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Abstract

Elevated expression of specific transposable elements (TEs) has been observed in several neurodegenerative disorders. TEs
also can be active during normal neurogenesis. By mining a series of deep sequencing datasets of protein-RNA interactions
and of gene expression profiles, we uncovered extensive binding of TE transcripts to TDP-43, an RNA-binding protein
central to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Second, we find that
association between TDP-43 and many of its TE targets is reduced in FTLD patients. Third, we discovered that a large
fraction of the TEs to which TDP-43 binds become de-repressed in mouse TDP-43 disease models. We propose the
hypothesis that TE mis-regulation contributes to TDP-43 related neurodegenerative diseases.
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Introduction

Accumulation of TAR DNA-binding protein 43 (TDP-43)

containing cytoplasmic inclusions is a shared pathological

hallmark in a broad spectrum of neurodegenerative disorders,

including ALS, FTLD and Alzheimer’s disease [1]. Mutations in

this multifunctional RNA binding protein are also known to

underlie some familial and sporadic cases of ALS [1]. Despite

considerable progress, the mechanisms that link TDP-43 to

neurodegeneration still are unclear. We conducted a meta-analysis

of TDP-43 protein:RNA target binding datasets and of mRNA

expression datasets. All previous analyses of such data focused on

sequence reads that uniquely map to the reference genome,

thereby excluding transcripts derived from transposable elements

(TEs). In contrast, we included sequences that map to multiple

locations and examined reads that align to TEs. Our analyses lead

to the striking hypothesis that TE over-expression may contribute

to TDP-43 mediated neurodegeneration.

Transposable elements (TEs) are highly abundant mobile

genetic elements that constitute a large fraction of most eukaryotic

genomes. Retrotransposons, which copy themselves through an

RNA intermediate, represent approximately 40% of the human

genome [2,3]. Although the majority of TE copies are nonfunc-

tional, a subset have retained the ability to mobilize and even the

immobile copies can be expressed [4]. Because of their potential to

copy themselves and insert into new genomic locations as well as to

generate enormous levels of expression, transposable elements

present a massive endogenous reservoir of genomic instability and

cellular toxicity [3]. The impacts of these parasitic genetic

elements normally are stifled by potent cellular mechanisms

involving small interfering RNAs that act via the RNA induced

silencing complex (RISC) to inhibit transposon expression ([5] for

review). Although most investigations have naturally focused on

the germline, where new insertions are heritable and thus favored

by transposon evolution, somatic tissues also have an active

transposon silencing mechanism whose functional significance is

less understood. An emerging literature has established that certain

TEs are normally active in brain [6,7,8,9] and elevated expression

of some LINE, SINE (which are non-LTR retrotransposons) and

LTR elements have been correlated with several neurodegener-

ative disorders [10,11,12,13,14,15,16]. We therefore investigated

whether the RNA targets of TDP-43 include transposon-derived

transcripts.

Several recent studies used deep sequencing to profile the RNA

targets that co-purify with immunoprecipitated mouse, rat or

human TDP-43 and also to profile gene expression changes in

mouse after knockdown or over-expression of TDP-43

[17,18,19,20]. In each case, however, these studies analyzed

annotated protein coding sequences and excluded TE-derived

transcripts and other repetitive elements due to the difficulties

inherent in working with ambiguously mapped reads from short

read technologies [e.g. [21]]. Despite efforts to develop new

algorithms for analyzing multiple alignments of short reads [22],

these algorithms have not been applied systematically for

analyzing TE-derived transcripts in any neurodegenerative

disease. Because each of the above mentioned TDP-43 related

studies provided public access to their raw data, we were able to

use this resource to search for TDP-43 targets and for transcript

mis-expression when we included sequence reads that map to

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e44099



multiple genomic locations, the majority of which are TE derived

transcripts in these datasets. Our meta-analysis supports three

main conclusions. First, TDP-43 broadly targets TE-derived

transcripts, including many SINE, LINE and LTR classes as well

as some DNA elements. Second, the association between TDP-43

and TE-derived RNA targets is reduced in FTLD patients relative

to healthy subjects, consistent with the idea that loss of TE control

might be part of the disease pathology. Third, we observe broad

over-expression of TE derived transcripts in each of two different

mouse models with TDP-43 dysfunction. Finally there is a striking

overlap between the TE transcripts identified as targets and those

that are over-expressed with TDP-43 misexpression.

Results

We first re-analyzed raw data from the rat TDP-43 RNA

immunoprecipitation sequencing (RIP-seq) dataset [17] and the

mouse and human TDP-43 in vivo crosslinking-immunoprecipita-

tion sequencing (CLIP-seq) datasets [18,19]. We tested three

different analysis methods to examine effects on TEs (Fig. 1A–C;

Methods and Figs. S1 and Tables S1, S2, S3). Because reads could

potentially map to many regions, we first used an analysis in which

each location was weighted based on the number of alignments

(Figs. 1A,B) see methods). This analysis method (MULTI), which

included both unique and multi mapped reads, assigns an

enrichment level for each element, but does not distinguish

contributions of individual instances of each element. Although

this method can potentially include effects from TEs that are

difficult to map with short read sequence, a disadvantage is that it

does not distinguish which instances of a given TE are detected. In

addition, because many TE copies are present within introns of

genes, the MULTI method does not distinguish whether the TE

sequences are co-expressed with genes or expressed from TEs per

se. To address these issues, and to test the robustness of our

observations, we also tested two additional mapping methods for

the rat and human datasets (Figs. 1C and S1E,F; Methods). First,

we examined only the subset of reads that map uniquely to the

genome (UNIQ). This method does bias the results to the fraction

of TEs that have diverged enough to have unique sequences, but

provides confidence that signal derives from unique chromosomal

locations. As a third mapping strategy (UNIQ+SameEle), we

examined the effects of including both uniquely mapped sequences

and those that map to multiple locations so long as they map to the

same element (weighted for their contribution to each instance as

above – see Methods).

With all three mapping strategies we find a dramatic

enrichment of sequences that derive from each major class of

TE (Figs. 1A–C; S1; Table S3). With the MULTI method, we find

271 significantly enriched or depleted (most were enriched) repeat

element sub-families in the rat TDP-43-IP samples versus control

(Fig. 1A), of which 245 correspond to TEs. In the mouse dataset

(Fig. 1B), MULTI detects significant enrichment of 352 repeat

element sub-families of which 334 correspond to TEs (Table S3).

These comprise all major classes of TEs, including LINE, SINE,

LTR and some DNA elements [3]. For instance, 85 out of the 122

known mouse LINE elements and 6 out of the 7 known rat LINE

elements are identified as TDP-43 targets. Similarly 26 out of 41

mouse SINE elements and 36 out of 37 rat SINE elements also

were detected as TDP-43 targets. One caveat to the mouse clip-

seq analysis was the lack of a control IP to use in estimating

background counts for this single dataset, which could potentially

lead to a larger false positive rate in the detected peaks (see

Methods); however, the similarity in the results obtained for this

dataset as compared to the well-controlled studies for rat (Fig. 1A)

and human datasets (see below) argues for the inclusion of this

dataset despite its caveats.

Overall, we detect the most extensive binding to TEs with the

MULTI method, and these findings are not an artifact of the way

we assigned weights with the MULTI method because even with

the more restricted UNIQ analysis, we identify ,80% of the rat

elements that are differentially enriched when all mappable reads

are included (Figs. 1C, S1F). Moreover, among the uniquely

mapped subset of TE instances that we identify as TDP-43 targets,

greater than 80% map to intergenic regions rather than to

elements contained within genes (Fig. 1C). When we include both

unique mappers and multi mappers from the same element

(UNIQ+SameEle), we detect enrichment for 95% of the TE sub-

families that were identified as TDP-43 targets with the MULTI

method (Figs. 1C, S1F). The concordant results from these three

different mapping strategies provide confidence that identification

of TE derived transcripts as TDP-43 targets is a robust effect that

is detected with a variety of methods for dealing with multi-copy

elements.

As a test of the biological specificity of our finding that TDP-43

selectively binds to TE derived transcripts, we applied the UNIQ

mapping method to a CLIP-seq dataset for an unrelated RNA

binding protein. For this purpose we chose fused in sarcoma

(FUS), which like TDP-43, is an hnRNP RNA binding protein

that plays diverse roles in RNA biology, including splicing [23].

FUS is a relevant control for specificity because like TDP-43, it is

implicated in neurodegenerative disorders including ALS [24].

The result with FUS is in stark contrast with TDP-43 (Fig. 1D).

For TDP-43, peaks (defined within a 500 bp window) that map to

TEs are relatively large, with a mean peak height of 158 counts. In

contrast, with FUS we only see small peaks over TEs with a height

of just a few counts (mean peak height of 17; Fig. 1D for

distribution). Peaks that map over RefGene annotations, on the

other hand, are similarly distributed for both FUS and TDP-43

(Mean height of 32 and 68 respectively, Fig. S1H). The

distributions of mean peak heights (see histogram, Fig. 1D) shows

a clear separation between TDP-43 peaks and those obtained with

FUS and this separation between peak heights is statistically

significant (Wilcoxon rank sum p-value,2.2e216). Thus our

findings show specificity for TDP-43 and are not a byproduct of

inherent biases in library construction or analysis.

Because TDP-43 has a known binding motif among its mRNA

targets, we used MEME ([25] and see Methods) to identify

enriched motifs among both the RefGene and repetitive targets.

We identify a UGUGU pentamer motif that is equivalently

enriched in uniquely mapped and repetitive targets (Fig. S1C;

Methods). This motif is consistent with the binding specificity of

TDP-43 that has previously been observed for uniquely mapped

sequences [17,18,19,20]. Thus TDP-43 binds TE derived

transcripts via a similar sequence motif as identified for RefGene

targets.

Because the human dataset [18] includes samples from healthy

and FTLD patients (which exhibit TDP-43 positive cytoplasmic

inclusions), it also provided an opportunity to identify differences

in the TDP-43 targets between FTLD and healthy controls. As in

rat and mouse, we observe in human samples a dramatic and

significant enrichment in target sequences that derive from many

classes of TEs. As with the mouse and rat data, the distribution of

peak heights for TE and RefGene targets of TDP-43 are similar

(Fig. S1I), indicating that the targeting of TE transcripts is as

robust as it is for RefGene targets. More striking, however, is the

comparison between healthy subjects and FTLD patients. When

we examine the relative enrichment for each repeat element within

healthy vs. FTLD samples, we detect a dramatic difference in
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binding to TE derived RNAs (Fig. 1E–H). Overall, the association

between TDP-43 and TE transcripts is significantly reduced in

FTLD patients, which leads to a relative enrichment of 38 repeat

elements in healthy versus FTLD, 28 of which correspond to

transcripts derived from TEs (Fig. 2 and Table S3; See Methods

for statistical analyses). We see reduced binding of TDP-43 to

transcripts from all major classes of TE including SINE, LINE,

LTR and a few DNA elements. Here too, we observe that the

majority of the TE targets whose binding to TDP-43 was reduced

in FTLD are consistently identified with all three methods

(Fig. 1C). Most of the TE targets that show reduced binding to

TDP-43 in FTLD samples are intergenic rather than contained

within genes (Fig. 1C). Example peaks are shown for one RefGene

control (Fig. 1F) as well as two differentially targeted TEs

(Figs. 1G,H).

This reduced binding in FTLD patients of TDP-43 to TE-

derived transcripts also is apparent when we examine over-all

enrichment for the UGUGU pentamer motif (Figs. 2E and S1)

relative to the genome. In the rat and mouse samples as well as in

the dataset from healthy human brain samples, we observe

equivalent enrichment of UGUGU binding motifs among

uniquely mapped (RefGene) versus repetitively mapped (repeat)

TDP-43 targets (RefGene/repeat enrichment ratio near 1.0; Fig.

S1D; see Methods). In the FTLD-TDP-43-CLIP samples, we also

see enrichment for the UGUGU motif among RefGene targets

that is equivalent to that seen in healthy subjects (Fig. 2E), but the

level of enrichment for this UGUGU motif is significantly lower

among the sequences that map to repeat elements. In the FTLD

samples, the RefGene/repeat enrichment ratio is increased to 2.0

(Fig. 2E; p-value, = 0.01, p-values were assigned with 100

iterations on randomly chosen sets containing 50% of original

data; see Methods). In other words, FTLD samples exhibit a

selective reduction of binding to TE transcripts and also exhibit

reduced UGUGU motif enrichment among the remaining

repetitive sequences that still co-purify with TDP-43. This

difference in motif enrichment between FTLD and control

samples is only manifested among repeat annotations.

The reduced binding of TE transcripts in FTLD patients

suggested that TDP-43 pathology might include a loss of TE

regulation. We investigated this possibility in two ways. First, we

analyzed the repetitive sequence reads from two different mRNA-

seq datasets from mouse models of TDP-43 pathology.

The first mRNA-seq study that we analyzed [20] used over-

expression of human TDP-43 in transgenic mice. Overexpression

of this aggregation prone protein is associated with toxic TDP-43

pathological effects and is thought to act as a dominant-negative,

causing reduction in the normal functions of TDP-43. The second

mRNA-seq study [19] used antisense oligonucleotide-mediated

depletion of TDP-43 in mouse striatum to test the effects of TDP-

43 loss of function. Both studies identified transcripts that are

differentially expressed or spliced in response to these TDP-43

manipulations. To ask if the above TDP-43 depletion and over-

expression/dominant-negative impacted TE derived transcripts,

we again analyzed sequence reads including those that map to

multiple locations. We found broad elevations of TE derived

transcripts in both the over-expression transgenic mouse model

and in the striatal depletion of TDP-43 (Figs. 3A,B). TDP-43 over-

expression was associated with elevated expression of 86 repetitive

elements (Fig. 3A), whereas TDP-43 depletion results in increased

expression levels of 223 repetitive element species (Fig. 3B). In

both cases, most of these correspond to LINE, SINE and LTR

elements. Overall, the affected TE transcripts are expressed at

comparable levels to those of the differentially expressed RefGene

transcripts (Fig. S1J), suggesting that these are robust effects on

transcripts whose expression levels are not at the limit of detection.

More importantly, when TDP-43 function is compromised, we

observe a striking degree of concordance between the TE

transcripts that are elevated and the ones that we identified as

RNA targets of TDP-43 in normal tissue (Red in Fig. 3; See Table

S3). Indeed the majority of elevated TE transcripts in both mouse

mRNA-seq datasets also were detected as TDP-43 targets in the

iCLIP-seq binding dataset (Fig. 3; Table S3). This remarkable

concordance between the transcripts that are targeted by TDP-43

and those that are elevated in response to TDP-43 misexpression is

unique to the repetitive elements in the genome. In contrast, CLIP

targets identified from the RefGene fraction of the transcriptome

have little overlap with those that show over-expression when

TDP-43 function is compromised suggesting that the coding gene

expression increases are largely indirect effects [19]. RefGene

transcripts whose expression is reduced show good concordance

with direct target identification.

Discussion

TDP-43 aggregation and neuropathology plays a fundamental

role in a broad spectrum of neurodegenerative disorders [1,26,27].

This hnRNP-like RNA binding protein already has been

implicated in a remarkable number of cellular functions including

repression of HIV-1, alternative splicing, regulation of mRNA

stability and microRNA biogenesis [26,27]. Importantly, a large

number of cellular targets of TDP-43 have been characterized,

leading to the hypothesis that one key role of this multi-functional

protein is to regulate alternative splicing of mRNA targets with a

preference for those with large UG rich introns [17,18,19,26,28].

Our findings support the novel hypothesis that TDP-43 also

targets the mobile element derived transcriptome. This association

is defective in FTLD patients and the TE transcriptome is broadly

over-expressed in mouse models of TDP-43 pathology.

A large fraction of the genetic material of multicellular

organisms is made up of mobile elements as well as inactivated

TEs. A fraction of these TEs retain the capacity to copy themselves

and insert at new genomic locations. During the co-evolution of

TEs with their host genomes, organisms have evolved elaborate

and efficient mechanisms to prevent or at least regulate such

transposition events. As a result, even the potentially active TE

copies rarely mobilize within the germline and are also largely

constrained in somatic tissue. Several recent studies demonstrate,

however, that LINE-1 elements are normally active and mobile

during neurogenesis in both rodent and human tissue [7,8,9].

Somatic mobilization of Alu and SVA elements as well as LINEs

Figure 1. TDP-43 binds broadly to transposable element (TE)-derived transcripts. Magnitude (log2-fold) of enrichments (up) or depletions
(down) are shown (A, rat; B, mouse) for significantly bound repeat elements grouped by class. MULTI method (see text) was used for A and B. (C)
The majority of rat TE targets identified with MULTI also are identified (Left Panel, Rat) when analysis is restricted to reads that map uniquely
(UNIQ) or when both uniquely mapped and multi-mapped reads that map to the same TE were included (UNIQ+SameEle). These conclusions also
hold for TE targets whose binding is reduced in FTLD samples from human tissue relative to healthy controls (Left panel, Human). Most rat TE
targets and differentially bound human TE targets identified from uniquely mapped reads are intergenic (Right panel). (D) For TDP-43, peaks
(UNIQ+SameEle) over TE targets are tall and sharp with mean peak height of 158 counts/peak. In contrast, peak heights are lower for FUS (mean peak
height of 17).
doi:10.1371/journal.pone.0044099.g001

Transposons in TDP-43-Mediated Neurodegeneration

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e44099



Figure 2. TDP-43 binding to TEs is selectively lost in FTLD patients. (A) In the human CLIP-seq data from FTLD versus healthy control, 38
repeat elements showed significant (p-value, = 1e-5 and fold changes. = 2) differential binding. Log2 fold binding differences are shown for
significantly enriched/depleted elements. (B,C,D) Peaks are shown in genome browser for one RefGene control (B) and two differentially targeted
TEs (C,D) in Healthy (top) versus FTLD (bottom). (E) Enrichment for the UGUGU motif relative to its prevalence in the genome is shown across a 51-
nt window surrounding binding sites (225 nt, 25 nt). Healthy samples (Blue) show similar enrichment for the UGUGU pentamer motif among
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also has recently been detected in several different human brain

regions [6]. This raises the intriguing hypothesis that active

mobilization of some TEs plays a role in normal brain

development or physiology. On the other hand, there also is

emerging evidence that unregulated activation of TEs is associated

with neuropathology. TE activation in brain has been observed in

macular degeneration [14], Rett syndrome [11], Prion diseases

[13,29], Fragile-X associated tremor/ataxia syndrome (FXTAS)

[15] and ALS [12]. Moreover, for the cases of macular

degeneration and FXTAS, there is evidence that activation of

RefGene (solid) and repeat (dashed) sequences (RefGene/repeat motif enrichment ratio <1.3). In contrast, motif enrichment in FTLD samples (Red)
is significantly reduced among repeat (dashed) annotations relative to RefGene (solid; p-value, = 0.01; RefGene/repeat motif enrichment ratio
<2.0).
doi:10.1371/journal.pone.0044099.g002

Figure 3. Concordance between mis-regulated TE transcripts upon TDP-43 manipulation and TDP-43 bound TE transcripts. (A,B)
Over-expression [20] of TDP-43 in transgenic mice and depletion [19] of TDP-43 in mouse striatum each result in elevated expression of many TE
derived transcripts. The majority of over-expressed TEs also were detected (Table S3) as binding targets by CLIP-seq (RED). A few showed elevated
expression but were not detected as binding targets (BLUE).
doi:10.1371/journal.pone.0044099.g003
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SINEs and an LTR-retrotransposon respectively may contribute

to the observed pathology [14,15].

Our findings support three conclusions. First, that TDP-43

broadly targets TE-derived transcripts, including many SINE,

LINE and LTR classes as well as some DNA elements. This

conclusion is replicated in three independent datasets from rat,

mouse and human. Second, the association between TDP-43 and

TE-derived RNA targets is reduced in FTLD patients relative to

healthy subjects, consistent with the idea that loss of TE control

might be part of the disease pathology. Third, we observe broad

over-expression of TE derived transcripts in each of two different

mouse models with TDP-43 dysfunction. And there is a striking

overlap between the TE targets identified in the CLIP study and

those that are over-expressed with TDP-43 misexpression. Taken

together, our findings raise the hypothesis that TDP-43 normally

functions to silence or regulate TE expression. When TDP-43

protein function is compromised, TEs become over-expressed.

Unregulated TE expression can have a number of detrimental

impacts including genome instability, activation of DNA-damage

stress response or toxic effects from accumulation of TE-derived

RNAs or proteins. Such toxicity from activation of mobile genetic

elements may contribute to TDP-43-mediated neurodegenerative

disorders.

Methods

Data preparation
The CLIP-seq data of human healthy and FTLD brain tissues

was obtained from EMBL-EBL Array Express Archive EMTAB-

530 [18]. The RIP-seq data of rat cortical neuron cells was

obtained from NCBI GEO DATASET GSE25032 [17]. The

mouse CLIP-seq and mRNA-seq datasets were obtained from

NCBI GEO DATASET GSE22351 and GSE27394 [19,20]. The

FUS PAR-CLIP-seq dataset [23] was downloaded from DDBJ

Sequence Read Archive (DRA) SRA025082. The genome

sequences (build rn4, hg19, and mm9), RefGene annotations,

and coordinates of repetitive elements in the whole genome of rat

and human were downloaded from the University of California,

Santa Crutz (UCSC) Genome Browser [30]. Annotation strategies

for identified peaks are described in more detail below.

Alignment
We used Bowtie [31] version 0.12.7 to align the short sequences.

Rat and human genome sequences were downloaded from the

University of California, Santa Crutz (UCSC) Genome Browser

[30]. Two mismatches in the first 25 bp were allowed and the best

alignments were reported. For non-uniquely mapped reads,

allowing all possible alignments resulted in some reads that could

potentially map to more than 10,000 regions. To capture the reads

mapped to repetitive regions as much as possible while reducing

the space and computational (time) cost, we set the –m option

(reported number of alignments per sequence) to a value such that

at least 90% of the reads with multiple alignments were reported.

Specifically, -m 100, -m 500 and -m 200 were used on rat, mouse

and human samples, respectively (command line e.g., -n 2 -l 25 -a -

m 100 –best –strata). Each alignment was then assigned a weight

in a way that the total weight of all reported alignments of each

mapped read is the same. For example, if a read x uniquely maps

to a region, then the weight of this alignment is 1. If a read y maps

to two regions with the same quality, then each alignment y1 and

y2 has weight 0.5, such that the total weight of y is 1. These

weights were uniform among the alignments, and did not include a

contribution from mapping quality scores because only equiva-

lently mapped alignments were reported (i.e., the ‘‘–best –strata’’

options in the above command line). Table S1 summarizes the

mapping results. The FUS dataset had shorter read lengths (36 nt)

and lower sequencing qualities than the TDP-43 datasets. For this

dataset, we used reads at least 18 nt in length after removing

adapters and trimming the last few bases that have low qualities.

About 25% of the remaining reads from the FUS dataset mapped

uniquely. Finally, prior to normalization and peak identification,

presumptive PCR duplicates were removed. For the human CLIP-

seq datasets, where randomized nucleotides were included in the

sample barcodes, PCR duplicates were identified directly and

removed. For all other datasets, PCR duplicates were identified

using the Picard ‘‘mark duplicates’’ task and removed prior to

further analysis. While the reads in these samples were strand

specific, we allowed the reads to map both sense and anti-sense to

the Refseq and UCSC annotated gene and TE transcripts. While

98.5% of the reads that derive from Refseq transcripts mapped in

the same orientation as the annotated gene, surprisingly, only 50%

of the TE-mapped reads mapped to the annotated strand of the

TE locus. This was true for both uniquely mapped reads as well as

reads mapped to multiple loci.

Normalization
We chose a bin correlation approach as described in PeakSeq

[32] to normalize the libraries, after comparing it with the most

widely used library size normalization method. Figure S1A shows

the comparison of the predicted differentially bound repeat

elements. The bin correlation approach turned out to be more

conservative than the library size method. The main reason is that

in the control-IP sample, the total number of aligned reads is

dominated by a few regions, mostly rRNA repeats, such that using

library sizes as a normalization factor will cause a bias towards

non-rRNA repeat regions in TDP-43-IP samples. To compute the

bin correlation, the whole genome was separated into adjacent

non-overlapping 10 Kbp bins. Then the number of reads

overlapping with each bin was calculated for all libraries. Notice

that each read (alignment) will only be counted once, and the

count here is actually the weight of the alignment. Suppose that

three reads with alignment weight 0.5, 1, and 0.5 fall in a bin b,

then the count of b is 2 instead of 3. The library with the largest

number of mapped reads was chosen as a reference. A linear

regression was applied to bins of every other library against those

of the reference. The correlation coefficient was used as the

normalization factor, i.e., Li<ei * Lr where Lr is the reference

library, Li is one other library, and ei is the correlation coefficient of

library Li to Lr. Figure S1B shows the distributions of weighted bin

counts between control-IP and TDP-43-IP samples from rat. The

majority of bins with high values in either library show large

differences, and these bins probably contain the true differential

binding sites. These were excluded from the normalization

procedure, and only the low abundance bins, colored red in

Figure S1B were used to estimate the background for library

normalization. The underlying assumption is that the background

of the two libraries is similar.

Differential binding analysis
To identify potential differential binding sites of TDP-43, a

sliding window with size of 500 bp and moving step size of 100 bp

was used to scan the genome and compute the number of reads

falling in the window in both samples. The reason for partially

overlapping windows is to increase the resolution at which optimal

peaks can be discovered. As described above, the counts in each

bin are weighted by the number of loci to which they were

mapped. For the rat data, the read counts were modeled with a

Poisson distribution, similarly to two popular ChIP-seq analysis

Transposons in TDP-43-Mediated Neurodegeneration
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approaches, MACS [33] and PeakSeq [32]. In the case of human

data, in which each treatment has 3 biological replicates, an over-

dispersed Poisson distribution (negative binomial distribution) was

applied to model the read counts. In both cases, the p-value of the

difference of the read counts was calculated as described in DESeq

[34]. Given a window wi with reads kiA and kiB from libraries A and

B, and kiA+kiB = kiS, the p-value of (kiA, kiB) is the probabilities of all

pairs with probabilities less than or equal to p(kiA, kiB) among all

combinations, i.e.,

pi~

P

azb~kiS
p a,bð Þƒp kiA ,kiBð Þ

p a,bð Þ

P

azb~kiS

p a,bð Þ

where p(a, b) is p(a)*p(b), by assuming the two libraries are

independent, and p(x) was computed using either the Poisson

distribution or a negative binomial distribution. The null

hypothesis we are testing against with a negative binomial model

states that it is statistically unlikely for a combination of (1) random

selection of transcripts sequenced and (2) biological variation

between replicates to create a differential enrichment of reads

within the given window that is larger than what we see in the

TDP-43 IP data as compared to the control. For the rat samples,

which did not include replicates, we can only test against a Poisson

model null hypothesis that random selection of sequenced

transcripts would be statistically unlikely to result in differential

enrichment greater than what is seen in the data. These p-values

were corrected for multiple hypotheses testing using the Benja-

mini-Hochberg correction. We set a significance threshold,

adjusted p-value,0.00001, for identifying differentially enriched

regions. We next advanced the sliding window by 100 bp and

repeated the previous step. Enriched regions with a gap of less

than 500 bp and with the same direction for differential

enrichment (i.e., both TDP-43 enriched or both depleted) were

merged.

The above differential binding analysis method was used to

analyze the datasets in three different ways. For the UNIQ method

(see text), only uniquely mapped reads were included. For the

UNIQ+SameEle method (see text), unique reads and those that

mapped to multiple locations were included, so long as they

mapped to the same element. For MULTI (see text), we included

all mappable reads.

Annotation
A predicted region was annotated as ‘RefGene’, if it overlaps

with exons of a gene, or as ‘repeat’ if it overlaps with a repetitive

element. If a differential binding site overlaps with a repeat region,

but this repeat region is inside an exon, then the region will be

annotated as the corresponding gene. Simple repeats that overlap

with other repeat classes are not considered. The annotations were

obtained from the UCSC genome website, as described above,

which provides 4 levels of classification for most repeat elements:

Class, Family, Element, and Instance. This nomenclature

approximates that used by the RepBase group, from which these

annotations were derived [35]. An example of that annotation

information would be: Class I (retrotransposons), LINE/L2, L2b,

chr1:23803–24038. Any cross-comparisons between datasets and

species took place at the ‘‘Element’’ level (L2b in the above

example), since TE instances (loci) are usually not conserved across

evolutionarily distant species and, for the case of the loci that

included multi-mapping reads, unambiguous identification of the

particular locus from which the reads derived was difficult for

many instances.

Motif Enrichment analysis
MEME [25] was used to identify the most enriched motifs of the

TDP-43 binding sequences at repetitive regions, shown in Figure

S1C. Both the distribution of each single nucleotide and

dinucleotide were computed and used as the MEME background

model. Analysis of the most enriched pentamer, UGUGU [18], on

both genes and repetitive regions was performed in a similar way

as described [36]. The number of reads containing the pentamer

at each nucleotide position surrounding the binding sites in a

range of [225 nt, 25 nt] was calculated and then normalized

against randomized data. The control data (random data) was

generated 100 times with randomly selected binding position sites.

To test the robustness of the enrichment difference in the library

from subjects with FTLD samples, we did random samplings in

two ways. a) Random samples of the healthy brain subjects were

selected 100 times, to look for differential enrichment of the

UGUGU motif among sub-samples of the healthy peaks. None of

them show such a dip in motif enrichment. b) We also randomly

selected 50% of the peaks from the healthy and FTLD brains and

tested RefGene/repeat motif enrichment ratios in these sub-

samples to estimate the sampling error on the estimated RefGene/

repeat motif enrichment ratios.

Binding site identification from mouse CLIP-seq data
The approach described above is not suitable to the mouse

dataset, because of a lack of control samples. Therefore, a similar

method [37] as used by the authors of the dataset was applied

here. As a control, CLIP reads were randomly assigned to genes

and annotated repetitive regions. The significance of the cross-link

sites were computed by comparing the observed probability of the

abundance (cDNA counts) to the background frequency. The

background frequency was obtained by iterating the randomiza-

tion 100 times. The adjusted p-value for a cross-link site with

cDNA counts x was computed as padj(x) = (mx+sx)/px, where mx and

sx are the mean and standard deviation of frequency of cDNA

counts x in the randomized background across 100 iterations, and

px is the observed probability. This method is not as robust as that

used for the rat and human peak identification due to the non-

random rates of transcription in the genome. The p-values shown

in Table S3 reflect confidence that candidate binding sites are

significant with respect to a model in which reads are otherwise

randomly distributed genome-wide. Such a background model is

known to be false for gene transcripts, but it is unclear the extent to

which this model would fail for transcripts derived from repetitive

element loci. At any rate, the lack of a control sample constrains

our ability to estimate the background accurately for this single

dataset.

mRNA-seq analysis
RNA short sequences were aligned to the whole genome in

order to assess the RNA profiles of repetitive elements. The

alignment software and most of the parameter settings were the

same as that used for aligning the CLIP-seq datasets (described

above, except -m 200 was used in this case). The same weighting

scheme was applied to each alignment as described above. Read

abundances of a repeat element were computed by summing up

the alignment weight of all reads mapped to the correct strand,

within the TE annotation boundaries, and normalized by the

length of that element. DESeq [34] was then used to detect

differential abundances for repeat elements between control and

TDP-43 manipulated samples.
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Supporting Information

Figure S1 Additional bioinformatics analyses. (A) Total

candidate differentially enriched peaks annotated as transposable

elements (TEs) found using two normalization methods for the Rat

TDP-43-IP samples. The left panel shows overlap in the Rat TDP-

43 total number of enriched repetitive element TE peaks identified

using the two normalization methods, the right panel shows

overlap in the number of candidate depleted repetitive element TE

peaks. In both orange circles represent (to scale) the number of

differential TEs identified when a ‘‘bin correlation’’ approach is

used to normalize the reads in each sample, while the blue circles

represent the differential TEs using a ‘‘library size’’ normalization

approach. The library size normalization approach, which is

commonly used, simply normalizes all samples by the total

mapped mass of reads in each sample (i.e., reads per million

mapped, or RPM); the underlying assumption would be that the

background is approximately the same for both samples genome-

wide. We noticed that the backgrounds of the control and TDP-

43-IP samples were highly non-random, and that some regions

had much higher or lower reads than other genomic loci, even

outside of the identified binding peaks. Therefore, we modeled the

background using a sliding window of non-overlapping 10 kb bins,

computing the correlation coefficient between the control and IP

samples in each bin, e.g., a ‘‘bin correlation’’ approach to

normalization. As is evident from the Venn diagrams in this figure,

this approach is more conservative than a simple RPM or ‘‘library

size’’ normalization method (please see Methods and Fig. S1B for

additional details). (B) The whole genome was separated into non-

overlapping adjacent 10 Kbp bins. Each dot (black) represents

read counts of a bin. Those bins selected to compute the

normalization factors were colored in red. (left) Read counts of

TDP-43-IP sample and control-IP sample from Rat RIP-seq

(right) Read counts of two human healthy brain samples from

CLIP-seq data. (C) Motif logos for the most enriched motifs as

identified by MEME in the TDP-43 binding peaks overlapping

repetitive regions. (top) Rat RIP-seq data (bottom) Human CLIP-

seq healthy brain tissue samples. (D) Enrichment for the UGUGU

pentamer motif across a 51 nt window surrounding the binding

site (225 nt, 25 nt) relative to the genome is shown among

RefGene and repeat sequences. Mouse (top panel) and rat (bottom

panel). (E) For each read having multiple alignments (multi-read),

the fraction of the most frequently appearing TE among all those

alignments is computed. And the distribution of all multi-reads

with different common TE alignment fractions is computed. For

about 80% of the multi-reads, all alignments corresponded to the

same TE element in Rat (top panel) and about 50% in Human

(bottom panel). (F) Overlaps of detected TEs with each of three

mapping methods for Rat (left panel) and Human (right panel) are

shown. The three mapping methods are: UNIQ (uniquely mapped

reads), UNIQ+SameEle (uniquely mapped reads and multi-reads

mapped to the same elements), and MULTI (unique reads and

multi-reads). (G) Extensive overlap is observed between TE

transcripts that were de-repressed with over-expression [1] or

depletion [2] of TDP-43 in mouse (Top). Far less concordance is

seen with RefGene targets and RefGene transcripts that were

over-expressed (bottom). It should be noted however that good

correspondence is seen between TDP-43 RefGene targets with

long introns and those whose expression is decreased [1]. (H) For

TDP-43 and FUS, distributions of peaks (UNIQ+SameEle) over

RefGene targets are not significantly different from each other.

Mean peak heights of TDP-43 and FUS are 68 and 32

respectively. The distance between TDP-43 and FUS is less than

15 with a p-value of 0.98. (I) For RefGene and repeat sequences

that bind to TDP-43 in tissue from healthy human subjects,

distributions of peak heights are not significantly different from

each other. (J) For Refgene and repeat sequences from the mouse

TDP-43 overexpression dataset, distributions of expression levels

are not significantly different from each other.

(DOCX)

Table S1 Number of aligned reads for each TDP-43
dataset. Human dataset is from EMBL-EBL ArrayExpress

Archive EMTAB-530 and rat dataset is from NCBI GEO

DATASET Accession Number: GSE25032. The mouse datasets

are from NCBI GEO DATASET Accession Numbers: GSE22351

and GSE27394.

(DOCX)

Table S2 Number of aligned reads for FUS datasets.
FUS dataset is from DDBJ Sequence Read Archive (DRA)

Accession Number: SRA025082.

(DOCX)

Table S3 Enriched and depleted repetitive elements rat TDP-

43-IP/control-IP RIP-seq. Enriched and depleted repetitive

elements in Human TDP-43 Healthy/FTLD CLIP-seq. Enriched

repetitive elements in mouse TDP-43 CLIP-seq. Induced

repetitive elements expression after depletion of TDP-43 with

ASO (mouse mRNA-seq). (overlap with mouse CLIP binding sites

shown). Induced repetitive elements expression in transgenic mice

overexpressing human TDP-43 (mouse mRNA-seq). (overlap with

mouse CLIP binding sites shown).

(XLS)

Acknowledgments

We thank Rob Martienssen, Gregory Hannon, Tony Zador, Glenn

Turner, Maurice Kernan, Josh Huang, Michael Cressy, Hongtao Qin,

Michael Regulski, Nabanita Chatterjee, Yu Fu and Lisa Krug for many

helpful discussions.

Author Contributions

Originated the hypothesis: WL LP JD. Primarily conducted the analyses:

WL YJ MH. Prepared the manuscript: WL YJ LP MH JD.

References

1. Cohen TJ, Lee VM, Trojanowski JQ (2011) TDP-43 functions and pathogenic

mechanisms implicated in TDP-43 proteinopathies. Trends in molecular

medicine 17: 659–667.

2. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial

sequencing and analysis of the human genome. Nature 409: 860–921.

3. Hua-Van A, Le Rouzic A, Boutin TS, Filee J, Capy P (2011) The struggle for life

of the genome’s selfish architects. Biology direct 6: 19.

4. Hancks DC, Kazazian HH, Jr. (2012) Active human retrotransposons: variation

and disease. Current opinion in genetics & development.

5. Saito K, Siomi MC (2010) Small RNA-mediated quiescence of transposable

elements in animals. Developmental cell 19: 687–697.

6. Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, et al. (2011)

Somatic retrotransposition alters the genetic landscape of the human brain.

Nature 479: 534–537.

7. Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, et al. (2009) L1

retrotransposition in human neural progenitor cells. Nature 460: 1127–1131.

8. Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, et al. (2005) Somatic

mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature

435: 903–910.

9. Muotri AR, Zhao C, Marchetto MC, Gage FH (2009) Environmental influence

on L1 retrotransposons in the adult hippocampus. Hippocampus 19: 1002–
1007.

10. Greenwood AD, Vincendeau M, Schmadicke AC, Montag J, Seifarth W, et al.

(2011) Bovine spongiform encephalopathy infection alters endogenous retrovirus

Transposons in TDP-43-Mediated Neurodegeneration

PLOS ONE | www.plosone.org 9 September 2012 | Volume 7 | Issue 9 | e44099



expression in distinct brain regions of cynomolgus macaques (Macaca

fascicularis). Molecular neurodegeneration 6: 44.
11. Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, et al. (2010) L1

retrotransposition in neurons is modulated by MeCP2. Nature 468: 443–446.

12. Douville R, Liu J, Rothstein J, Nath A (2011) Identification of active loci of a
human endogenous retrovirus in neurons of patients with amyotrophic lateral

sclerosis. Annals of neurology 69: 141–151.
13. Lathe R, Harris A (2009) Differential display detects host nucleic acid motifs

altered in scrapie-infected brain. Journal of molecular biology 392: 813–822.

14. Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, et al. (2011) DICER1
deficit induces Alu RNA toxicity in age-related macular degeneration. Nature

471: 325–330.
15. Tan H, Qurashi A, Poidevin M, Nelson DL, Li H, et al. (2012) Retrotransposon

activation contributes to fragile X premutation rCGG-mediated neurodegener-
ation. Human molecular genetics 21: 57–65.

16. Jeong BH, Lee YJ, Carp RI, Kim YS (2010) The prevalence of human

endogenous retroviruses in cerebrospinal fluids from patients with sporadic
Creutzfeldt-Jakob disease. Journal of clinical virology : the official publication of

the Pan American Society for Clinical Virology 47: 136–142.
17. Sephton CF, Cenik C, Kucukural A, Dammer EB, Cenik B, et al. (2011)

Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein

complexes. The Journal of biological chemistry 286: 1204–1215.
18. Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, et al. (2011)

Characterizing the RNA targets and position-dependent splicing regulation by
TDP-43. Nature neuroscience 14: 452–458.

19. Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, et al.
(2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal

vulnerability from loss of TDP-43. Nature neuroscience 14: 459–468.

20. Shan X, Chiang PM, Price DL, Wong PC (2010) Altered distributions of Gemini
of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice.

Proceedings of the National Academy of Sciences of the United States of
America 107: 16325–16330.

21. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation

sequencing: computational challenges and solutions. Nature reviews Genetics
13: 36–46.

22. Ji Y, Xu Y, Zhang Q, Tsui KW, Yuan Y, et al. (2011) BM-map: Bayesian
mapping of multireads for next-generation sequencing data. Biometrics 67:

1215–1224.

23. Da Cruz S, Cleveland DW (2011) Understanding the role of TDP-43 and FUS/

TLS in ALS and beyond. Current opinion in neurobiology 21: 904–919.
24. Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, et al. (2009)

Mutations in FUS, an RNA processing protein, cause familial amyotrophic

lateral sclerosis type 6. Science 323: 1208–1211.
25. Machanick P, Bailey TL (2011) MEME-ChIP: motif analysis of large DNA

datasets. Bioinformatics 27: 1696–1697.
26. Buratti E, Baralle FE (2010) The multiple roles of TDP-43 in pre-mRNA

processing and gene expression regulation. RNA biology 7: 420–429.

27. Sendtner M (2011) TDP-43: multiple targets, multiple disease mechanisms?
Nature neuroscience 14: 403–405.

28. Xiao S, Sanelli T, Dib S, Sheps D, Findlater J, et al. (2011) RNA targets of TDP-
43 identified by UV-CLIP are deregulated in ALS. Molecular and cellular

neurosciences 47: 167–180.
29. Stengel A, Roos C, Hunsmann G, Seifarth W, Leib-Mosch C, et al. (2006)

Expression profiles of endogenous retroviruses in Old World monkeys. Journal

of virology 80: 4415–4421.
30. Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, et al. (2011) The

UCSC Genome Browser database: update 2011. Nucleic acids research 39:
D876–882.

31. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome
biology 10: R25.

32. Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, et al. (2009)
PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls.

Nature biotechnology 27: 66–75.
33. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, et al. (2008) Model-based

analysis of ChIP-Seq (MACS). Genome biology 9: R137.

34. Anders S, Huber W (2010) Differential expression analysis for sequence count
data. Genome biology 11: R106.

35. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, et al. (2005)
Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and

genome research 110: 462–467.

36. Wang Z, Kayikci M, Briese M, Zarnack K, Luscombe NM, et al. (2010) iCLIP
Predicts the Dual Splicing Effects of TIA-RNA Interactions. Plos Biology 8.

37. Yeo GW, Coufal NG, Liang TY, et al. (2009) An RNA code for the FOX2
splicing regulator revealed by mapping RNA-protein interactions in stem cells.

Nat Struct Mol Biol 16, 130–137.

Transposons in TDP-43-Mediated Neurodegeneration

PLOS ONE | www.plosone.org 10 September 2012 | Volume 7 | Issue 9 | e44099


