygosity (ROH). Individuals from

a homogenous populations share similar chromosomal segments,

and therefore, many contiguous loci across the individuals’

genomes would be homozygous. Conversely, individuals from

admixed populations show less homozygosity in their genome.

This homozygosity is investigated using SNP data and a run of

homozygous (ROH) SNPs [33]. Such ROHs are only based upon

the markers that are genotyped and the homozygosity of the

intervening regions is assumed, but not truly known. We found

that for the HapMap data, there is an average of 70.2 MB

(sd= 16.7 MB) of homozygous sequence per genome, while in the

Figure 3. LD block lengths. The mean length of LD blocks as the number of genotyped markers increases.
doi:10.1371/journal.pone.0040294.g003
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1KGP data, there was only an average of 13.2 MB (sd = 11 MB)

of homozygous sequence per genome (see methods). This decrease

in observed homozygosity reflects the increased resolution of the

data and shows that our estimates of homozygosity have previously

been far too high.

Comparison of the 1000 Genomes and the Complete
Genomics Datasets
The variant calls produced by 1KGP and CG represent two

fundamentally different approaches to interrogating the variation

across human genomes. The 1KGP project aims to sequence

2,500 low-coverage genomes, and the release we examined

contained genotypes for 629 genomes. In contrast, the CG set

contains 69 high-depth fully sequenced genomes. Since these

approaches are so distinct, it is worth comparing the overlap of

SNP calls between the two sets (Figure 5A). While a large number

of SNPs (,14 million) that are shared by both sets, 21% of the

SNPs are unique to one of the sets. Part of the large difference

could be due sampling differences; while both projects are

sequencing HapMap individuals, there is not a complete overlap

between the samples that were sequenced. Hence, the analysis was

repeated with the 32 genomes that are shared by the two projects.

Because the 1KGP sequencing is at a low depth, it will miss

variants that should be detected in the higher coverage CG

sequencing. The CG SNPs for these individuals should form

a super set of those SNPs detected by 1KGP. Surprisingly,

a substantial number (19%) of SNPs are still unique to one of the

two platforms (Figure 5B) when comparing the same genomes.

This difference is much greater than would be expected and is

likely due to differences between data collection and analysis

methods in the CG and 1KGP projects. Specifically, the CG

genomes were genotyped individually without any reliance on

other genomic sequences. Due to the low-coverage of the

sequencing in the 1000 Genomes Data [4], multiple genomes

were genotyped together and variation data was imputed between

genomes. These two approaches are highly distinct from each

other, and further validation using orthogonal methods will be

required to evaluate which technique is more accurate.

Figure 4. The LD block structure of two genes for the HapMap data and the 1KGP data. A. The BRCA1 gene using the HapMap data. B.
The BRCA1 gene using the 1KGP data. C. The JAK2 gene using the HapMap data. D. The Jak2 gene using the 1KGP data.
doi:10.1371/journal.pone.0040294.g004

Table 2. A comparison of the Linkage disequilibrium patterns of BRCA1 and JAK2 using HapMap and 1000 Genomes data.

Gene
Number of Blocks/total size
of Blocks from HapMap

Mean size of Blocks
from HapMap

Number of Blocks/total size
of Blocks from 1KGP

Mean size of Blocks
from 1KGP

BRCA1 4/73,185 bp 18.3 kb 7/75,015 bp 10.7 kb

JAK2 4/132,544 bp 33 kb 17/131,306 bp 7.7 kb

doi:10.1371/journal.pone.0040294.t002
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Discussion

Through efforts like the 1KGP and CG public data releases, we

are getting a new view that human variation much more extensive

than previously thought. These data also expose several short-

comings of current microarray tools and alter the view of some

basic tenets of the allelic variance of the human genome.

While genotyping arrays have been a main tool in genetic

studies for almost two decades, only now can we observe that

current arrays will do an imperfect job measuring variation in

randomized populations due to the greater than anticipated extent

of probe-affecting variation. The regions near known SNPs have

been assumed to be largely free of indels, SNPs, and SVs, and also

biallelic, but all of these assumptions are incorrect for a large

fraction of probes used in most genotyping platforms. The largest

percentage of the probes is affected by structural variants, which

cover a substantial percentage of the genome, ranging from

insertions and deletions to large-scale tandem repeats and copy

number variants. When a probe matches one of these regions, the

actual location that is interrogated in the genome is ambiguous. In

individuals lacking the SV, the reference location is interrogated,

while in individuals with the SV, the variant location is

interrogated. This inconsistency will produce variable results

between individuals. We acknowledge that neither 1KGP data nor

arrays are perfect and therefore the exact list of probes that are

found to be potentially problematic will always be a moving target.

Nevertheless, the overall counts and distribution of problematic

probes would be highly similar if the 1KGP data were error-free.

As the number of questionable probes increases with the

number of SNPs identified, it is doubtful that a ‘‘perfect’’

microarray or set of ‘‘population-specific’’ microarrays could be

constructed based on the variation found in 1KGP, because only

a small fraction of the variability of the human genome will be

found. Even when the 1KGP is done, it will only have sampled

2,500 people, representing a very small percentage of people on

the planet. Hence, sequencing will likely always be a more robust

method to assess known and unknown variation in genomes.

Figure 5. Venn diagrams illustrating the overlap in SNP calls between the 1KGP and CG. A. For the full call sets. B. For the matched set of
32 genomes.
doi:10.1371/journal.pone.0040294.g005
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Similar to shortcomings in large-scale microarray-based geno-

typing, functional predictions based on simple categorization of

variants as synonymous or non-synonymous is limited. When

multiple SNPs within a gene or an exon exist, the variants can act

together [34,35], and it is unknown whether these mutations are

compensatory, additive, benign, or multiplicative. The only way to

get a clear picture of a gene’s mutational burden is to examining

the variants together [36]. Thus, we propose that it would be more

useful to give a gene-wide call of synonymous or non-synonymous

and that variant-calling algorithms should be modified or

expanded to examine these interactions.

Other assumptions about human genetics, developed through

previous scans of genomic variation, are also being re-evaluated as

we collect more data. The average LD length, often used to tag

SNPs and impute variation, decreases in size with increasing

numbers of variants. As LD length distributions are Poisson, the

number of blocks that are shorter than the average increases

significantly with increasing numbers of variants. Similarly,

bioinformatics programs and analyses that use assumptions based

on HapMap [37,38], or other early measurements, to filter data or

report on functional consequences, will likely underreport

observations and will need to be revised.

Clearly, data collection and analysis are integrally connected.

This work demonstrates that the best approaches for assessing

global variation in the human population at both the data

collection and analysis phases are at an early stage. Methods are

still being developed and the best way to make global measure-

ments is under debate. As evidenced by the 1KGP and CG data

sets, each set contains similar numbers of SNPs

(1KGP=25,488,488, CG=19,154,014), yet the two sets are

clearly different in the numbers of genomes represented and

average base coverage per genome. Hence, it is worthwhile

considering the economic costs and benefits of the deep individual

or shallow population approaches. The 1KGP approach, using

low coverage sequencing on many genomes, identified more SNPs

and is on course to identify many more SNPs when the expected

2,500 genomes from a broad spectrum of populations are

completed. The high coverage CG approach on a few genomes

has produced fewer SNPs but more detailed information for each

genome. For example, thousands of polyallelic SNPs were

identified within the CG data set, but were almost completely

missed by 1KGP. One reason for this is that the low coverage per-

genome of the 1KGP dataset requires pooled genotyping, which

tends to bias against rare or singleton variations. Additional factors

for this disparity include annotation techniques. The 1KGP

variant calling pipeline discards tri- and tetraallelic variants as

errors, because alleles are either assumed to be biallelic or simply

do not occur with high enough frequency in pooled data.

The current human population is over seven billion and

growing. New mutations have been accumulating for over 5000

generations at the rate of between one and 100 mutations per

generation [39] so the possibility exists that all SNPs compatible

with life are represented in the entire population. When

compensatory mutations are considered, genomic diversity can

be even greater because a variant that would be fatal within one

population could be entirely benign in another population. As

such, the human genome reference sequence, while extraordi-

narily useful, has several shortcomings that need to be addressed to

improve molecular diagnostic applications. Groups like the

Genome Reference Consortium [40] and the 1KGP are de-

veloping a more complete and accurate reference. Other groups

are proposing the use of specialized family references [41], or an

ancestral allele reference [42]. However, new challenges are

created with updating research tools and results to reflect the

changes. Until such challenges are resolved, clinical utility of WGS

will be limited to pre-ordained regions of the genome, with the

caveat that tests will have low-level, uncertain false negative rates.

Moreover, in applications like tumor profiling, gene expression,

or other functional genomics assays, a single reference sequence

can be problematic. For a cancer genome, the best reference

genome to which tumor data should be aligned is a matched

normal genome of patient. This is the only way to be confident

that driver mutations or rearrangements are novel in the tumor

and not present in normal cells. In the case of RNA assays, cDNA

reads should be mapped to the samples’ genomes from which the

RNA was isolated. Some regions with known high variability, like

the MHC, already have alternative assemblies because a single

reference sequence causes too many mapping biases. Other

quantitative assays (RNA-Seq, small-RNA, ChIP-Seq, etc.) likely

suffer from similar issues within individual samples but have not

been systematically studied due to the high cost of creating

individualized genome sequences de novo.

Nonetheless, a reference genome sequence is clearly needed for

research. Without a point of reference and common coordinate, or

naming system, research and clinical assay results cannot be

reported in ways that allow for inter-lab comparisons and

independent validation of research results. There are many

important questions yet to be addressed as to how to best

approach developing a universal reference sequence and establish

best practices for using it. Addressing population and individual

variability in a universal reference requires that we think about the

genome, not as a single sequence, but rather as a union of

differences. A basic coordinate system needs to be developed that

can accommodate any indel and rearrangements, and analytical

tools need to assume higher levels of differences than they do now.

To begin addressing these issues, we need to have a much greater

number of de novo assembled genomes from both evolutionarily

distant and closely related individuals and improved methods for

variant calling. Fortunately, much work is ongoing on both

fronts[41–44], and the era of truly personalized medicine, which

leverages an individually constructed genome, is on the horizon.

Materials and Methods

Data sources

1. The combined pilot data from the 1000 Genomes Project:

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/

20100804/ALL.2of4intersection.20100804.genotypes.vcf.gz

2. Release 23 of HapMap containing variant calls for 90 CEU

individuals based on human reference assembly hg18.

3. The Complete Genomics data consisted of the 69 publicly

available genomes that were released in April 2011 and were

downloaded from: ftp://ftp2.completegenomics.com.

4. The list of GWAS studies from the UCSC browser [45]

downloaded at: ftp://hgdownload.cse.ucsc.edu/goldenPath/

hg19/database/gwasCatalog.txt.gz.

The 1KGP release includes data from 629 individuals and

includes the variants identified by two of the four pipelines

utilized by the 1KGP. Because of the variability between

different software packages and a concern for false positives, the

results of the four pipelines were merged to create a file

including any call made by at least two of the pipelines. Further

explanation of this process can be found at: ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/release/20100804/README.

20100804_genotypes_and_imputation. While this data from the

1KGP project is not the most current data, it is the only

Human Genome Reference Limitations
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published data that is allowed for publishable analysis according

to the Fort Lauderdale data release policies [46].

For the GC data, only called SNP genotypes were used, and no-

call loci were ignored. All sequence data were aligned to hg19.

The RefSeq genes release 37.1 was used for the determination of

coding regions and the Complete Genomics annotations were used

to identify of non-synonymous changes.

For the comparison of SNPs between the CG and 1KGP

datasets, we took all of the hg19 coordinates for each genome, and

then included a base-pair +1 and 21 for that location. This

addition allowed for the potential single-base slippage [47] that

often occurs in sequencing studies and the differences between 0-

based and 1-based coordinates [45].

Linkage Disequilibrium
The Linkage Disequilibrium (LD) analysis was performed with

a combination of PLINK [48] and Golden Helix SVS package

version 7.4 (Golden Helix Corp./Inc, Bozeman MT). First, both

the HapMap and 1KGP datasets were trimmed using PLINK to

only include variants with genotype calls in at least 99% of the

alleles to prevent problems with missing data. Then, overall LD

blocks for the samples were determined using the PLINK ‘‘–

blocks’’ option for the entire genome to generate the summary

statistics. Due to the tremendous amount of computational time

that was required to perform these calculations, the sub-sampling

of SNPs and individuals from the 1KGP data was done using

chromosome 20 which is a good representative chromosome

[49,50] containing 2% of the human genome.

For the gene-specific analysis of BRCA1 and JAK2, the

HapMap data were converted from hg18 to hg19 using the

LiftMap tool (http://genome.sph.umich.edu/wiki/LiftOver).

Next, the haplotype blocks were determined using Golden Helix

SVS package version 7.4 (Golden Helix Corp./Inc, Bozeman MT)

and the default settings for each of the two datasets for each gene.

The ‘‘Haplotype Blocks’’ tables that were generated were then

summarized into the reported results. The plots of LD were

generated using the Plot Linkage Disequilibrium command with

default settings. The Runs of Homozygosity (ROH) were

determined using Golden Helix and the default parameters.

The determination of problematic microarray probes was made

by querying the 1KGP annotation files against the reference files

for the arrays provided by the vendors. The counts of variants

within exons and genes were determined using the consensus

coding sequence CCDS [51] genes and counting the number of

variants found in the 1KGP annotation files. Polyallelic SNPs were

determined separately for the CG and 1KGP files by combining

the genotype calls for all of the individuals in each project. Any

location in the genome having calls for more than two nucleotides

across the individuals in a dataset was termed polyallelic.
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Table S1 A list of each of the GWAS studies from the
UCSC database where we have identified a shortcoming
with the probe underlying the published hit. For each

probe, we list the type of deficiency that has been identified.
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identified a problem.
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