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Abstract

Background: Pathogenic bacteria infecting both animals as well as plants use various mechanisms to transport virulence
factors across their cell membranes and channel these proteins into the infected host cell. The type III secretion system
represents such a mechanism. Proteins transported via this pathway (‘‘effector proteins’’) have to be distinguished from all
other proteins that are not exported from the bacterial cell. Although a special targeting signal at the N-terminal end of
effector proteins has been proposed in literature its exact characteristics remain unknown.

Methodology/Principal Findings: In this study, we demonstrate that the signals encoded in the sequences of type III
secretion system effectors can be consistently recognized and predicted by machine learning techniques. Known protein
effectors were compiled from the literature and sequence databases, and served as training data for artificial neural
networks and support vector machine classifiers. Common sequence features were most pronounced in the first 30 amino
acids of the effector sequences. Classification accuracy yielded a cross-validated Matthews correlation of 0.63 and allowed
for genome-wide prediction of potential type III secretion system effectors in 705 proteobacterial genomes (12% predicted
candidates protein), their chromosomes (11%) and plasmids (13%), as well as 213 Firmicute genomes (7%).

Conclusions/Significance: We present a signal prediction method together with comprehensive survey of potential type III
secretion system effectors extracted from 918 published bacterial genomes. Our study demonstrates that the analyzed
signal features are common across a wide range of species, and provides a substantial basis for the identification of
exported pathogenic proteins as targets for future therapeutic intervention. The prediction software is publicly accessible
from our web server (www.modlab.org).

Citation: Löwer M, Schneider G (2009) Prediction of Type III Secretion Signals in Genomes of Gram-Negative Bacteria. PLoS ONE 4(6): e5917. doi:10.1371/
journal.pone.0005917

Editor: Debbie Fox, The Research Institute for Children at Children’s Hospital New Orleans, United States of America

Received March 20, 2009; Accepted May 15, 2009; Published June 15, 2009
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Introduction

There are six known types of secretion systems in Gram-

negative bacteria [1]. Among these, several prediction systems are

available for the sec pathway that can be used to recognize N-

terminal secretion signals (signal peptides) [2]. Predicting proteins

that are secreted via other pathways has recently become a major

goal of bioinformatics research [3]. The multi sub-unit type III

secretion systems (T3SS) contribute to flagellar biosynthesis [4]

and interaction with eukaryotic cells (Figure 1a) [5] and are

therefore often involved in pathogenicity of the corresponding

bacterial species, e.g. Yersinia pestis, Salmonella enterica, and Escherichia

coli [6,7].

Substrate specificity of the T3SS relies on two distinct signals.

Most T3SS effector proteins contain an N-terminal secretion

signal, which is believed to be generic for the T3SS from different

species [6]. Cellular decoding of this signal is achieved by a family

of cytosolic chaperones which bind the effector sequences and are

recognized by the secretion machinery [6]. Usually, there is one

chaperone per effector protein, but chaperones targeting several

effectors have also been described [6]. The genes encoding the

corresponding effector proteins and their chaperones are often

organized in direct vicinity on the coding DNA sequence [8]. The

function of these chaperones is not entirely clear; however,

experimental results: support a role as antifolding factors since

fully folded effector proteins are too big for the translocation

channel, and stabilizers of effector proteins, which are rapidly

degraded in the absence of the corresponding chaperone [5]. Also,

they are thought to provide a secondary secretion signal which is

somehow involved in the prioritization and order of effector

secretion [5].

Analyses of known effector sequences have revealed character-

istic properties, such as an overall amphipathic amino acid

composition, an over-representation of serine and glutamine, and

the absence of acidic residues [9]. The actual secretion signal is

believed to be contained in the first 50 amino acids, although

synthetic signals with as few as eight residues have been shown to

promote type III secretion in Yersinia [10]. Furthermore, some

evidence has been collected that the signal might be encoded on

RNA level rather than on protein level [11]. Figure 1b presents the

typical structure of a classic signal peptide [12] compared to T3SS

signals.
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Recent sequence-based bioinformatics approaches to finding

new effector proteins utilize consensus sequence patterns of the N-

terminal secretion signals [9], similarity-based comparison to

known effectors [13], the genomic organization of the effectors by

identifying genes in vicinity to chaperone homologues [14], and

amino acid composition rules [15]. Here we present a new

machine learning approach to identify potential T3SS effectors by

their N-terminal amino acid sequence using a sliding window

procedure in combination with artificial neural networks (ANN,

feedforward type) [16] and support vector machine (SVM)

classifiers [17], together with a comprehensive prediction of

potential T3SS effectors for 918 bacterial genomes.

Materials and Methods

Data preparation
We collected a raw data set containing a total of 1,860 protein

sequences (979 positive, 881 negative samples) from various

literature and database sources. Included were sequences from the

SwissProt [18] and Pseudomonas syringae Hop [19] databases and

from a dataset published by Tobe and coworkers [13]. The

negative data consisted of 881 cytoplasmatic sequences and

secreted proteins from Gram-negative organisms. The publicly

available SignalP [20] and SeretomeP [21] training sets were

included. Each of the sequences of the secreted proteins contains

an N-terminal secretion signal for the sec pathway. Possible

redundancy of both datasets was reduced by using the PISCES

implementation of the Hobohm algorithm [22]. Sequences with

fewer than 100 amino acids were removed. The maximum

pairwise identity of the sequences was 90% after the reduction,

resulting in a final set of 575 positive and 685 negative sequence

examples. The complete data set is available in FASTA-format

[23] as Supplementary Material.

Then, sequences were analyzed using the sliding-window

technique. The sliding window procedure divides a sequence in

a number of overlapping subsequences. Starting from the N-

terminal residue position, as many residues were read as

determined by the window size, then the window was moved

one residue position towards the C-terminus. The procedure was

repeated until the C-terminus is reached. For each subsequence a

score value (probability) was calculated by a machine learning

classifier. For classifier training, the sequences were prepared by

removal of the N-terminal amino acid (a methionine in most cases)

and keeping only the N-terminal portions of length L. For each

sequence stretch of length L, the appropriate number of windows

with a width W was computed. Each amino acid residue of a single

window was encoded into a unitary bit string of length 20, where a

bit was set (value = 1) if its position in the string corresponds to the

Figure 1. The bacterial type III secretion system (T3SS) forms a translocator complex spanning the bacterial and the host cell
membranes for protein translocation. (a) Schematic T3SS structure together with a flagella apparatus (shaded in light grey). The nine
components being conserved among T3SS are named in Yersinia nomenclature. In flagella apparati, proteins of the axial structure are exported via a
T3SS, e.g. flagellins. Note that T3SS injection needle and translocator complex are not present in flagella (adapted from Sheng et al. [5] and Pallen and
Matzke [4]). (b) Comparison of the features of classic signal peptides (top) [12] and the proposed features of T3SS signals (bottom). Both kinds of
signals are located at the N-terminal end of a protein.
doi:10.1371/journal.pone.0005917.g001
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position of the amino acid residue and zero otherwise [24]. As a

result, a sequence window of length W was encoded by a bit string

containing W620 bits with exactly W bits set to 1 and all other bits

zero.

The input data for the machine learning algorithms consisted of

(L21)2W such bit vectors. Additionally, 5756(L212W) encoded

sequence windows were randomly sampled from the C-terminal

portions (starting at sequence position 51) of the positive sequence

set and included as pseudo-negative training samples. The values of

the length cut-off L and the window size W were systematically

varied between 10 or 7 and 50 or 49, respectively.

Machine learning classifiers
We used MATLAB version R2007a [25] and SVMlight version

6.02 [26] software for training of the classifier models. The ANNs

had feed-forward architecture with a single hidden neuron layer

(Figure 2). All neurons in the hidden layer and the single output

neuron had sigmoidal activation [16]. We used gradient descent

backpropagation learning with momentum and an adaptive

learning rate, as described previously [16]. Early termination of

the training process was implemented by splitting the training data

into two smaller training and validation sets, and stopping the

training when the calculated error for the validation data rose for a

predefined number of training cycles. For each set of training data,

the number of hidden neurons was systematically varied from one

to ten. For binary (yes/no) classification, the output of the ANN

was converted to binary value using a threshold value of h= 0.5.

The overall function modelled by the implemented ANN is given

by Eq. (1).
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where logsig is a sigmoidal transfer function (activation function)

limiting the neuron output to the interval [0,1], v and w are the

connection weights, q the hidden neurons’ bias values, and H the

bias of the output neuron.

The SVMs used soft margins and a radial basis function (RBF)

kernel (Eq. 2). A grid search in logarithmic space was performed to

find optimal values for the complexity parameter C and RBF

parameter c, as described [17]. The prediction of a trained SVM

classifier used in this study is given by Eq. 2.
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The greater f the higher is the probability for a compound to

belong to the positive class (here: T3SS signals), x and y are

sequence descriptor vectors, xsv are support vectors, i.e. data

vectors that define the exact shape of the separating SVM

hyperplane. The kernel function K defines the complexity of the

surface that will be constructed. Here, we used the RBF kernel. No

optimization of the choice of K was performed.

Training performance of both the ANNs and SVMs was

evaluated by ten-fold cross-validation (leave 50% out) and

calculation of the average Matthews correlation coefficient (Eq. 3)

[27]

mcc~
TP:TN{FP:FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where TP, TN, FN and FP denote the true-positive, true-negative,

false-negative and false-positive prediction counts, respectively.

During the training process, each sequence window was

considered as an individual training example and given a score,

i.e. the ANN or SVM output. For application of the classifiers to

protein sequences (obtained from bacterial genome data), an

average score was computed from the individual window scores.

To compare our results to other approaches, two previously

applied sets of classification rules [10,15] were re-implemented in

the programming language Python [28].

The final SVM and ANN prediction models are publicly

available via our web server (http://www.modlab.de).

Results and Discussion

Our study consisted of two subsequent steps: i) training of

machine learning classifiers on the prediction of T3SS effectors,

and ii) application of the trained classifiers on known or

hypothetical proteins from available bacterial genomes, chromo-

somes, and plasmids.

Machine learning and prediction performance
The starting point for both classification methods is a vector

representation of the training data. Thus each training example

represents a point in a vector space. During the training process,

both the ANN and SVM approximate a function (hyperplane) in

this vector space, which is intended to separate the positive and the

negative training examples. This function can be used to classify

new data points in the vector space. The multilayer perceptron

used in this study employed multiple layers of artificial neurons

(Figure 2) to non-linearly map the input vector to a binary classifier

value. The parameters defining this mapping (weights and

threshold values) are learned during the classifier training by

minimizing an error function. In contrast to such ANNs, support

vector machines use a so-called ‘‘kernel function’’ to map the

training examples into a higher dimensional feature space where

Figure 2. Three-layered feedforward neural networks were
trained on the prediction of T3SS effector proteins. In this
schematic, artificial neurons are drawn as circles (white: fan-out neuron;
black: sigmoidal activation). For clarity, not all neurons are shown. The
output neuron computes values between 0 and 1, which can be
interpreted as the probability of an input sequence window being part
of a T3SS effector signal.
doi:10.1371/journal.pone.0005917.g002
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the examples can be separated by a hyperplane. The task of

finding such a plane for a given kernel function with the constraint

of maximizing the distance of the plane to the training data can be

formulated as a convex optimization problem and computed

efficiently [29,30,31].

For machine learning, it was important to realize that other

transport mechanisms than T3SS also rely on N-terminal

sequence signals, e.g. the Sec dependent pathway. Our dataset

reflects the need to differentiate between T3SS signals and other

signals, as all transportation pathways may coexist in a single

species. Included are sequences with Sec signals, cytoplasmic

proteins, and proteins exported by unknown pathways. In

addition, the C-terminal sequence portions of the collected

T3SS effectors were included in the negative training set. This

excludes a possible general sequence bias which might be shared

among the species providing the positive training data.

In order to reduce the theoretical number of 6,242,600 possible

parameter sets, which results as the product of the number of

sequence lengths L, possible window sizes W per sequence length,

number of hidden neurons in the ANNs, and cross-validation

shuffles, several attempts were made to reduce the parameter

space: First, a minimal window size of W = 7 residues with an

increment by two was used. Second, we employed a straightfor-

ward optimization protocol for the sequence length cut-off,

starting with a first round of calculations using the lengths

L = 10, 20, 30, 40 and 50 only. In the following rounds the cut-off

value interval around the best performing value of the previous

round was investigated in more detail. We wish to point out that

due to this optimization protocol, only a single performance

maximum (a ‘‘practical optimum’’) can be found and it bears the

risk of missing the absolute optimum.

Maximal average cross-validation performance was achieved for

L = 30 (Figure 3), W = 25 and seven hidden neurons in the ANN

(mcc = 0.5760.04), although all results with more than four

hidden neurons are comparable. Two more training rounds were

executed (Supplementary Figures S2 and S3), using L = 25 and

L = 35 for the second, and L = 31 to 34 for the third pass. Neither

of these calculations yielded a higher performance than the

maximum for L = 30, so the respective parameter values were

employed by the final model, which was obtained by 100 training

runs with randomly shuffled training data and early stop validation

but no cross-validation. The performance of the best model on the

complete training data is presented in Table 1. The higher

accuracy likely results for three reasons: i) more data was included

in the training, ii) randomized training allows for finding other

performance optima, and iii) the scoring of individual sequence

windows was changed to the average score over all windows.

We also studied the influence of the most N-terminal part of the

training examples on the performance of ANN training. However,

cleaving N-terminal parts of varying size off the training sequences

reduced the performance (cf. Supplementary Figure S4). This

suggests that the N-terminal part of the training sequences holds

important information for distinguishing T3SS effectors.

The ANN model bears an adjustable parameter, the threshold

h, which is the decision boundary for classification of the network

output. It was set to 0.5 during training, but the influence of this

parameter on the performance of the final model can be studied by

a Receiver Operating Characteristic (ROC) threshold test [32].

Figure 3. T3SS effector proteins contain a targeting signal in their N-terminal sequence portion. Performance results of the first round of
neural network cross-validation for sequence length 30 and varying numbers of hidden neurons (HN) in the neural network classifiers and window
sizes are shown. Values are averaged over the cross-validation folds. The data for lengths 10, 20, 40 and 50 can be found in Supplementary Figure S1.
doi:10.1371/journal.pone.0005917.g003

Table 1. Performance of the prediction systems and sequence patterns on the complete training data (re-classification).

model prediction for positive data (T3SS effectors) prediction for negative data (non-effectors) mcc

Positive (TP) Negative (FN) Positive (FP) Negative (TN)

ANN 423 (0.74) 152 (0.26) 12 (0.02) 673 (0.98) 0.75

SVM 569 (0.99) 6 (0.01) 0 (0.0) 685 (1.0) 0.99

P1 468 (0.81) 107 (0.19) 476 (0.69) 209 (0.31) 0.14

P2 200 (0.34) 375 (0.66) 107 (0.15) 578 (0.85) 0.22

Given are absolute values and relative values in brackets. TP, TN, FN and FP denote the true-positive, true-negative, false-negative and false-positive prediction ratios,
respectively. P1 and P2 indicate rule sets for prediction of type III secretion system effectors (T3SS) published by Petnicki-Ocwieja et al. and Vencato et al. [7,12]. ANN:
artificial neural network; SVM: support-vector machine.
doi:10.1371/journal.pone.0005917.t001
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The ROC curve is shown in Figure 4. The sudden flattening of the

curve at a true positive ratio of about 0.85 suggests a selection of h
between 0.4 and 0.3 to optimize the true positive/false positive

ratio tradeoff. For genome/predicted proteome analysis, we used

the final ANN model with h= 0.4.

Employing this parameter value for re-classification of the

training data yielded an increased Matthews correlation of

mcc = 0.82. The final classifier has a sensitivity of 83%, a specificity

of 97%, and an accuracy of 91% [33]. As a control, we also trained

neural networks on a sequence set randomly picked from the

SwissProt database [18] and of the same size as our training data.

A second control was done by training neural networks on the

collected training data randomly divided into positive and negative

examples (Y-scrambling test). In both experiments, no correlation

between the actual and predicted class labels was observed

(mcc = 0.060.0, and mcc = 0.00360.018, respectively).

In addition to the neural network classifier, we trained a

preliminary SVM with L = 30 and W = 25 input data. The best

performing model had a complexity value of C = 1000 and a

kernel gamma of c= 0.01. Average cross-validation performance

yielded mcc = 0.6360.02. Results for the complete training data

are given in Table 1. In both cases, the SVM apparently

outperformed the ANN model. However, concerning its ‘‘true’’

predictive capabilities, it might be more appropriate to compare

the SVM cross-validation performance to the ANN final model

performance, as in both cases the training algorithm used only

90% of the available data (10% were employed for determination

of the forced stop time point during training). In addition, the

great number of support vectors (5,144 support vectors among

7,340 training vectors) in combination with the comparably large

gamma value, suggest a limited generalization ability of this

particular SVM model [34]. This is why we used only the ANN

classifier for productive genome analysis in this study, while the

SVM model served as secondary classifier.

We wish to stress that it is unlikely that the ANN will outperform

an SVM solution once a good kernel will have been identified [35].

This technical optimization of the SVM kernel function was not

part of our study, and is currently under investigation by us. Profile

Hidden Markov Models (HMM) might also represent a method of

choice for the given prediction task [36]. The present analysis was

intended to provide a first cross-genomic prediction of potential

T3SS effectors and certainly leaves room for future improvement.

This will also have to address the interpretation of the decisive

feature vector used by the machine learning classifier.

Compared to recently published residue motif rules (Table 1,

rows P1 and P2) [7,12] – whose performance was optimized by

allowing for some rule violations – the performance of the ANN

and SVM models is clearly superior. It should be kept in mind,

however, that these rule sets were derived from a far smaller

dataset and not intended for predictive purposes.

Genome analysis and protein prediction
We applied the ANN classifier to two groups of genomes

collected from the RefSeq database [37]. The groups include the

phylum Proteobacteria as Gram-negative examples and the phylum

Firmicutes as Gram-positive examples. BLAST (BLOSUM62

substitution matrix [38], e-value ,1025) [39] was used to divide

the genomes in groups depending on their possession of a

homologue of the YscN gene from Yersinia pseudotuberculosis (UniProt

ID YSCN_YERPS), which is known to be an integral part of a

functional T3SS in Yersinia [40]. Notably, for all examined

genomes at least one significant alignment was found, which is

Figure 4. The best neural network classifier was determined by receiver-operator characteristic (ROC) analysis. The plot results from a
threshold test with the final neural network model. Threshold values H for the predicted score ranged from 0.1 to 1.0. The threshold value of the final
model (H = 0.4) is marked by an arrow.
doi:10.1371/journal.pone.0005917.g004
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not expected for the Gram-positive genomes. As YscN is believed to

be an ATPase, other enzymes with the same activity might be the

reason for this finding. Consequently the BLAST bitscore

threshold was set to 200 bit, as a plot of the scores suggests an

inflection point around this value (Figure 5). Furthermore,

sequence data from proteobacterial plasmids were separately

evaluated, as only 17 plasmids seem to code for an YscN like

protein, and these plasmids often encode virulence determinants

including T3SSs, e.g. the Shigella plasmids [41].

Table 2 presents the main results of this screening exercise. All of

the examined proteobacterial genomes have a comparable

percentage of positive predictions (approx. 11%), which seems to

be unbiased by the presence of a potential YscN protein, as the

averages are comparable when the genomes are divided accordingly

(not shown). Noticeable is a high standard deviation for the plasmid

data, which might be caused by the pronounced length variation of

the examined plasmids. The complete list of results shows that with

regard to the relative amount of positive predictions, plasmid

sequences occupy the highest ranks (cf. Supplementary Table S1).

Many belong to genera including animal pathogenic species such as

Shigella, Yersinia, Escherichia. Several plant pathogens are listed, e.g.

Pseudomonas syringae, Xanthomonas campestris. All of the 17 plasmids

holding an YscN homologue are present among the first 19% of the

list entries. This observation clearly supports the robustness of our

predictions and justifies the selection of the particular bitscore

threshold applied in this study.

The Firmicutes yield a lower overall content of YscN homologues

relative to Proteobacteria. This is expected as only flagella but no

standalone T3SSs exist in this phylum [42]. The average positive

predictions suggest again that the T3SS signal appears to be widely

spread. On the other hand, the ordering of the genomes by

positive prediction content is insightful. For example, different

Clostridium species yield a high content of positive predictions, and

are also known to have flagella (cf. Supplementary Table S2).

The plasmid of Yersinia species is known to code for several

virulence determinants including a T3SS and at least twelve

Figure 5. Ranking of the most significant protein alignments from all genomes was done according to their BLAST bitscore
(BLOSUM62 substitution matrix, e-value,1025). The query protein was of the YscN gene from Yersinia pseudotuberculosis (UniProt ID
YSCN_YERPS).
doi:10.1371/journal.pone.0005917.g005

Table 2. Prediction results for the genomes (in silico translated sequences) of Proteobacteria and Firmicutes.

group
Number of
genomes

Number of YscN
containing genomes

Average % positive prediction
(standard deviation in brackets)

Proteobacteria 705 284 11.5 (s= 7.5)

proteobacterial chromosomes 405 267 10.5 (s= 2.7)

proteobacterial plasmids 300 17 12.9 (s= 10.8)

Firmicutes 213 58 6.9 (s= 5.6)

doi:10.1371/journal.pone.0005917.t002
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effector proteins named ‘‘Yersinia outer membrane proteins’’ (Yops)

[43]. Note that the proteins encoded on this plasmid were not

included in the training data. Out of the 72 proteins encoded on

the plasmid of Yersinia enterocolitca subsp. enterocolitica 8081 [44], 16

are predicted to have a T3SS targeting signal (cf. Supplementary

Table S3). Ten of these proteins are Yops and thus correctly

identified. The two missing Yops are yopQ and lcrV, which received

a neural network score of 0.22 and 0.3, respectively. Among the

remaining six positive predictions are the chaperone of yscN and

the repA and spyB proteins, which are involved in plasmid

replication and partition [43]. These proteins are clearly false-

positive predictions. Also, there are yscP and yscM, which are

known to be secreted [38]. The last predicted T3SS effector is

yscW, which is a chaperone of the T3SS component yscC and

enables the outer membrane localization of yscN [45]. As yscN has

no predicted T3SS targeting signal and yscW is described to be the

‘‘pilot protein’’ for yscN [45], the predicted signal of yscW might be

responsible for the transport of both proteins.

We then took a closer look at one of the examined species,

Helicobacter pylori 26695 (RefSeq ID NC_000915), which uses

flagella to propel itself and therefore has a functioning T3SS [4].

As expected, an YscN homologue is found, but the content of

positive predictions is relatively low (6.5%). Only 93 sequences are

predicted to actually contain a T3SS signal. Twelve of them are

annotated as being associated to the flagellar complex, and 38

sequences are marked as ‘‘hypothetical’’ or lack a functional

annotation (cf. Supplementary Table S4).

We also applied the SVM model to these Helicobacter data,

yielding 77 candidate proteins of which 37 are annotated as

‘‘hypothetical’’ (not shown). 18 of these hypothetical protein

sequences are shared with the ANN predictions (Table 3). BLAST

[34] was used to compare these sequences with the non-redundant

(nr) database of the NCBI [46]. For most of the sequences it is not

possible to infer a putative function. As an exception, the sequence

Hp0906 is distantly related to a putative flagellar hook protein of

Campylobacter jejuni (alignment length = 113 residues, 36% identities).

While the flagellum associated positive predictions can be

regarded as biologically plausible and the hypothetical proteins

might be effectors of a T3SS, some of the predicted signal-

containing proteins are metabolic enzymes, i.e. the citrate synthase

or biotin synthetase, which are not expected to be exported.

Chromosomes of the other two strains of Helicobacter pylori, for

which fully sequenced genomes are available (HPAG1 [47] and

J99 [48]), obtain a similar predicted percentage of T3SS effectors,

which also holds for the related species Helicobacter acinonychis, being

a gastric pathogen of large felines [49]. For each of the three

Helicobacter pylori strains ten putative flagellar components are

predicted to possess a T3SS signal and share the same functional

annotation. Also the obvious false-positive predictions (citrate

synthase and biotin synthetase) occur for all strains.

Conclusions
In this study we present evidence for the existence of common

sequence features in the N-terminal portion (30 residues) of T3SS

effectors. The existence or absence of these features can be

predicted with reasonable accuracy. A low number of false positive

predictions of our classifiers is an important feature, as it might

help preventing unnecessary experiments when applied to

selecting candidates for an experimental survey. Moreover, the

predicted features seem to be universally distributed among

sequences of a wide range of both Gram-negative and Gram-

positive bacteria, regardless of the existence of a T3SS. Thus, we

cannot be completely sure that the machine learning classifiers

actually extracted directly T3SS-related and secretion-inducing

features. Additional and different types of machine learning

classifiers will have to be developed to address this point. In

particular, we expect that thorough SVM classifier training will

provide improved predictions and help understand the actually

Table 3. Predicted proteins from Helicobacter pylori strain 26695 that might be exported via a Type 3 Secretion System and were
predicted by both ANN and SVM classifiers.

No. Database accession codes/loci (Genbank, NCBI) Annotation H. pylori gene identifier

1 gi|15644743|ref|NP_206913.1| Hypothetical protein HP0113

2 gi|15644939|ref|NP_207109.1| Hypothetical protein HP0311

3 gi|15644995|ref|NP_207165.1| Hypothetical protein HP0367

4 gi|15645055|ref|NP_207225.1| Hypothetical protein HP0427

5 gi|15645292|ref|NP_207462.1| Hypothetical protein HP0668

6 gi|15645302|ref|NP_207472.1| Hypothetical protein HP0678

7 gi|15645498|ref|NP_207673.1| Hypothetical protein HP0879

8 gi|15645522|ref|NP_207698.1| Hypothetical protein HP0906

9 gi|15645579|ref|NP_207755.1| Hypothetical protein HP0963

10 gi|15645605|ref|NP_207781.1| Hypothetical protein HP0990

11 gi|15645679|ref|NP_207856.1| Hypothetical protein HP1065

12 gi|15645756|ref|NP_207933.1| Hypothetical protein HP1142

13 gi|15645847|ref|NP_208025.1| Hypothetical protein HP1233

14 gi|15646001|ref|NP_208182.1| Hypothetical protein HP1391

15 gi|15646018|ref|NP_208199.1| Hypothetical protein HP1408

16 gi|15646039|ref|NP_208221.1| Hypothetical ATP-binding protein HP1430

17 gi|15646108|ref|NP_208290.1| Hypothetical protein HP1499

18 gi|15646129|ref|NP_208311.1| Hypothetical protein HP1520

doi:10.1371/journal.pone.0005917.t003
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relevant sequence features. During the reviewing process of this

paper two other articles [50,51] were published which address the

same problem of the prediction of T3SS effectors using a similar

methodology. Interestingly, both studies lead to similar conclusions

regarding the length of the putative signal on the primary protein

structure and the spread of the signal among different species.

Arnold et al. developed a naı̈ve Bayes classifier by which up to 12%

potential T3SS effectors were predicted for whole genomes [50],

which is in perfect agreement with our results. These authors also

demonstrate that in some cases in silico frame-shift mutations do

not affect the predictions which might be an explanation for the

hypothetical RNA encoded signal [11]. We wish to point out that

our prediction system has the highest specificity among the

presented approaches, which is an important property for

prioritizing biochemical and cell biological experiments. This

might be a result of the larger training data set and especially the

composition of the negative training data used in our study.

Most interestingly, according to our analysis flagella T3SS and

standalone T3SS seem to share the same kind of signal. Viewed from

an evolutionary perspective, one might speculate that the signal

evolved independently from the T3SS, maybe even without having

any particular targeting function, and eventually the signal pattern

was adopted by the developing T3SS for effector tagging. On the

other hand, we stress that the predictions contain apparent errors, as

we predict obvious cytoplasmic proteins to have a T3SS export signal.

This observation leaves room for further improvements, for example

by modifying the training data composition. In this context one has to

keep in mind that there are certain chaperones that promote type III

secretion [4], but it has not yet been determined whether both signal

components (the actual sequence feature and the chaperone) are

required for protein translocation or if one alone might be sufficient

under certain conditions.

Supporting Information

Figure S1 The plots present the performance results for the first

round of ANN cross-validation for sequence lengths 10 (A), 20 (B),

30 (C), 40 (D) and 50(E) and varying numbers of hidden neurons

and window sizes. The data values are averaged over the cross

validation folds, standard deviation is not shown for clarity.

Found at: doi:10.1371/journal.pone.0005917.s001 (0.05 MB

PDF)

Figure S2 The graphs present performance results for the first

round of ANN cross-validation for sequence lengths 25 (A) and 35

(B) and varying numbers of hidden neurons and window sizes. The

data values are averaged over the cross-validation folds, standard

deviations are not shown for clarity.

Found at: doi:10.1371/journal.pone.0005917.s002 (0.03 MB

PDF)

Figure S3 The plot presents the performance results for the first

round of ANN cross-validation for sequence lengths 31 (A), 32 (B),

33 (C) and 34 (D) and varying numbers of hidden neurons and

window sizes. The data values are averaged over the cross-

validation folds, standard deviations are not shown for clarity.

Found at: doi:10.1371/journal.pone.0005917.s003 (0.04 MB

PDF)

Figure S4 The length of the N-terminal sequence portion used for

classifier training has an influence on neural network performance.

Results are presented forr three different lengths L. The x-axis is

scaled to the fraction of removed sequence (cutoff values divided by

the overall length). The performance values presented are averaged

over the number of hidden neurons, the number of cross-validation

shuffles, and different window sizes. Error bars denote the standard

deviation. For length L = 30 the most N-terminal 10 and 20 residues

were removed and for L = 40 and L = 50 the most N-terminal 10, 20

and 30 residues were removed. For better visualisation, this is

expressed as fraction in the plot. In all cases a decrease in

performance can be observed when compared to Figure S1.

Found at: doi:10.1371/journal.pone.0005917.s004 (0.02 MB

PDF)

Table S1 Complete list of examined protein sequence sets of

Proteobacteria. Given is the genome name, the NCBI Refseq

database identification string, the existence of an YscN homologue,

the number of positive predictions (P), the number of negative

predictions (N) and the relative number of positively predicted

protein sequences (%). The list is sorted according to decreasing

fractions of predicted proteins.

Found at: doi:10.1371/journal.pone.0005917.s005 (0.59 MB

DOC)

Table S2 Complete list of examined protein sequence sets of

Firmicutes. Given is the genome name, the NCBI Refseq database

identification string, the existence of an YscN homologue, the

number of positive predictions (P), the number of negative

predictions (N) and the relative number of positively predicted

protein sequences (%). The list is sorted according to decreasing

fractions of predicted proteins.

Found at: doi:10.1371/journal.pone.0005917.s006 (0.20 MB

DOC)

Table S3 Predicted proteins from the Yersinia enterocolitica strain

8081 virulence plasmid that might be exported via a Type 3 Secretion

System. Higher score values indicate more reliable predictions.

Found at: doi:10.1371/journal.pone.0005917.s007 (0.04 MB

DOC)

Table S4 Predicted proteins from Helicobacter pylori strain 26695

that might be exported via a Type 3 Secretion System. Higher

score values indicate more reliable predictions.

Found at: doi:10.1371/journal.pone.0005917.s008 (0.08 MB

DOC)
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47. Oh JD, Kling-Bäckhed H, Ginnakis M, Xu J, Fulton RS, et al. (2006) The
complete genome sequence of a chronic atrophic gastritis Helicobacter pylori

strain: evolution during disease progression. Proc Natl Acad Sci USA 103:
9999–10004.

48. Alm RA, Ling LS, Moir DT, King BL, Brown ED, et al. (1999) Genomic-

sequence comparison of two unrelated isolates of the human gastric pathogen
Helicobacter pylori. Nature 397: 176–80.

49. Eppinger M, Baar C, Linz B, Raddatz G, Lanz C, et al. (2006) Who ate whom?
Adaptive Helicobacter genomic changes that accompanied a host jump from early

humans to large felines. PLoS Genet 2: e120.
50. Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, et al. (2009) Sequence-

based prediction of type III secreted proteins. PLoS Pathog 5: e1000376.

51. Samudrala R, Heffron F, McDermott JE (2009) Accurate Prediction of Secreted
Substrates and Identification of a Conserved Putative Secretion Signal for Type

III Secretion Systems. PLoS Pathog 5(4): e1000375.

Type III Secretion Signals

PLoS ONE | www.plosone.org 9 June 2009 | Volume 4 | Issue 6 | e5917


