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Abstract

The availability of yeast strain collections expressing individually tagged proteins to facilitate one-step purification provides
a powerful approach to identify proteins with particular biochemical activities. To identify novel exo- and endo-nucleases
that might function in DNA repair, we undertook a proteomic screen making use of the movable ORF (MORF) library of yeast
expression plasmids. This library consists of 5,854 yeast strains each expressing a unique yeast ORF fused to a tripartite tag
consisting of His6, an HA epitope, a protease 3C cleavage site, and the IgG-binding domain (ZZ) from protein A, under the
control of the GAL1 promoter for inducible expression. Pools of proteins were partially purified on IgG sepharose and tested
for nuclease activity using three different radiolabeled DNA substrates. Several known nucleases and phosphatases were
identified, as well as two new members of the histidine phosphatase superfamily, which includes phosphoglycerate
mutases and phosphatases. Subsequent characterization revealed YDR051c/Det1 to be an acid phosphatase with broad
substrate specificity, whereas YOR283w has a broad pH range and hydrolyzes hydrophilic phosphorylated substrates.
Although no new nuclease activities were identified from this screen, we did find phosphatase activity associated with a
protein of unknown function, YOR283w, and with the recently characterized protein Det1. This knowledge should guide
further genetic and biochemical characterization of these proteins.
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Introduction

Nucleases play essential roles in nucleic acid metabolism. The

proofreading exonucleases associated with the replicative DNA

polymerases, and structure-specific endonucleases that process

Okazaki fragments, are essential for the fidelity and completion of

DNA synthesis, respectively [1]. Endo- and exonucleases are

critical for incision of the DNA backbone adjacent to damaged

bases and excision of nucleotides during repair [2]. Nucleases

function at several steps in the homologous recombination (HR)

pathway for double-strand break repair. Exo- and endonucleases

function in the initiation of HR by degrading DNA ends to

produce 39 single-stranded DNA tails that are bound by the

Rad51 recombinase [3]. Following strand invasion and DNA

synthesis, recombination intermediates containing Holliday junc-

tions must be resolved to allow segregation of the repaired DNA

duplexes (Fig. 1). Resolution of HJs is predicted to require the

activity of structure-specific endonucleases.

Yeast has proved a valuable system for the analysis of HR in

eukaryotes. Much of our understanding of the mechanisms of HR

is based on physically monitoring double-strand break-induced

recombination in Saccharomyces cerevisiae and analysis of mutants

defective for different steps in the pathway. However, until

recently the identity of the nucleases functioning in the earliest step

of recombination, 59–39 resection of DSBs, was unknown because

of redundancy for this step of the pathway [4,5,6]. Similarly, no

single mutant with the predicted resolution-defective phenotype

has been identified in budding yeast, suggesting there is also

redundancy for processing HJ-containing recombination interme-

diates. The Mus81-Mms4 (Mus81-Eme1 in fission yeast) hetero-

dimeric nuclease resolves strand invasion intermediates by two

sequential cleavages of branched intermediates to form crossover

products. This mode of resolution is essential for meiotic

recombination in S. pombe, but plays a less important role in S.

cerevisiae [7,8,9,10]. The human Bloom’s syndrome helicase

complex (BLM-TopoIIIa2RMI1) has been shown to resolve

dHJ intermediates in vitro by a process called dissolution

[11,12,13]. The helicase activity of BLM branch migrates the

constrained HJs and the topoisomerase activity of TopoIIIa is

thought to remove the supercoils between the two HJs eventually

leading to the resolution in a non-crossover configuration (Fig. 1).

Biochemical approaches to identify HJ resolvases from fraction-

ated extracts of yeast identified the mitochondrial protein Cce1

(cruciform cleaving endonuclease); this has no obvious function in

nuclear HR [14,15]. An endonuclease activity with specificity for

intact HJs has been purified from mammalian cell extracts and

recently identified as a member of the Rad2/XPG family of

nucleases called GEN1 (Yen1 in budding yeast) [16,17,18];

however, there are currently no in vivo data to support a role for

Yen1/GEN1 in HJ resolution.

Because genetic approaches suggest there are redundant HJ

resolving activities, and possibly other exo- or endonucleases
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involved in HR, we undertook a proteomic screen making use of

the movable ORF (MORF) library of yeast expression plasmids

[19]. This library consists of 5,854 yeast strains each expressing a

unique yeast ORF fused to a tripartite tag consisting of His6, an HA

epitope, a protease 3C cleavage site, and the IgG-binding domain

(ZZ) from protein A, under the control of the GAL1 promoter for

inducible expression. The His6 and ZZ domains provide a means

for affinity purification of the over-expressed proteins. The MORF

library represents 93.2% of the verified S. cerevisiae ORFs and most

of these have either been sequenced completely or are expected to

lack mutations based on the error rates of the polymerases used to

amplify the yeast ORFs. This collection of strains has been

successfully used to detect glycosylated proteins and the activity of

proteins known to catalyze tRNA modification reactions [19]. One

possible disadvantage of the over-expression screening approach is

that proteins that are part of complexes may not be detected if only

one subunit is over-expressed. A collection of yeast strains in which

the endogenous locus of individual ORFs has been tagged at the C-

terminus with a tandem affinity purification (TAP) tag is also

commercially available and has been used to identify components

of protein complexes [20]. However, because the proteins in the

TAP-tag collection are expressed from the endogenous promoter

and are present in single copy, pooling strategies are unlikely to be

successful in identification of poorly expressed proteins. Thus, in

order to screen for nuclease activities we chose to use the MORF

library to accomplish a comprehensive screen of the yeast proteome

more rapidly.

Results

Identification of Known Nucleases, Helicase and
Phosphatases

The S. cerevisiae MORF (movable ORF) fusion protein library

[19] was screened for proteins, which could degrade and/or cleave
32P-labeled ssDNA, Y-shaped and HJ-containing substrates

(Figure 2). To conveniently assay 5,854 proteins, the library

strains were grown in pools, with each pool containing 24 strains

expressing individual fusion proteins. After induction, cells were

lysed and proteins were purified by IgG sepharose bead pull down,

followed by cleavage with protease 3C. The pools of proteins were

then assayed with the 3 different 32P-labeled substrates (ssDNA, Y

and HJ-X26) for nuclease activities. After activity was observed in

one pool, the active pool was deconvoluted to identify the strain

and ORF responsible for the activity. For pools that contained a

known nuclease, a separate pool was generated of 23 strains

without the nuclease to determine whether that nuclease was

responsible for the activity within the 24-strain pool. The identity

Figure 1. Model of DSB repair by homologous recombination.
After formation of a DSB, helicases and nucleases promote 59–39

resection of DNA ends to generate long 39 ssDNA tails. The ssDNA tails
are the substrate for binding by Rad51 to promote strand invasion and
pairing with a homologous duplex. The 39 end of the invading strand
initiates DNA synthesis and is displaced by helicases to pair with the
other side of the break to generate non-crossover products. Alterna-
tively, after DNA synthesis the second end is captured, forming a
double Holliday junction intermediate. These junctions are resolved by
HJ resolvase(s) to generate crossover or non-crossover products,
depending on orientation of cleavage of the junctions by resolvase.
Alternatively, these junctions are dissolved by BLM-TopoIIIa-RMI1
helicase-topoisomerase complex to generate non-crossover products.
doi:10.1371/journal.pone.0006993.g001

Figure 2. Substrates to assay for nuclease, phosphatase and
helicase activities. A. Phosphatases can catalyze the removal of 32Pi

from ssDNA; 59 to 39 single-strand specific exonucleases can degrade
DNA to release 32P-labeled nucleotides, 39 to 59 single-strand specific
exonucleases degrade the 39 end resulting in a shortened labeled
substrate, or the substrate can be cleaved by endonucleases to
generate 32P-labeled DNA fragments. B. Structure-specific endonucle-
ases can cleave the single-stranded DNA tail adjacent to duplex region
of the Y DNA substrate. In the presence of ATP, helicases can unwind Y
substrate to the two constituent ssDNA oligonucleotides. C. Holliday
junctions can be cleaved by a resolvase to generate nicked duplex
products by introducing paired incisions across the junction.
doi:10.1371/journal.pone.0006993.g002
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of each ORF was confirmed by the size as determined by gel

electrophoresis and Western blotting using HA antibody, and by

sequencing of the plasmid DNA recovered from the yeast strain.

The latter step was necessary because the plate position for some

strains does not correspond to the plate position on the

spreadsheet provided by the company (Open Biosystems).

In this screen, the most robust nuclease activity was identified in

pool 61, which exhibited nuclease activity on all three radiolabeled

DNA substrates (Fig. 3A and data not shown). After deconvolution

of the pool and sequencing the plasmid in the active strain, the

nuclease was identified as Rad27 (FEN-1). The plate position for

Rad27 is inverted compared with the spreadsheet location;

another group independently found this error (P. Burgers, personal

communication). Several other known nucleases, including Apn1,

Pso2, Rat1 and Rex2 were also identified in this screen (data not

shown). Like Rad27, the plate position for Pso2 does not match the

spreadsheet location. We did not detect activity for other members

of the Rad27/FEN-1 nuclease family, Exo1, Din7 and Rad2 in the

pools screened, and only a very weak activity was detected for the

individual strain expressing Exo1 that was grown and processed

separately (data not shown). The mitochondrial HJ resolvase,

Cce1, was identified using the 32P-labeled HJ substrate (Fig. 3B).

We did not detect the recently identified HJ resolvase, Yen1 [18],

because this clone is absent from the MORF library. We failed to

detect structure-specific nuclease activity for Mus81, Mms4, Rad1

or Rad10-containing pooled extracts. Because these nucleases are

functional as heterodimers, and only one subunit is over-

expressed, it is likely the amounts of heterodimer are too low to

be detected, especially as Y and intact HJs are not the preferred

substrates for either Mus81-Mms4 or Rad1-Rad10 [10,21,22].

The presence of ATP in the reaction mixtures enabled us to detect

a known RNA helicase, Nam7, which unwound 32P-labeled Y

substrate to the two constituent ssDNA oligonucleotides (Fig 3C).

This was the only helicase activity that was detected in the screen.

In addition to nucleases, we detected phosphatase activity by

release of labeled inorganic phosphate from the DNA substrates.

The increased electrophoretic mobility distinguished Pi from

dNTP released by the RecJ exonuclease. The protein pools

containing Pho8 (Fig. 4) and Ptc5 (data not shown), which are

reported to exhibit protein phosphatase activity, were identified in

the screen [23,24]. Thus, the high sensitivity of the nuclease assay

enabled us to detect protein phosphatases despite the use of DNA

substrates in the reactions.

tRNA Methyltransferase Trm10 is Associated With a
Nuclease Activity

Assay and deconvolution of active pool 244 confirmed that

ORF YOL093W is associated with a ssDNA exonuclease activity

Figure 3. Identification of nucleases and a helicase from the MORF library. Reaction mixtures contained an aliquot of the indicated protein
pool or purified from an individual library strain incubated with one of the three radiolabeled DNA substrates (ssDNA, Y or HJ). A. The Y substrate was
incubated with T7 exonuclease (control) or three different protein pools (60–62). The activity in pool 61 is due to Rad27. B. The HJ substrate was
incubated with E. coli RuvC (control) or seven different protein pools (103–109). Pool 109 contains Cce1. C. The Y substrate was incubated with four
different protein pools (120–123). The activity in pool 122 is due to Nam7. D. The ssDNA was incubated with E. coli RecJ (control), Trm10, Rai1, or
other proteins purified from individual library strains (not indicated). Reaction products were resolved by 10% (for Y and HJ) or 15% (for ssDNA) native
polyacrylamide gels and analyzed using a phosphorimager. Positions of reaction substrates and products after gel electrophoresis are indicated.
doi:10.1371/journal.pone.0006993.g003

Screen for Yeast Nucleases
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(Fig 3D). YOL093W encodes a protein called Trm10, which was

identified in a library screen to be a tRNA methyltransferase [25].

As shown in Figure 3D, Trm10, purified from an individual library

strain, could degrade the 32P-labeled ssDNA substrate to

radiolabeled nucleotides. No processing of the radiolabeled Y or

HJ substrates by Trm10 was observed (data not shown). It seems

most likely that the nuclease activity is due to an associated protein

that co-purifies with Trm10 because Trm10 contains no domains

previously associated with nuclease activity. Identification of co-

purifying nucleases is possible because Rai1, which interacts with

the exoribonuclease Rat1 [26], was found in the screen (Fig. 3D).

Identification of Two New Phosphatases
Besides Pho8 and Ptc5, we detected phosphatase activities

associated with ORFs YOR283w and YDR051c. As shown in

Figure 4, active pools 45 and 132 containing YDR051c and

YOR283w, respectively, both exhibited a signal corresponding to

labeled phosphate. YOR283w encodes an uncharacterized protein

while YDR051c encodes a protein called Det1, reported to have a

cellular function in ergosterol transport between the endoplasmic

membrane and plasma membrane [27]. Interestingly, a BLAST

search analysis revealed that both proteins have an RHG motif in

the N-terminal region, a conserved feature of the histidine

phosphatase superfamily [28]. Many phosphoglycerate mutases

(PGM) and phosphatases, such as the acid phosphatase Pho5 in

budding yeast, belong to this superfamily [28]. To confirm the

phosphatase activity of YOR283w, a GST-YOR283w fusion

protein was expressed using a strain from a different library and

was affinity-purified with glutathione sepharose beads to near

homogeneity as described in Materials and Methods. The purified

protein had an expected molecular mass of approximately 51 kDa

(Fig. 5A). The GST-YOR283w fusion protein was incubated with

[c-32p] ATP and the reaction products were analyzed by TLC.

The release of the labeled c-phosphate from [c-32p] ATP was

blocked by the addition of phosphatase inhibitors, confirming that

YOR283w possesses phosphatase activity (Fig. 5B).

Unfortunately, the protein expressed from the GST-Det1 strain

from the GST-ORF protein fusion library was unstable and no

activity was detected [29]. Therefore, the IgG Sepharose-bound

Det1 was used in all experiments. Identity of the protein was

confirmed by sequencing of the plasmid recovered from the

MORF library strain, and the molecular mass was of the expected

Figure 5. Phosphatase activities of Det1 and YOR283w. A.
Purification of GST-YOR283w. Proteins were separated on a 12% SDS-
polyacrylamide gel and stained with Coomassie blue. Lane M, molecular
mass markers (kDa); lane 1, induced cell lysate; lanes 2 and 3, elution
from glutathione agarose with 25 mM reduced glutathione buffer.
Position of the GST-YOR283w fusion protein is indicated. Phosphatase
activity of YOR283w using pH 7.7 buffer detected by TLC (B) or Det 1 at
pH 4.4 or pH 7.7 (C). Reaction mixtures contain 250 ng GST-YOR283w,
5 ml aliquot of IgG sepharose-bound Det1 recombinant library protein
or 1 unit of CIP (control), pH 4.4 or 7.7 buffers (50 mM) as indicated,
supplemented with or without 1/100 phosphatase inhibitor (PI) cocktail
set II (Calbiochem). Reaction mixtures were incubated at 37uC for 1 hr
and reaction products were resolved by PEI-cellulose TLC plates.
Positions of ATP and Pi are indicated.
doi:10.1371/journal.pone.0006993.g005

Figure 4. Identification of phosphatases. Reaction mixtures
contained ssDNA substrate and an aliquot of the indicated protein
pool (224–226, 44–46 and 132–134) or E. coli RecJ (control). Protein pool
225, 45 and 132 contained Pho8, Det1 and YOR283w library proteins,
respectively. Reaction products were resolved by 15% native polyacryl-
amide gels and analyzed using a phosphorimager. Positions of ssDNA
substrate, released 32P-dNTP and 32Pi after gel electrophoresis are
indicated.
doi:10.1371/journal.pone.0006993.g004

Screen for Yeast Nucleases
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value of 58 kDa (with the tri-partite affinity tag) (data not shown).

TLC was used to show that the sepharose bead-bound Det1 could

remove c-phosphate from [c32p] ATP (Fig. 5C), confirming the

phosphatase activity of Det1 detected using the oligonucleotide

substrate (Fig. 4).

Characterization of the Det1 and YOR283w Phosphatase
Activities

The phosphatase activities of Det1 and YOR283w were further

characterized with respect to optimum pH, substrate specificity

and requirement of metal cofactors. To determine the pH

optimums of both phosphatases, assays were carried out at

different pHs, using r-nitrophenyl phosphate as the substrate.

Det1 had a pH optimum of 4.5 (Fig. 6A), suggesting it is an acid

phosphatase. TLC confirmed that Det1 removes inorganic

phosphate from ATP only at pH 4.4 and not at pH 7.7

(Fig. 5C). In contrast, YOR283w exhibited a broad optimum

pH between 7 and 9 (Fig. 6A). Our results also indicated that both

phosphatases do not require divalent cations for activity as would

be expected for members of the histidine phosphatase superfamily

(Fig. 6B).

To explore the substrate specificity of Det1 and YOR283w,

assays were performed with a range of phosphorylated substrates.

Det1 was able to hydrolyze both hydrophilic and hydrophobic

substrates such as a-napthyl phosphate, suggesting broad substrate

specificity (Fig. 6C). On the other hand, YOR283w only showed

phosphatase activity against hydrophilic substrates, such as 3-

phosphoglyceric acid (3-PGA) (Fig. 6C).

Discussion

The goal of this screen was to identify novel 59–39 exonucleases

that degrade linear DNA and endonucleases that cleave branched

DNA structures expected to formed during DNA repair or

replication. At the time the screen was initiated, the identity of

exonucleases involved in the 59–39 resection of DSB ends was

unknown, and the only activities known to cleave DNA substrates

containing a Holliday junction were the mitochondrial protein

Cce1 and the Mus81-Mms4 complex.

From the screen of pooled strains we identified several known

nucleases, including Rad27, Apn1, Pso2, Rex2 and Rat1.

Although Rat1 and Rex2 are exoribonucleases, they appear to

have activity on DNA substrates, similar to the Rat1-related

protein Kem1/Sep1 [30,31]. The 59–39 exonuclease Exo1 was not

detected in the screen, but weak activity was found for the fusion

protein individually purified (data not shown). The low activity

could be because the protein is rapidly cleaved during extract

preparation and the nuclease activity resides in the N-terminal

region of the protein, not the C-terminal region that would have

been recovered using the tag [32]. The failure to detect some

known nucleases by the pooling strategy raises the possibility that

unknown nucleases might have been missed in the screen if they

have very low activity, or are inactive in the presence of 1 mM

Mn2+ included in the reaction buffer. It is also possible that

heteromeric nucleases would not be identified because only one

component is over-expressed; however, we did identify a Rat1-

associated protein, Rai1, in this screen. Of more concern is the

lack of representation by nucleases in the library. The Dna2,

Kem1 and Yen1 nucleases, as well as the catalytic subunits of

DNA polymerase d (Pol d) and Pol e, which have intrinsic 39–59

exonuclease activity, are absent from the MORF library. Dna2 has

recently emerged as a candidate for 59–39 resection of the ends of

DSBs by genetic and biochemical assays [6,33], and Yen1 was

identified as a HJ resolvase using the TAP-tagged strain collection

[18]. Because the MORF library requires amplification of

plasmids in E. coli it is possible that nucleases expressed at low

levels in E. coli are toxic to the organism and thus are under-

represented in the library. Most plasmid libraries are propagated

in E. coli recA strains and low expression of a nuclease might be

particularly toxic to recA mutants that have no capacity for

homology-dependent repair.

Although no new nuclease activities were identified from this

screen, we did find phosphatase activity associated with a protein

of unknown function, YOR283w, and with the recently charac-

terized protein Det1. Our preliminary biochemical characteriza-

tion of these two proteins suggest they are able to hydrolyze

phosphate from several substrates, including DNA, ATP, 3-PGA,

Figure 6. Characterization of the Det1 and YOR283w phos-
phatase activities. Optimum pH (A) metal dependence (B) and
substrate specificity (C) of Det1 and YOR283w were measured by the
release of inorganic phosphate as described in Experimental Proce-
dures. s, sodium acetate/acetic acid buffer; X, Tris-acetate or Tris-HCl
buffer; n, CAPS/NaOH buffer.
doi:10.1371/journal.pone.0006993.g006
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a-napthyl phosphate and r-nitrophenyl phosphate, and that Det1

is active at acid pH whereas the phosphatase encoded by

YOR282w has a broad pH range. Both proteins contain the

conserved RHG motif characteristic of members of the histidine

phosphatase superfamily, which includes phosphoglycerate mu-

tases and phosphatases [28]. The conserved histidine residue is

transiently phosphorylated during catalysis. Members of this

family identified by sequence homology are frequently referred

to as mutases, but most members are in fact phosphatases [28].

DET1 was recently identified as a gene required for non-vesicular

transport of sterols in both directions between the endoplasmic

reticulum and plasma membrane [27]. The precise function in

sterol transport is unknown, and our biochemical characterization

does not identify potential substrates. A recent study identified the

insect enzyme ecdysteroid phosphate phosphatase and the related

human protein Sts-1 as members of the histidine phosphatase

superfamily, and demonstrated phosphatase activity using ecdys-

teroid and steroid phosphate substrates [34]. Intriguingly,

YOR283w was identified as essential for the viability of the sec14

kes1 double mutant [35]. Sec14 is the major phosphatidylcholine

(PC)/phosphatidylinositol (PI) transfer protein in budding yeast

and is essential for vesicular transport from the Golgi apparatus.

Kes1 is an oxysterol binding protein family member that binds to

sterols and phosphatidylinositol 4-phosphate and regulates Golgi

apparatus-derived vesicular transport. This finding raises the

possibility that the physiological substrate for YOR283w could be

a PI phosphate. Analysis of the activity of YOR283w and Det1 on

specific phosphorylated lipids might be informative, as well as

genetic studies to investigate the interaction with other compo-

nents of the vesicular and non-vesicular transport pathways.

Materials and Methods

Purification of MORF library proteins
The biochemical screen used a S. cerevisiae MORF fusion protein

library purchased from Open Biosystems [19]. Yeast strains from

the library were first grown individually in synthetic complete

(SCG)-URA liquid media in a 96-well plate format. After growth

at 30uC for 2 days, pools of the library strains were grown in

200 ml synthetic medium containing 2% raffinose as a carbon

source and lacking uracil (SCR-URA) until the culture reached an

OD600 of 0.8 to 1.0. Fusion protein expression was induced by

adding 100 ml 3xYP (3% yeast extract; 6% bacto-peptone) and

6% galactose, to a final concentration of 1xYP and 2% galactose,

respectively. Expression was induced for 6 hours, cells were

collected by centrifugation, washed with cold water, and stored at

280uC. To obtain crude lysates, cells were resuspended in 5 ml

lysis buffer [20 mM Tris-HCl, pH 8.0; 300 mM NaCl; 1 mM

DDT; 10% glycerol (v/v); 0.5 mM PMSF; 1/1000 protease

inhibitor cocktail set IV (Calbiochem)]. An equal volume of acid-

washed glass beads was added and cells were lysed by vortexing for

30 min at 4uC. The lysate was centrifuged at 14,000 rpm for 10

min. The supernatant was transferred to a clean tube and was

centrifuged one more time. The cell extract was mixed with 200 ml

IgG sepharose beads (GE Healthcare) and the mixture was gently

rotated for 2 hrs at 4uC to adsorb proteins to the beads. The beads

were collected by centrifugation, and the supernatant was

discarded. The beads were washed 3 times with 50 vol of lysis

buffer and 4 times with 50 vol of 3C protease cleavage buffer

[50 mM Tris-HCl, pH 7.5; 150 mM NaCl; 10% glycerol (v/v)].

Beads with 4 vol of 3C protease cleavage buffer were incubated

with ,10 mg of purified GST-3C protease overnight. After

centrifugation, the supernatant fraction, containing the cleaved

proteins, and the sepharose bead-bound proteins were separately

assayed for nuclease activities. The plasmid for expression of the

GST-3C protease was a gift from E. Phizicky (U. Rochester) and

was purified by glutathione agarose affinity chromatograpy from

lysates of E. coli. To further characterize the phosphatase activity

of Det1, IgG sepharose-bound Det1 was purified following this

protocol using the individual library strain expressing Det1.

The S. cerevisiae GST-ORF fusion protein library was used to

purify GST-YOR283w [29]. This library contains a collection of

yeast strains, each expressing a yeast ORF fused at its N-terminus

with a GST tag. The procedures of protein induction and cell lysis

to obtain a cell extract were basically the same as the purification

of the MORF library proteins. The extract was mixed with

glutathione sepharose beads (GE Healthcare) for 2 hrs at 4uC to

adsorb proteins to the beads. After the beads were precipitated by

centrifugation and washed with lysis buffer, the GST fusion

protein was eluted from the beads with 2 vol of 10 mM Tris-HCl,

pH 7.8; 200 mM NaCl; 5 mM b-mercaptoethanol; 5% glycerol;

25 mM reduced glutathione. The eluted protein was dialyzed

against 10 mM Tris-HCl, pH 7.6, 200 mM NaCl, 1 mM DDT,

50% glycerol, and stored at 280uC.

DNA substrates
The synthetic Holliday junction (X26) substrate was constructed

by annealing the following four oligonucleotides as described by

Constantinou et al. (Constantinou et al., 2001).

Oligo 1:

59-CCGCTACCAGTGATCACCAATGGATTGCTAGGA-

CATCTTTGCCCACCTGCAGGTTCAC

CC-39

Oligo 2:

59-TGGGTGAACCTGCAGGTGGGCAAAGATGTCCTA-

GCAATCCATTGTCTATGACGTCAAG

CT-39

Oligo 3:

59-GAGCTTGACGTCATAGACAATGGATTGCTAGGA-

CATCTTTGCCGTCTTGTCAATATCG

GC-39

Oligo 4:

59-TGCCGATATTGACAAGACGGCAAAGATGTCCTA-

GCAATCCATTGGTGATCACTGGTAGC

GG-39

The 59 end of Oligo 2 was labeled using [c-32P] ATP and T4

polynucleotide kinase for all three substrates. The Y substrate was

constructed by annealing Oligos 1 and 2 together. The Y and HJ

substrate were gel purified following annealing. Oligo 2 was used

directly as the ssDNA substrate in the screen.

Nuclease assays
Each of the protein pools was assayed for nuclease activity using

the 59 end labeled 60-mer oligonucleotide, the Y-shaped substrate

or the HJ-containing substrate. Reaction mixtures contained a

10 ml aliquot of the protein pool (cleaved proteins or beads),

20 mM Tris-HCl (pH 8.0), 5 mM MgCl2, 1 mM MnCl2, 1 mM

ATP, 1 mM DDT and one of the three radiolabeled DNA

substrates in a 50 ml reaction volume and were incubated at 37uC
for 1.5 hr. The reactions were stopped with 10% EDTA, 0.2%

SDS and 1 mg/ml proteinase K. Reaction products were resolved

by 10% (for Y and HJ X26 substrates) or 15% (for ssDNA

substrate) native polyacrylamide gels and analyzed using a

phosphorimager (GE Healthcare). RecJ and T7 Exonucleases

(New England Biolabs, Inc.) were used as controls for exonuclease

assays, and RuvC was purified as described [36] and used as a

control for HJ cleavage.

Screen for Yeast Nucleases
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Phosphatase assays
Phosphatase activity of Det1 and YOR283w was measured by

monitoring the release of inorganic phosphate as previously

described [37]. Reaction mixtures of 300-ml contained 250 ng

GST-YOR283w (assay for optimum pH and metal dependence),

2.5 ml aliquot of IgG Sepharose-bound YOR283w fusion protein

(assay for preferred substrates) or 5 ml aliquot of IgG Sepharose-

bound Det1 library fusion protein (assay for optimum pH, metal

dependence and preferred substrates) with different substrates

(2.5 mM), divalent cations (5 mM), and/or buffer of different pHs

(50 mM). Reactions were initiated by the addition of substrate

(2.5 mM) and incubated at room temperature for 1 hr (assay for

optimum pH) or at 37uC for 30 min (assay for metal dependence)

or for 15 min (assay for preferred substrates). r-nitrophenyl

phosphate was used as the substrate in the assays to determine

optimal pH and metal dependence. Trichloroacetic acid (TCA)

was added to the final concentration of 5% and reactions were

centrifuged for 15 min for deproteinization. After addition of

700 ml molybdate reagent and incubation for 20 min at 45uC, the

A820 was measured. All absorbance results were corrected for

enzyme-unrelated substrate dephosphorylation.

For analysis of reaction products by thin layer chromatography

(TLC), 300 ml reaction mixtures contained 250 ng GST-

YOR283w, 5 ml aliquot of IgG sepharose-bound Det1 recombi-

nant library protein or 1 unit of CIP (control), 1 pM of

[c-32p]ATP, different pH buffers (50 mM) and supplemented

with or without 1/100 phosphatase inhibitor cocktail set II

(Calbiochem) which contains imidazole, sodium fluoride, sodium

molybdate, sodium orthovanadate and sodium tartrate. Members

of the larger branch 1 of the histidine phosphatase superfamily are

inhibited by vanadate, while members of the smaller branch 2 are

inhibited by tartrate [38,39]. Reaction mixtures were incubated at

37uC for 1 hr and reactions were stopped with 10% EDTA, 0.2%

SDS and 1 mg/ml proteinase K. Reactions products were

separated on PEI-cellulose TLC plates developed with 0.75 M

KH2PO4, pH 3.5, and analyzed by a phosphorimager. Calf

intestinal phosphatase (CIP) was used as a control for phosphatase

assays.
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