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Abstract

We adopt a susceptible-infected-susceptible (SIS) model on a Barabási and Albert (BA) network to investigate the effects of
different vaccine subsidization policies. The goal is to control the prevalence of the disease given a limited supply and
voluntary uptake of vaccines. The results show a uniform subsidization policy is always harmful and increases the prevalence
of the disease, because the lower degree individuals’ demand for vaccine crowds out the higher degree individuals’
demand. In the absence of an effective uniform policy, we explore a targeted subsidization policy which relies on a proxy
variable instead of individuals’ connectivity. Findings show a poor proxy-based targeted program can still increase the
disease prevalence and become a policy trap. The results are robust to general scale-free networks.
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Introduction

Much work has been devoted to the observation that voluntary

vaccination is inefficient because of the free-riding problem and

perception of risk associated with the vaccines [1–3]. Voluntary

vaccination is also ineffective when there is a limited supply of

vaccines available and there is no priority given to sub-populations

such as hospital-related employees, students, grocery workers and

other socially active individuals, who are more likely to contract

and transmit the disease because of their positions in the social

network. These results have been often mentioned in studies that

assume homogeneous mixing of population and thus call for the

necessity of government interventions. The problem becomes even

more acute [4,5] when a social network with heterogeneous

connectivity is considered [6–11]. For a sufficiently heterogeneous

social contact network, any non-degree-oriented policy becomes

inefficient and the government should intervene by vaccinating

individuals with the highest degrees first [12,13]. However,

although proving efficient theoretically, the optimal policy

mentioned above is generally unlikely to be implemented in

reality because (i) the government cannot discover the network

degree of each individual and (ii) it cannot provide preferential

treatment to individuals based on their levels of connectivity.

Hence the government has to use alternative interventions such as

subsidy policies.

The goal of the present work is to investigate whether a uniform

or targeted subsidy policy will work under realistic circumstances.

We adopt a susceptible-infected-susceptible (SIS) model on a

Barabási and Albert (BA) network and add into the model a

decision rule of voluntary vaccination for individuals. Our context

differs from most others in the following respect. First, the

government does not have the authority to decide which

individuals get vaccinated, but can rather choose a subsidization

policy which could incentivize (some) individuals to do so. Second,

the vaccine is available in limited supply. Third, individuals are

aware of their own connectivity degrees and make decisions

(partly) based on this information, i.e. individuals who have a high

number of social contacts are more willing to get vaccinated, this

could either come from the fact that these individuals realize their

risks of getting infected are relatively high or result from

communications on the disease prevalence with others through

their social connections [5,14].

Analysis

A susceptible-infected-susceptible (SIS) model [15] is used in this

research. In this model, the nodes represent individuals and links

stand for the social contacts through which a disease can

propagate. Each individual chooses whether or not she would

like to take the vaccine. Once an individual has successfully taken

the vaccine, she becomes immune to the disease forever. In other

words, we assume perfect efficacy of the vaccine and lifelong

immunity.

We assume a closed model with no births or deaths. For the

non-vaccinated nodes, we assume there is no acquired immunity

after the recovery from an infection and hence their health status

continuously goes through the cycle of susceptible-infected-

susceptible. Each non-vaccinated and susceptible node is infected
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with rate l if she is connected to one or more infected nodes on the

graph. Each infected node becomes cured and susceptible again

with rate d. Without loss of generality we take the unit recovery

rate, d~1, throughout this paper.

The graph is assumed to take the form of Barabási and Albert

(BA) model [6], which is a classic scale-free network. The BA

network is constructed through the following steps. We start with a

few disconnected nodes; then in each step a new node is added to

the existing graph, with m new links connecting her and the old

ones. Moreover, the probability an old node i would be connected

to the new node is given by F (ki)~mki=
P

j kj , where ki denotes

i’s connectivity (degree). This implies higher the degree, the easier

it is for an old node to attract connections from new individuals;

this is also known as the ‘‘preferential attachment model’’. We

assume large network size N and take N?? throughout this

paper. After normalization and continuous k approximation, we

have the degree distribution p(k)~2m2=k3 and SkT~2m, where

S:T denotes the expectation. Let rk(t) be the fraction of infected

individuals (disease prevalence) within connectivity-k group at

time t.

For an individual with degree k, her probability of getting the

vaccine is assumed to be a function of k and vaccine price P,

dk~d(k,P). More specifically, we take d(k,P)~e{AP
k , where A is

a constant parameter. We take this form of (probability) demand

function for tractability of analysis as well as the following merits:

N dk[(0,1) always holds, so dk is properly defined as a

probability.

N Ldk

Lk
w0, the higher the connectivity degree, the higher the

willingness of a node to get vaccinated. When k approaches ?(0),
dk approaches 1(0).

N The price elasticity of demand for an individual with

connectivity k is eP
k ~ AP

k
, which is decreasing in k: When other

things are fixed, individuals with a higher degree exhibit lower

price elasticity of demand i.e., the higher the degree of an

individual, the less sensitive the individual is to changes in price.

This property conveys the ideas and observations we make about

the higher-degree individuals who are likely aware of their risk of

exposure.

Each individual decides whether or not to take the vaccine at

t~0, vaccines are no longer available after the disease has started

propagating. However, not all demand can be satisfied given the

limited supply of vaccines. The supply level is fixed at Lw0, and

Lv

P
‘ d‘p(‘) holds for all P[½P,�PP�, where

P
‘ d‘p(‘) stands for

the total demand of the population and ½P,�PP� is the proper domain

in which an authority can set the price of vaccine through

subsidies. The limited stockpile of vaccines is distributed to

individuals on a first-come first-serve basis. We thus define the

fraction of immunized individuals within connectivity-k group as

gk~dk
LP

‘

d‘p(‘)
~

e
{AP

k LP
‘

e
{AP
‘ p(‘)

: ð1Þ

Within connectivity-k group, all individuals are treated identi-

cally since they share the same price, the same degree k, and the

same probability demand function d(k,P). So with N??, the law

of large numbers tells us dk is also the fraction of individuals who

are willing to take vaccine within connectivity-k group. We also

recall some of these individuals who wanted to purchase the

vaccine could not do so due to the insufficient supply; multiplying

this fraction by the probability of getting vaccinated thus leads to

the immunized fraction within the group.

Now we can track the evolution of disease prevalence rk(t) for

any given k through mean-field equation [13,16,17]

drk (t)

dt
~{rk(t)zlk½1{rk(t)� 1{

gk
1{rk (t)

� �
V(r(t))

~{rk(t)zlk(1{rk(t){gk)V(r(t)),
ð2Þ

where the first term on the right-hand side reflects the unit

recovery rate assumption made above. The second term measures

the probability a healthy node in this group becomes infected

through contacts with others. Given the vaccine works perfectly,

we need to remove the subgroup of immunized individuals from

consideration and product ½1{rk(t)� 1{
gk

1{rk

� �
gives us the

fraction of susceptible nodes within the group. For each susceptible

node, her probability of getting infected is proportional to the

spreading rate l and the number of links connecting her to an

infected node kV(r(t)), where V(r(t)) is the probability any given

link connects to an infected node. More specifically, V(r(t)) is

calculated as

V(r(t))~

P
k

kp(k)rk(t)

P
‘

‘p(‘)
~

P
k

kp(k)rk(t)

2m
, ð3Þ

where the second equality is because
P

‘ ‘p(‘)~
Ð?

m
‘ 2m2

‘3
d‘~2m

for N??. We focus on the stationary state of the system;

imposing condition
drk(t)

dt
~0 on equation (2) gives us expressions

for stationary within-group fractions of infected nodes for all

groups i.e

rk~
lk(1{gk)V

1zlkV
, ð4Þ

where

V~

P
k

kp(k)rk

2m
: ð5Þ

Results

In this section, we first show why a uniform subsidy policy could

make things even worse, then investigate the effects of a targeted

policy, and check the robustness of our results on general scale-free

networks.

Uniform Subsidization
Persistence of the disease. Substituting equation (4) into (5)

and imposing continuous k approximation give us.

V~
1

2m

ð?
m

p(k)
lk2(1{gk)V

1zlkV
dk: ð6Þ

Obviously equation (6) admits a trivial solution V~0. To check

the existence of a non-trivial solution, denote by F (V) the right-

hand side of (6), we have F (0)~0, F (1)v1, and

Policy Trap under Limited Supply of Vaccines
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dF

dV
DV~0~

l

2m

ð?
m

k2(1{gk)p(k)dk~
lSk2(1{gk)T

2m
: ð7Þ

Define �gg~L=
P

‘ e
{AP
‘ p(‘), then from equation (1) we have

gkv�gg always holds, this in turn gives us

dF

dV
DV~0~

lSk2(1{gk)T
2m

w

Sk2T
2m

l(1{�gg): ð8Þ

Since Sk2T?? in the BA network, we have dF
dV DV~0w1, this

suggests equation (6) admits a non-trivial solution Vw0. To see

this non-trivial solution is unique, just check that F (V)=V is strictly

decreasing in V.

With Vw0, we have rkw0 for each k, and the disease always

persists. The persistence of disease stems from three main aspects

of our model: a scale-free network, voluntary vaccination, and limited

supply. With a homogeneous population, it suffices to impose a

uniform vaccination policy to eliminate the disease as long as the

limited supply is above the herd immunity threshold [3,13,15].

Even for a general network that is not as heterogeneous as a scale-

free network, an infinite-size population consisting of fraction p

people with degree k1 and fraction 1{p people with degree k2,

the disease could also be eliminated through herd immunity under

a limited vaccine supply and voluntary vaccination. In the case of

involuntary vaccination, the disease could be controlled in the

stationary state in a scale-free network given a limited supply of

vaccines, if the government was able to identify all the highest

degrees individuals and had the power to vaccinate them [12,13].

With an unlimited supply, L§1, the government can simply set a

price low enough so that gk~1 for all groups and the disease gets

eliminated. Our results suggest as long as the vaccine is

insufficiently supplied, individuals take the vaccine voluntarily,

and the social network is scale-free, given any spreading rate of the

disease, and any price level of the vaccine, the disease always

persists.

Crowding out effect for uniform subsidy policies. Given

that the disease cannot be eliminated, we examine if the authority

can help decrease the prevalence of the disease through subsidy

programs. Subsidization is believed to be helpful in scenarios

where the supply is not a problem. But if supply is insufficient,

subsidization may be considered to make the vaccine available to a

broader class of people. This research shows a uniform subsidy

policy may be a bad idea since it could have the unintended effect

of increasing the prevalence of the disease.

Under the uniform subsidy policy, each dose of vaccine is

subsidized by an equal amount, so we can just treat this as a price

drop for every individual. After continuous k approximation we

have

P
k

e
{AP

k p(k)~
Ð?

m
e
{AP

k 2m2

k3 dk

~ e
{AP

k 2m2

APk
ze{AP

m 2m2

(AP)2

h i
D?m

~ 2m2

(AP)2
1{e{AP

m AP
m

z1
� �h i

:

ð9Þ

Now define x~ AP
m

, inserting (9) into (1) yields

gk~
x2Le

(1{m
k

)x

2(ex{(xz1))
: ð10Þ

Define �kk~ (ex{x{1)mx
2(ex{x{1){x2, it is then straightforward to check from

equation (10) that Lgk

LP
w0 for all kw

�kk and Lgk

LP
v0 for all kv

�kk:

Because of the price decline, fewer high degree individuals

successfully get vaccinated and more low degree individuals

manage to do so, where �kk is the threshold for the high degree-low

degree dichotomy. To understand this, recall the price elasticity of

demand is decreasing in degree k, which implies for the same

amount of price drop, the magnitude of response of the low-degree

nodes is greater than that of the high-degree ones. As a result, the

proportional increase in demand for vaccines by the low-degree

individuals is greater than that of high-degree individuals.

Combining this result and the condition that the stockpile of

vaccines is limited and is distributed on a first-come, first-serve

basis, a part of high-degree individuals’ demand thus gets crowded

out by the low-degree individuals.

Policy trap. It has been proven optimal to vaccinate all high

degree individuals under limited supply [12,13]. However the

uniform subsidization policy seems to push the society even farther

away from the optima by resulting in more low degree individuals

getting vaccinated than high degree ones. To further examine this

argument, we define the prevalence rate of the disease in the

stationary state as

r~

ð?
m

rkp(k)dk: ð11Þ

After inserting equations (6) and (10) into it, equation (11) gives

us r as a function of price P. Because r(P) does not admit a close

form, we use numerical examples to show their relationship.

As shown in Figure 1, in all example cases, we have m~5,

L~0:5, A~0:25, l[f0:35,0:3,0:2g, and P[½1,20�. We calculate

the prevalence rate r for each (P,l) pair. For all cases, the disease

always persists in the stationary state, and given other conditions

fixed, the lower the spreading rate l, the lower the stationary state

prevalence rate r. Furthermore, given any spreading rate l, the

stationary prevalence rate is decreasing in P. The uniform

subsidization policy now becomes a trap because a subsidy in

price meant to stimulate the usage of vaccines and drop the

prevalence of the disease, actually results in a higher prevalence of

the disease in society.

Under insufficient supply, vaccine is indeed a scarce good for

the society. In the absence of any government intervention its

distribution is regulated by price. In our scenario, individuals with

a higher willingness to get the vaccine happen to be the ones who

have higher connectivities (degrees), and the latter should be given

priority when considering an optimal policy. In other words, the

individual interests coincides with the public interest. For this

reason, a higher vaccine price determined by the free market could

be more efficient since the scarce resource is more likely to be

(automatically) distributed to individuals from whose vaccination

the society benefits most.

On the other hand, under a uniform subsidization policy, as

discussed above and shown in part A of Figure 2, the price drop

causes an increase in vaccination rate among low-degree groups

and leads to a lower vaccination rate among high-degree groups–

Policy Trap under Limited Supply of Vaccines
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fewer high-degree individuals get vaccinated. And since each

susceptible individual is more likely to be linked to the high-degree

ones, drops of vaccination rate in high-degree groups in turn lead

to higher prevalence rates in all groups. As shown in part B of

Figure 2, with a price drop, rk increases for each group. A uniform

subsidization policy weakens the coincidence between private

interests and public benefit, distorts the market, and leads to a

higher disease prevalence.

Targeted Subsidization and Proxy Variables
Knowing a uniform subsidization policy results in a worse

outcome, the government may consider non-uniform subsidies,

e.g. subsidize a targeted subgroup of the population. Theoretically,

Figure 1. Policy trap for uniform subsidization policies. With m~5, L~0:5, A~0:25, l[f0:35,0:3,0:2g, and P[½1,20�.
doi:10.1371/journal.pone.0067249.g001

Figure 2. Crowding out effect and its effect on prevalences within different groups. A. Within-group fraction of vaccinated individuals, for
different degree groups, as a function of price. B. Relationship between within-group prevalence rate and price, for different degree groups. In all
examples, m~5, L~0:5, A~0:25, l~0:3, and P[½1,20�.
doi:10.1371/journal.pone.0067249.g002
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PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e67249



it is optimal to subsidize individuals with the highest degrees–set a

degree threshold K�, and then subsidize individuals i with ki§K�.
However, while considering a proper subsidization policy, the

government needs to follow some social protocols that guide the

spending of tax payers’ money. These protocols are often based on

some notion of equality, fairness, health status and demographics

of the population. For example, the federal government frequently

prioritizes the vaccination of pregnant women, immune-compro-

mised individuals, infants and elderly because they are either at a

higher risk on contracting the disease or suffer more from being ill.

The optimal policy based on the connectivity of the individual

does not accord with any typical social norm. The government

cannot subsidize high degree individuals just because they have a

relatively high degree. Moreover, it is not easy to determine a

person’s degree. It is possible to identify some proxy variables, e.g.

demographics such as age, income, etc. that correlate well with

degree. The government can subsidize targeted individuals based

on characteristics in the proxy variables, in order to control the

disease without appearing biased towards a group of individuals.

We argue in this section that it is possible for the government to

achieve its goal if it chooses an appropriate proxy variable. For it

to be the right proxy variable, it should be well rank correlated

with connectivity.

Without the loss of generality, we use X to represent the proxy

variable used by the authority for setting the subsidization policy.

X could either be a demographic variable or a function of

demographic (multiple) variables. For example, if the authority

wants to subsidize based on income level, we can set

Xi~{Incomei for each individual i; if the authority wants to

subsidize based on the degree of illness, we have Xi~Illnessi. If

the subsidy is based on age so children and elderly can be

protected, we can set Xi~(Agei{Age)(Agei{Age), where Age

and Age are the thresholds of the youth and senior subgroup,

respectively. In all scenarios, there exists a threshold X � such that

an individual gets subsidized if and only if Xi§X �.
To check the ‘‘closeness’’ between proxy X and the connectivity

degree K , we adopt Spearman’s rank correlation coefficient [18].

The rank correlation, c, uses rankings to calculate the correlation

and measures the strength of monotone association between X

and K . In other words, if we rearrange both X and K into

ascending permutations, c represents how well the two resulting

rankings are matched. c[½{1,1� always holds. If c~1, the two

rankings are perfectly matched: As long as we have XiwXj for

some individuals i and j, we must also have KiwKj . For c~{1,

XiwXj implies KivKj .

The initial vaccine price is P1, and the authority sets a threshold

X � such that any individual i with Xi§X � is subsidized to buy

vaccines at price P2vP1. Denote by b the ratio of subsidized

individuals among the whole population, i.e., b~Prob(Xi§X �).
Next step is to find the fraction of subsidized individuals within

each connectivity degree group. For simplicity and tractability of

analysis, we define the fraction of subsidized individuals in each

connectivity group as a function of rank correlation c and k,

G(c,k). Specifically, we use the form

G(c,k)~W(C(k{�kk)), ð12Þ

where W(:) is the cumulative distribution function of a standard

normal distribution,

C~sign(c): log
1

1{DcD

� �
, ð13Þ

and �kk solves

ð?
m

W(C(k{�kk))p(k)dk~b: ð14Þ

We take this special form of G(c,k) because of the following merits.

Equation (12) ensures G(c,k) locates between 0 and 1. In equation

(13), sign(c) is 1 (21) if c is positive (negative), and equals 1 if c~0.

With positive (negative) c, the larger the degree k, the higher the

fraction of subsidized individuals within the connectivity-k group.

What is more, with c?1 (c?{1), we have C?? (C?{?),

which in turn implies G(c,k)~1 for all (kv
�kk) (kv

�kk). If the two

rankings are perfectly (either positively or negatively) matched, the

targeted subsidization policy on X corresponds to a threshold

subsidization policy on K . And finally, this threshold �kk is defined

in equation (14). With c?1, (14) can be rephrased as

ð?
�kk

p(k)dk~b, ð15Þ

so when the proxy variable X and connectivity degree K are

perfectly rank correlated, a targeted subsidization policy on X is

equivalent to a subsidization policy targeted on K . Note �kk is

actually an implicit function of c.

Now for the subsidization policy targeted on X , within

connectivity-k group, the fraction of individuals who are willing

to buy vaccine becomes

�ddk~(1{G(c,k))e
{

AP1
k zG(c,k)e

{
AP2

k , ð16Þ

where the first term on the right-hand side denotes the

(probability) demand by the individuals who do not get subsidized,

and the second term measures the demand of individuals who are

subsidized because Xi§X � holds. Similar to what was done

earlier, we insert equation (16) into (1) to get the fraction of

vaccinated individuals within groups

�ggk~
�ddkLÐ?

m
�dd‘p(‘)d‘

: ð17Þ

Finally, replacing gk by �ggk in equations (4), (6), and (11) gives us

again numerical solutions of disease prevalence for difference

cases.

We construct example scenarios to analyze the effect of a

targeted subsidization policy which uses a proxy variable and

compare it with the base case i.e., the case where no interventions

are imposed by the government. We set P1~20, P2~5,

b[f0:2,0:3g, m~5, L~0:5, A~0:25, l[f0:3,0:35g, and

c[({1,1). Figure 3 shows for all examples under targeted

subsidization, generally speaking, the higher the rank correlation

coefficient c, the lower the prevalence r in the stationary state.

This intuitively makes sense since the higher the rank correlation,

the better matched is the proxy variable with the connectivity, and

the more stimulation is given to the high-degree individuals.

Policy Trap under Limited Supply of Vaccines

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e67249



Finally, the prevalence rate is lower because vaccines tend to be

distributed to the more important nodes.

Figure 3 also shows the prevalence levels for the base cases of no

intervention, where all individuals face the same price P1~20. In

all cases, a targeted subsidization outperforms the base line only

for large enough c values. For instance, in case A, the prevalence

under subsidization is lower than in base case if and only if

cw0:39.

Although a uniform subsidization policy proves counter

productive, it may still be beneficial to uniformly subsidize a

subgroup of individuals based on a proxy variable. However, as

shown above, it is crucial to have the proxy variable chosen in such

a way where it truly represents the degree. If a proxy variable is

not or could not be properly chosen due to the fairness concerns or

other constraints, the targeted subsidization policy could also

become a policy trap, just like the uniform subsidization policies.

General Scale-Free Networks
So far we have illustrated our results based on the BA network

with an infinitely large size of the population. Recall the BA

networks is a special case of a wider class of scale-free networks

that are widely observed in the real world, e.g., social contact

networks through which epidemics propagate. For this reason, we

would like to check the robustness of our results with general scale-

free networks.

For a general scale-free network in which an individual

possesses at least m links, we have the density for individuals with

k links as p(k)~cck{T , where T [(2,3� and c~(T{1)mT{1 is a

Figure 3. Policy trap for targeted subsidization policies, and their comparison with intervention-free cases. A. l~0:3,b~0:3. B.
l~0:35,b~0:3. C. l~0:3,b~0:2. D. l~0:35,b~0:2. In all cases we have P1~20, P2~5, m~5, L~0:5, A~0:25, and c[({1,1).
doi:10.1371/journal.pone.0067249.g003

Policy Trap under Limited Supply of Vaccines
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normalizing constant that makes the distribution well defined.

With similar treatments and logic used above, we still get a unique

non-trivial solution for the stationary state. Furthermore, we find

the policy trap could still arise if the authority is imposing an

inappropriate policy or utilizing a bad proxy variable for targeted

subsidization, as shown in the following two figures.

In Figure 4, we again consider the effect of a uniform

subsidization policy while keeping other factors unchanged from

the examples in Figure 1. As we can see from the results, for any

parameter T [f2:3,2:5,2:7g, the stationary state prevalence is still

decreasing in price (the prevalence of disease is much higher than

the BA network case), which in turn suggests a uniform

subsidization policy still does not help and the policy trap results

are robust to the general scale-free network class.

We also check the performance of the targeted subsidization

policies on general scale-free networks. As shown in Figure 5, we

consider four example cases ‘‘close’’ to those in Figure 3. We hold

the parameters unchanged from the previous examples so the

differences are mainly because of the introduction of general scale-

free networks. Once again, the results are similar to the BA

network case. Given any T [f2:3,2:7g, and any rank correlation

c[({1,1), the higher the transfer rate l, the higher the stationary

state prevalence rate; and given any (T ,c) bundle, the policy trap

could still occur. The targeted subsidization policy outperforms the

base case only if the proxy variable is well correlated with the

connectivity, otherwise intervention makes it even worse than the

BA network case. The results are robust to the general scale-free

networks.

Figure 5 suggests the efficacy of a targeted subsidization policy

depends on parameter t as well. As shown in example cases A and

B, when T is relatively small T~2:3, it is really difficult to

outperform the non-intervention base. Even if the authority has

the chance to find a perfect proxy (say c~1 for instance), the

benefit from imposing the targeted subsidization policy is almost

negligible. Actually, if we consider even smaller T , such as

T~2:1, there will be no intersection between the intervention case

and non-intervention base as shown in the figure, which means no

matter how ‘‘good’’ the proxy variable is, the targeted subsidiza-

tion policies always make situations worse.

The intuition behind this result is that targeted policies are most

suited for networks where individuals with high connectivity

constitute a relatively thin tail of the distribution, which allows

these individuals to be targeted for vaccination. However, the

smaller the parameter T , the thicker the tail of the network degree

distribution. So given the same level of intervention, b, only a

small fraction of the highly-connected individuals can be

vaccinated, making the policy ineffective, even if the proxy is

‘‘perfect’’. Eventually the potential space for improvement from

the targeted subsidization policy becomes much smaller in case of

scale-free networks with lower exponents, as shown in examples A
and B. The relationship between the size of the tail of distribution

and the value of parameter t also explains why we have a lower

prevalence rate in case C (D) compared to that in A (B), for any

given rank correlation c while holding all other parameters the

same.

Conclusions
This research shows that in realistic settings such as voluntary

vaccination, scale-free population and limited supply of vaccines, a

well intended policy of subsidization of vaccines can backfire and

result in increased prevalence of the disease. A uniform

subsidization meant to help the underprivileged can result in

crowding out the demand of higher degree individuals by the

lower degree individuals. A targeted subsidization may be

implemented to reach the high degree individuals, however a

justifiable demographic based proxy variable is needed to screen

out the high-degree individuals.

If a poor proxy variable is selected, the targeted subsidization

policy could also become a policy trap just like the uniform

subsidization policy. A good proxy variable with a high Spear-

man’s Rank Correlation with the degree of the individuals can

help the government achieve its goal of controlling the disease for

a scale-free network with a relatively large exponent parameter

(such as T~3 for the BA network); however, for general scale-free

Figure 4. Policy trap for uniform subsidization policies and general scale-free networks. With m~5, L~0:5, A~0:25, l~0:3, and
P[½1,20�.
doi:10.1371/journal.pone.0067249.g004
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networks with smaller exponent parameters (such as T~2:3), the

same intervention policy may become less effective or even

harmful.

This highlights the importance of understanding the structure

and heterogeneity of social networks while making targeted

subsidization policies. In other words, it may be inappropriate to

impose the same intervention to different areas if their respective

social networks are believed to differ significantly. Although the

analyses here are based on a theoretical model with specific and

stylized settings, future work will test the robustness of our results

on realistic social networks [19,20].
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