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Abstract

The recent release of twenty-two new genome sequences has dramatically increased the data available for mammalian
comparative genomics, but twenty of these new sequences are currently limited to ,26 coverage. Here we examine the
extent of sequencing error in these 26 assemblies, and its potential impact in downstream analyses. By comparing 26
assemblies with high-quality sequences from the ENCODE regions, we estimate the rate of sequencing error to be 1–4 errors
per kilobase. While this error rate is fairly modest, sequencing error can still have surprising effects. For example, an
apparent lineage-specific insertion in a coding region is more likely to reflect sequencing error than a true biological event,
and the length distribution of coding indels is strongly distorted by error. We find that most errors are contributed by a
small fraction of bases with low quality scores, in particular, by the ends of reads in regions of single-read coverage in the
assembly. We explore several approaches for automatic sequencing error mitigation (SEM), making use of the localized
nature of sequencing error, the fact that it is well predicted by quality scores, and information about errors that comes from
comparisons across species. Our automatic methods for error mitigation cannot replace the need for additional sequencing,
but they do allow substantial fractions of errors to be masked or eliminated at the cost of modest amounts of over-
correction, and they can reduce the impact of error in downstream phylogenomic analyses. Our error-mitigated alignments
are available for download.
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Introduction

The field of comparative mammalian genomics has been given

an enormous boost by the recent release of genome assemblies for

22 previously unsequenced species of eutherian (placental)

mammals (26 Mammals Consortium, in prep.). These new

assemblies increase the number of sequenced eutherian species

by nearly fourfold, and provide an opportunity for many new

functional and evolutionary insights in mammalian genomics.

Nevertheless, twenty of these twenty-two genome sequences are

currently available only as low- coverage (,26) assemblies

(Table 1), produced using traditional, capillary sequencing

methods. Most of these twenty will eventually be sequenced to

higher coverage (see http://www.genome.gov/10002154), but

even with advances in next-generation sequencing, the task of

‘‘topping them up’’ remains daunting and will require years to

complete. In the meantime, the data available for mammalian

comparative genomics will be heavily dominated by low-coverage

sequence.

While these low-coverage assemblies are valuable for many

purposes, reduced sequencing redundancy has some inevitable

costs. For example, low-coverage assemblies have decreased levels

of contiguity, which can severely limit their usefulness in

identifying rearrangements, duplications, and repetitive elements

[1]. In addition, low-coverage assemblies necessarily have elevated

levels of sequencing error—that is, miscalled bases and erroneous

insertions and deletions, which might otherwise be corrected

through redundant sequencing of the same genomic region. This

issue of sequencing error in 26genomes is our focus in this article.

To our knowledge, this issue has not been studied in detail, despite

its potential importance in many applications in comparative

genomics, including phylogenetic modeling, the detection of

positive selection, and comparative gene finding. Several potential

limitations of low-coverage assemblies were examined by Margu-

lies et al. [2], but their study focused on assembly and alignment

error, and its influence on the detection power for conserved

elements in mammalian genomes.

Considered more broadly, sequencing error is, of course, not a

new concern. Early sequencing studies tended to consider the issue

of error informally and qualitatively [3], but by the late 1980s and

early 1990s, the need for a more rigorous, quantitative treatment

became apparent. At this time, efforts were undertaken to measure

the overall error rates in the growing sequence databases [4], to

detect errors automatically in protein-coding sequences [5], and to

incorporate explicit models of sequencing error into algorithms for

alignment and assembly [6,7]. By the late 1990s, phred quality
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scores [8] (see also [9]) had become established as a standard,

highly accurate method for quantifying the probability of error at

each nucleotide in a sequence. A trend toward high-coverage

sequencing led to reduced concern with sequencing error in the

early 2000s, and error was essentially ignored in most of the

comparative genomic studies of mammals carried out during this

period [10–12]. More recently, however, error has re-emerged as

an important concern in sequence analysis, in part because errors

occur at elevated rates in the reads produced by many next-

generation sequencing technologies. Error is an important

consideration in applications in population genetics, in which

care is required to distinguish errors from polymorphisms [13–16],

in mapping short read sequences to reference genomes [17], in de

novo assembly from short reads [18], and in improving genome

finishing [19]. In addition, sequencing error has been shown to

have important effects in comparative genomics, particularly in

genomic scans for positive selection [20,21]. One recent study has

shown that indel error occurs at appreciable rates in the draft-

quality orangutan and chimpanzee genomes assemblies [22].

In this article, we estimate the rates at which substitution,

insertion, and deletion errors occur in the current 26 assemblies,

by comparing them with high-coverage sequences from the

ENCODE project [23]. We show that these assemblies exhibit

modest but non-negligible levels of sequencing error, which, if

ignored, can produce biases in downstream phylogenomic

analyses. We show that the error present in these assemblies is

strongly concentrated in regions of single-read coverage, partic-

ularly at the ends of reads. Next, we explore the possibility of

applying automatic methods for sequencing error mitigation (SEM),

including masking of bases likely to be miscalled and ‘‘correction’’

of indels likely to be spurious. We show that even quite simple

strategies are capable of eliminating fairly large fractions of

sequencing errors at the cost of a modest amount of ‘‘over-

correction’’. At least for some downstream analyses, the benefits of

eliminating true errors appear to outweigh the costs of obscuring a

fraction of true genomic mutations. Our error-mitigated align-

ments of 32 vertebrate genomes are available from http://

compgen. bscb.cornell.edu/pro jects/32way-masked/, and our

software for SEM is available by request.

Results

Assessment of sequencing error
We measured sequencing error in the newly available low-

coverage (,26) genome by comparing them with corresponding

‘‘comparative-grade’’ sequences from the ENCODE project

[23,24] (Table 1). The bacterial artificial chromosome (BAC)-

based ENCODE sequences exhibit high quality, with a sequencing

error rate of ,1 in 10,000 bases [25], and high coverage, with

representation from 31 mammalian species (see http://www.nisc.

nih.gov/projects/encode/) and 44 genomic regions spanning

,30 Mbp (,1%) of the human genome. We restricted our

comparison to the fourteen 26 species that have been sequenced

in the ENCODE regions, additionally including the ,76 guinea

pig for comparison (Table 1 and Table S1). To our knowledge,

there is no comparable ‘‘gold standard’’ available for the

remaining six 26 species.

For each of the fifteen species of interest, we aligned the entire

26 assembly against the ENCODE sequences for that species,

then applied a series of filters to ensure that corresponding regions

were aligned with high confidence (see Materials and Methods).

These alignments could then be examined for mismatching bases

and alignment gaps, with mismatches indicating potential

miscalled bases, gaps in the ENCODE sequences indicating

potential insertion errors, and gaps in the 26assemblies indicating

potential deletion errors. After filtering, the pairwise alignments for

the 26 species contained 2.1–20.1 Mbp of aligned sequence per

species, depending in large part on the ENCODE sequencing

coverage (Table S2). In most cases, half or more of the bases in the

available ENCODE sequences were in alignment with the 26
assemblies (fractions ranged from 38–84%), indicating good

coverage in the 26 assemblies and a reasonably sensitive

alignment procedure, despite the use of conservative filters. These

Table 1. Species and genome assemblies considered in this
study.

Speciesa Assemblyb Coveragec ENCODEd

human hg18 complete –

chimp panTro2 6.06 –

rhesus rheMac2 5.16 –

tarsier tarSyr1 2.06 –

mouse lemur micMur1 1.96 43

bushbaby otoGar1 1.96 44

tree shrew tupBel1 1.96 4

mouse mm9 completee –

rat rn4 completee –

kangaroo rat dipOrd1 2.06 –

guinea pig cavPor3 6.86 41

squirrel speTri1 1.96 44

rabbit oryCun1 2.06 43

pika ochPri2 1.96 –

alpaca vicPac1 2.06 –

dolphin turTru1 2.06 –

cow bosTau4 7.16 –

horse equCab2 6.86 –

cat felCat3 1.96 43

dog canFam2 7.66 –

microbat myoLuc1 1.86 41

megabat pteVam1 2.66 5

hedgehog eriEur1 1.96 39

shrew sorAra1 1.96 41

elephant loxAfr2 1.96 44

rock hyrax proCap1 2.26 6

tenrec echTel1 1.96 42

armadillo dasNov2 2.06 44

sloth choHof1 2.06 –

opossum monDom4 6.86 –

chicken galGal3 6.66 –

tetraodon tetNig1 7.96 –

aAbbreviated common names used by the 26Mammals Consortium are listed
here. In some cases, different names have been used in the ENCODE project
(see Table S1).

bUCSC designation.
cReported average coverage.
dNumber of ENCODE regions for which high-quality sequence is available, or

‘‘–’’ if ENCODE sequence is unavailable.
eThe mouse and rat assemblies are considered ‘‘essentially complete’’ but some
improvements are still underway (see http://www.ncbi.nlm.nih.gov/genome/
assembly/grc/mouse/ and http://www.hgsc.bcm.tmc.edu/project-species-m-
Rat.hgsc?pageLocation=Rat).

doi:10.1371/journal.pone.0017034.t001
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fractions are probably influenced by various factors, including the

degree of contiguity of both the ENCODE and 26 genomes

(which will affect alignability), the repetitive content of the

genomes, and differences in the DNA sources for the two

sequencing projects (see below).

Error rates. The mismatch rates for aligned 26 and

ENCODE bases ranged from 2.6 (elephant) to 25.1 (hedgehog)

mismatches per kb (Table 2), while the indel rates showed somewhat

less variation, with insertion rates from 0.22 (megabat) to 0.86

(hedgehog) per kb and deletion rates from 0.24 (tenrec) to 0.77

(microbat) per kb. Both mismatch and indel rates generally

decreased with increasing quality scores (Figure 1), as expected,

but the limiting rates—at the highest quality scores—differed

considerably among species. This is because the observed

differences not only reflect sequencing errors, which are expected

to occur at similar rates across species, but they also reflect true

genomic differences between the individuals sequenced for the 26
and ENCODE projects, which will depend on the diversity of the

sampled populations, the relatedness of the sampled individuals,

and other factors. Indeed, the largest mismatch rates at high quality

scores were observed with the hedgehog, for which separate (but

closely related) species were sequenced in the ENCODE (middle-

African hedgehog) and 26 (European hedgehog) projects. The

second largest mismatch rates were observed with the microbat, for

which some evidence of elevated levels of intraspecific genetic

variation has been reported [26], while the smallest mismatch rates

occurred with the African savannah elephant, which has been

reported to have low average genetic diversity [27].

To disentangle the contributions of polymorphism and sequenc-

ing error, we used the observed difference rates at the highest quality

bases (quality score $45) as rough estimates of polymorphism rates,

under the assumption that error is negligible compared with

polymorphism at these bases. We then subtracted these estimates

from the overall observed rates to obtain approximate polymor-

phism-corrected error rates. As a side-benefit, this approach should

at least partly correct for ENCODE sequencing errors and 26/

ENCODE alignment errors, as long as these occur at similar rates in

high quality and low quality regions of the 26 assemblies. This

method predicts nucleotide diversity levels ranging from ,1–

761023 for most species (with somewhat larger values of 1.2 and

2.461022 for microbat and hedgehog, respectively; Table 2), in

reasonable agreement with an average diversity of p<561023 for

nuclear DNA in mammals [28]. After this adjustment, the estimated

base-call error rates are much more concordant across species, at

0.72–3.43 per kb, and the indel error rates are slightly more

concordant, at 0.16–0.46 per kb (insertions) and 0.21–0.70 per kb

(deletions). The 26 species with slightly higher coverage, such as

megabat (2.66) and rock hyrax (2.26), have the lowest error rates,

as expected. In addition, both types of error rates are in substantially

better agreement with the nominal quality scores (Figure 1). The

polymorphism-corrected error rates are used throughout the

remainder of this paper, unless otherwise noted.

Even with only ,26 average genomic coverage, these

assemblies predominantly consist of high-quality bases. Roughly

82% of bases, across all of the assemblies, have quality scores $45

(the highest category considered in our analysis; see Materials and

Methods), and only ,4% have scores ,20 (Figure 2). Neverthe-

less, these low-quality bases are sufficiently error-prone that they

make a highly disproportionate contribution to the overall error

rates. Indeed, once polymorphisms are corrected for, 88.4% of

basecall errors occur in bases with quality scores ,20. The

situation with indels is similar, with 75.2% of erroneous insertions

and 73.9% of erroneous deletions being accounted for by the small

fraction of bases having scores ,20.

Table 2. Error rates per kilobase, raw and corrected.

Species Cov.a Basecalls Insertions Deletions

Rawb Poly.c Corr.d Rawb Poly.c Corr.d Rawb Poly.c Corr.d

armadillo 2.06 3.06 1.48 1.58 0.40 0.03 0.37 0.33 0.03 0.30

tenrec 1.96 3.19 1.08 2.11 0.47 0.02 0.45 0.24 0.02 0.22

hedgehog 1.96 25.10 23.71 1.39 0.86 0.43 0.43 0.76 0.44 0.32

cat 1.96 3.72 2.53 1.19 0.33 0.06 0.27 0.28 0.07 0.21

elephant 1.96 2.61 0.91 1.70 0.41 0.02 0.39 0.42 0.02 0.40

mouse lemur 1.96 3.00 1.92 1.08 0.26 0.03 0.23 0.46 0.05 0.41

microbat 1.86 15.04 11.61 3.43 0.57 0.16 0.41 0.77 0.30 0.47

rabbit 2.06 5.63 4.08 1.55 0.44 0.06 0.38 0.30 0.09 0.21

bushbaby 1.96 4.94 2.59 2.35 0.43 0.04 0.39 0.75 0.05 0.70

rock hyrax 2.26 3.72 2.68 1.04 0.25 0.04 0.21 0.42 0.06 0.36

megabat 2.66 3.73 3.01 0.72 0.22 0.06 0.16 0.37 0.08 0.29

shrew 1.96 8.04 6.62 1.42 0.35 0.13 0.22 0.39 0.15 0.24

squirrel 1.96 5.64 3.16 2.48 0.51 0.05 0.46 0.63 0.08 0.55

tree shrew 1.96 4.43 2.01 2.42 0.37 0.04 0.33 0.56 0.06 0.50

guinea pige 6.86 0.35 0.14 0.21 0.04 0.00 0.04 0.04 0.00 0.04

aReported average coverage of 26 assembly.
bBased on observed differences between aligned 26 and ENCODE sequences. Note that, because estimates are based on .2Mb of aligned sequence in all cases and
.10Mb in most cases (Table S2), the contribution of sampling error to the estimates shown here is negligible (standard errors are typically <0.01 per kb).

cEstimate of polymorphism rate (based on highest quality bases).
dCorrected error rate, equal to raw difference rate minus estimated polymorphism rate.
eThe guinea pig is shown for comparison. The genome assembly reflects 276 coverage. The low estimated polymorphism rate may result from the use of the same
inbred line in the 26 and ENCODE projects (unconfirmed).

doi:10.1371/journal.pone.0017034.t002
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Model for coverage and error
We devised a simple theoretical model to explore the

relationship between sequencing error and read coverage as a

function of the average coverage. The model assumes Poisson-

distributed read depths, independence of quality scores across

reads, and quality scores that accurately predict error rates, and it

relies on an empirically determined distribution of quality scores

from single reads (see Materials and Methods). Because it uses

quality scores as a proxy for true error rates, the model does not

distinguish between basecall and indel errors, but aggregates them

together. This model indicates that the overall sequence quality,

expressed in phred units as 210 log10 p(error), should increase nearly

linearly with the expected coverage over the range of interest, such

that the error rate will be approximately halved by each additional

16 of sequencing (Figure 3). Moreover, it predicts that this

increase in quality will be almost completely driven by decreases in

single coverage regions in the assembly, which contribute the vast

majority of the error. Indeed, the model predicts that 98.9% of

errors will come from single coverage regions in a 26 assembly.

This fraction remains high as the average coverage (l) grows

larger, with values of 96.8% for l = 6, 94.8% for l = 10, and

92.2% for l = 15. Furthermore, nearly all of the errors in these

single-coverage regions can be attributed to a relatively small

fraction of bases with low quality scores. For example, the 13.7%

of single-read bases with q,20 are expected to contribute 93.5%

of the error in single coverage regions, or 92.5% of all errors at

l = 2. These low-quality bases occur preferentially at the ends of

reads, with 90% occurring either 50 bp from the 59 end or 300 bp

from the 39 end of a read (Figure S1). Thus, consistent with

intuition, the model predicts that the vast majority of sequencing

Figure 1. Quality scores vs. error rates in selected 26 genomes. Error rates were estimated from alignments with high-quality ENCODE
sequences. Separate plots are shown for basecall (top) and indel (bottom) errors, before (left) and after (right) correcting for polymorphisms (see text).
The quality score of an insertion is taken to be the minimum score of the inserted bases and the 10 nearest neighboring bases (5 on each side), while
the score of a deletion is the minimum score of just the 10 neighboring bases. The dashed line shows the rates implied by nominal quality scores (i.e.,
error rates of 102q/10 for each score q). Note that these predicted rates include both base-call and indel errors [8], so they are expected to be slightly
larger than the true rates for the individual error types. The excess of errors at large quality scores could result from an underestimation of
polymorphism (perhaps because the high quality regions used to estimate polymorphism are depleted for segregating sites), or from an
overestimation of quality scores (perhaps because the assembler assumes independence of reads in estimating aggregate scores). The numbers of
events were sufficiently large that sampling errors were small relative to the dependency on quality scores.
doi:10.1371/journal.pone.0017034.g001
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errors will be contributed by bases at the ends of reads in single-

coverage regions of an assembly, but somewhat surprisingly, it

shows that this property holds even for quite large values of l.

Implications for phylogenomics
To gain insight into the implications of sequencing error in

phylogenomic applications, we performed a series of simple,

descriptive analyses. First, we asked what the average total number

of errors would be in a typical coding exon, allowing for different

exon-specific error rates per species and the effects of missing data

in the aligments (see Materials and Methods). We found that a

protein-coding exon of 120 bp (approximately the median length)

will contain an average of 4.0 spurious indels and 5.8 miscalled

bases, across all of the low-coverage genomes present (for

illustration, see Figure S2). Thus, while the error rate per low-

coverage genome is modest, the aggregate error in a multiple

alignment of twenty such genomes can be substantial. Next, we

examined how the probability of error changes when conditioning

on properties of interest, focusing on the case of indels that appear

to be lineage-specific (LS)—that is, indels present in a 26sequence

but not in the other sequences according to the multiple

alignments (see Materials and Methods). We found overall, among

apparent LS indels, 11.1% of insertions and 6.5% of LS deletions

are spurious (Figure 4A). However, in coding regions, 75.4% of LS

insertions and 60.1% of LS deletions are spurious, owing to the

substantially reduced rates of true indels in these regions. The

error rates for LS indels in conserved noncoding regions are also

elevated, although less so than in coding regions, at 22.1%

(insertions) and 14.0% (deletions). Third, we examined the length-

distributions of LS indels in coding regions, considering (a) all LS

indels in the ENCODE regions and (b) only those that are

supported by the comparative-grade ENCODE sequences. We

found that indels supported by high quality sequence display a

clear preference for multiple-of-three lengths (which preserve the

reading frame), but this periodicity in the length distribution is

almost completely erased by sequencing error in the raw 26
assemblies (Figure 4B). Finally, we examined the impact of

sequencing error on inferred rates and patterns of insertion/

deletion and substitution on the mammalian phylogeny. Using a

probabilistic model of insertion and deletion and an expectation-

maximization (EM) algorithm (Methods S1), we found that the

raw 26assemblies produce substantially inflated estimates of indel

rates compared with estimates based on high-quality sequences

only, particularly for external branches of the phylogeny (Figure 5).

A similar analysis indicated that, overall, substitution rates are

relatively unaffected by sequencing error (data not shown), but

that error can inflate the ratio of nonsynonymous to synonymous

substitution rates (dN/dS) in protein-coding genes by as much as

,10% (Methods S2 and Table S3).

Taken together, these descriptive analyses demonstrate that

sequencing error has clear effects on the apparent rates and

patterns of both substitutions and indels, and that it has a

Figure 3. Quality as a function of coverage, according to
theoretical model. Shown are expected coverage (l) versus expected
sequence quality (Q*(l); solid curves, labels on left) and expected
fraction of error contributed by single-coverage regions of an assembly
(F1; dashed curves, labels on right). Sequence quality is expressed in
phred units, as Q*(l) = 10 log10 err(l), where err(l) is the error
probability per base. The solid black curve shows that expected
sequence quality increases nearly linearly with expected coverage, at a
rate of ,3.62 phred units per additional 16of coverage, corresponding
to a 1023.62/lO<43% decrease in the error rate. The nearly identical
solid gray curve considers only errors from single-coverage (x = 1)
portions of the assembly, demonstrating that average error rates are
almost completely determined by single-coverage regions of the
assembly, and increases in quality are almost completely attributable
to decreases in single-read coverage. The dashed black curve shows the
fraction of all errors that come from single-coverage bases (F1), and the
dashed gray curve shows the fraction that come from low quality
(q,20) single-coverage bases, which occur predominantly at the ends
of reads. Notice that, even at quite high levels of average coverage, the
vast majority of errors are predicted to come from the ends of reads in
single-coverage regions of an assembly. These calculations are based on
a distribution of single-read quality scores estimated empirically from
the tupBel1 (Northern Tree Shrew) assembly (see Materials and
Methods). For comparison, points corresponding to the error rates in
Table 2 are shown (plus symbols), with tupBel1 in black. Departures
from the theoretical predictions are partially explained by departures
from the assumption of Poisson-distributed read depths (Table S4).
doi:10.1371/journal.pone.0017034.g003

Figure 2. Cumulative distribution functions (CDFs) of quality
scores and basecall errors. Results are shown for four representative
26 assemblies. At each quality score threshold q, shown on the x axis,
the dashed lines indicate the fraction of all bases having quality score q,
and the solid lines indicate the fraction of all basecall errors that are
associated with bases having quality score q. This graph highlights the
fact that most bases have high quality scores, but most errors derive
from bases with low quality scores.
doi:10.1371/journal.pone.0017034.g002
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particularly pronounced effect for indels. Sequencing error may

have important consequences not only on estimates of absolute

rates of mutations, but on phylogenomic analyses that depend on

the relative rates of events, as in the identification of novel

functional elements and in predictions of positive selection [20,21].

Sequencing error mitigation
The highly localized nature of sequencing error, with a large

majority of errors coming from a small minority of bases, raises the

possibility of using automatic methods to mitigate the effects of

error in downstream analyses, a procedure we refer to generically

as sequencing error mitigation (SEM). In this section, we explore several

alternative strategies for SEM.

Base-call error. Our general approach to base-call error is to

mask erroneous bases by converting them to ‘‘N’’s. We do not

attempt to revise the base-calls at positions predicted to be

miscalled because only weak information about their true identity

is available. Our baseline strategy is simply to apply a threshold to

the nominal quality score for each base (as reported for the

genome assembly), masking any base with a score below the

designated threshold. By considering no sources of data other than

the sequence itself, this strategy has the advantage of being easy to

interpret and avoiding complex biases in downstream analyses.

We measure the false positive rates (FPRs) and true positive

rates (TPRs) of base-masking decisions as a function of the quality

score threshold, where the FPR is defined as the fraction of

correctly called bases that are unnecessarily masked, and the TPR

is defined as the fraction of miscalled bases that are masked. We

also measure the positive predictive value (PPV), or the fraction of

masked bases that actually were miscalled, and hence, were

correctly masked. These quantities are measured with respect to

the ENCODE data in regions covered by high-confidence

ENCODE/26 alignments, then corrected for polymorphisms

(Materials and Methods).

We find that this simple masking strategy allows large fractions

of miscalled bases to be masked with relatively low FPRs. For

example, at a quality threshold of 10, roughly 80% of miscalled

bases can be eliminated at a FPR of ,1%, with slight differences

Figure 4. Error rates and length distributions for lineage-specific indels. (A) Fractions of apparent lineage-specific indels that are spurious,
as estimated from ENCODE/26alignments. Shown are median values over all 26species after the polymorphism correction, for all sites and for only
those sites within coding (CDS) or conserved noncoding (CNS) regions. Notice that insertions are substantially more likely than deletions to be
spurious, because true deletions occur at higher rates than true insertions [29], while insertion and deletion error rates are comparable. LQ categories
are the subset of indels with low quality (,25). (B) Distribution of indel lengths in coding regions for mouse lemur as compared to human, using dog
as an outgroup. The red line (all) represents all indels inferred from the 26assemblies, while the blue lines (supported) represents a subset of indels
that could be validated by comparison with the ENCODE mouse lemur sequence. The green line (corrected) shows the distribution for the 26
assembly after automatic sequencing error mitigation (SEM) was applied using a quality score threshold of ,25. Notice that the pronounced period-
of-three pattern in the supported indels is nearly lost in the unprocessed data due to sequencing error, but is mostly recovered by the SEM
procedure. The effect is similar for the other 26 assemblies.
doi:10.1371/journal.pone.0017034.g004

Figure 5. Estimated percent error in indel rates. Results are
shown for the raw and error-mitigated (SEM) data sets. Indel rates were
inferred using a probabilistic indel model and an expectation
maximization algorithm (Methods S1), and percent error was estimated
by comparing the rates for each data set with ones based on the
highest quality sites only (q$45). The median across the branches
within each group is shown, with error bars indicating upper and lower
quartiles. Results are shown for three groups of branches from the 32-
species phylogeny: external branches corresponding to 26 species
(red), all other external branches (blue), and internal branches (green).
The indel rates fir the external 26branches are overestimated by nearly
8% with the raw data, but that the SEM procedure eliminates most of
this effect. There is also a substantial amount of overestimation
associated with non-26external branches stemming from lower-quality
draft assemblies, such as the chimpanzee, and the SEM procedure
effectively reduces this error as well.
doi:10.1371/journal.pone.0017034.g005
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between genome assemblies (Figure 6). By choosing a threshold of

20, a TPR of ,90% and a FPR of 5% can be achieved. However,

because error rates are fairly low even for low quality scores,

absolute FPRs of 1–5% may still result in large amounts of ‘‘over-

masking’’. Indeed, at a threshold of 10, with a TPR of ,80%, the

PPV is ,10%, meaning that 9 correct bases must be unnecessarily

masked for every miscalled base that is appropriately masked. At a

threshold of 20 (TPR 90%) the PPV is only ,4%.

We attempted to improve these results by using a regression-

based method to predict whether or not to mask each base.

Specifically, we trained a logistic regression classifier on a subset of

the ENCODE data, making use of several relevant covariates,

including the aligned bases from other species, the local G+C

content and the quality scores of neighboring bases (see Materials

and Methods), and then tested the method on a separate portion of

the ENCODE data. To summarize the information from aligned

bases, we included as one of the covariates a log-odds score based

on a phylogenetic error model, which indicates how much more

likely an observed base is under a model of sequencing error vs. a

model that allows for true nucleotide substitutions only. This

method did significantly improve performance (Figure 7). For

example, in the case of bushbaby, at a TPR of 50% the regression-

based method roughly doubled the PPV, from ,20% to ,40%.

However, the improvement was more pronounced at midrange

TPRs than at higher TPRs, which are of greater practical interest.

For example, at a TPR of 80% in bushbaby the PPV is increased

only from ,10% to ,15%. The degree of improvement also

varied considerably among species, depending on the availability

of cross-species alignments, branch lengths in the phylogenetic

tree, and other factors. Because such dependencies may lead to

difficult-to-interpret biases in downstream analyses, and because

the regression-based method is computationally expensive, we

selected the simpler, quality-score thresholding method as our

default base-masking strategy.

Indel error. We address indel error using an imputation

strategy rather than a masking strategy. Our general approach is

to identify indels likely to be spurious, based on the multiple

alignments and quality scores, then to ‘‘correct’’ these indels by

filling in false deletions with ‘‘N’’s, or excising false insertions.

Specifically, we identify indels that can only be parsimoniously

explained by lineage-specific insertion or deletion events, using an

exact dynamic-programming algorithm (see Materials and

Figure 6. Receiver operating characteristic (ROC) curves for sequencing error mitigation. On the left, false positive rates (fractions of non-
errors incorrectly masked or imputed) are plotted versus true positive rates (fractions of errors correctly masked or imputed) as the quality threshold
is varied (see text). On the right is a similar plot with 1 minus the positive predictive value (indicating the fraction of masking or imputation decisions
incorrectly undertaken) in place of the false positive rate. Results are shown for five representative 26 assemblies, with separate plots for basecall
(top), insertion (middle), and deletion (bottom) errors. The results shown here reflect simple thresholding of quality scores (see also Figure 7).
doi:10.1371/journal.pone.0017034.g006
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Methods). If these apparent lineage-specific indels are supported

only by low-quality sequence, we conclude that they are more

likely to result from sequencing errors than from true evolutionary

events, and we revert the sequence to the inferred ancestral indel

state. Only lineage-specific indels are corrected, because indels

that are shared between species would require multiple coinciding

errors to explain, and therefore are much less likely to be

erroneous.

As with our basecall error mitigation strategy, we evaluated the

TPR, FPR, and PPV of this approach as the threshold for low-

quality sequence was varied. In this case, the TPR is the fraction of

spurious indels that were properly ‘‘corrected’’, the FPR is the

fraction of true indels that were unnecessarily edited, and the PPV

is the fraction of corrections that improve the quality of the

assembly. These measures consider only ‘‘eligible’’ indels—that is,

ones predicted to be lineage-specific by the parsimony algorithm—

and therefore can range from 0 to 1. We experimented with

various measures for identifying ‘‘low-quality’’ sequence (see

Materials and Methods), but settled on the relatively simple

measure of the minimum quality score observed within a 5 base

pair distance of the indel.

In terms of absolute TPRs and FPRs, the indel algorithm

appears to perform slightly worse than the base masking algorithm

Figure 6. For example, to obtain a TPR of 80%, a FPR of ,6%

must be tolerated for either insertions or deletions. However, this

difference is misleading because false positives are counted in quite

different ways in the two cases—for basecalls, they are counted as

fractions of all correct bases (i.e., the vast majority of bases), while

for indels they are fractions of correct lineage-specific indels (a

much smaller collection). Indeed, when measured in terms of PPV,

error mitigation is substantially better for indels than for basecalls,

with values of roughly 30–80% at a TPR of 80%. (Notably, there

is considerable variation across species, because the algorithm

depends on the position of each species in the phylogeny.) For a

typical genome, say tree shrew, it is possible to correct 80% of

eligible indels by altering only slightly more than twice as many

cases as should be altered (i.e., with a PPV of 50%). The favorable

PPV for indels results from the fact that true indel rates are quite

low (roughly 20-fold lower than substitution rates; [29]), yet indel

error rates are comparable to those for basecalls, typically differing

only by a factor of 4–5 (Table 2). Similarly, the PPVs for insertions

are somewhat better than those for deletions, because the true

deletion rate is larger than the true insertion rate [29].

A limitation of this approach is that many indel errors are not

eligible for correction. For example, spurious indels in a human-

specific Alu insertion will not be able to be corrected, because

alignments to orthologous sequences in other mammalian species

will not be available. Other spurious indels will not be inferred as

lineage specific, due to alignment errors or failures of the

parsimony algorithm. We find that the fraction of spurious indels

that are eligible for correction ranges from about 1/3 to more than

half, depending on the species in question (Figure S3). Of the

ineligible indels, most are in the alignments but are not inferred to

be lineage-specific, although in some species, such as hedgehog,

the situation is reversed—possibly because of long branches in the

phylogeny or large numbers of transposons. The aspect of the

approach may improve substantially as more species are

sequenced and alignment algorithms improve.

Consequences in phylogenomics. To shed light on the

impact of SEM in downstream analyses, we examined four

representative applications. For this analysis, we used simple

quality score thresholds of ,20 for base-masking and ,25 for

indel imputation (corresponding to TPRs of ,88% and ,96% in

the experiments above).

We first considered the length distribution of indels, which was

shown above to be strongly influenced by indel error (Figure 4B).

We found that SEM significantly improved the inferred length

distribution, bringing it nearly in line with the distribution

estimated from the high-quality ENCODE data. In particular,

SEM eliminated a large number of non-multiple-of-three-length

indels, including many of length one, and caused the pronounced

period-of-three signal, which was nearly lost in the raw 26data, to

re-appear. Second, we re-estimated indel rates on the branches of

the phylogenetic tree for these species, as described above, after

applying SEM to the alignments. We found that SEM substantially

reduces the inflation in indel rates that arises from sequencing

error (Figure 5). In our third analysis, we examined the impact of

SEM on estimates of dN/dS ratios, which, as discussed above, can

be inflated by error. Again, SEM was effective in eliminating most

of the upward bias in dN/dS estimates (Table S3). Finally, we

examined the impact of SEM in comparative functional element

detection, using a recently developed comparative exon-finding

method called CONGO [30]. After retraining the method with

the SEM-processed alignments, CONGO’s exon-level specificity

with respect to genes from the RefSeq, ENSEMBL, UCSC, and

GENCODE gene sets increased modestly yet significantly, from

89.9% to 90.5% (p = 1.261029, x2 test), while the sensitivity

increased slightly, from 74.3% to 74.4% (see Methods S3 and

Table S4 for full details). While these increases were modest in

absolute value, the increase in specificity held consistency across all

chromosomes in the human genome, except for the Y chromo-

some (Table S5).

Discussion

Since the advent of large-scale DNA sequencing, sequencing

error has periodically emerged as a research topic of primary

interest in genomics [4,7,8]. In this article, we have examined the

issue of sequencing error with respect to twenty newly available

Figure 7. ROC-like plot for logistic regression-based SEM.
Results are shown for one species, the bushbaby (see Figure S6 for
others). See Figure 6 for comparison. The solid curve represents simple
thresholding on quality score and the dashed line represents the use of
logistic regression with both quality scores and phylogenetic log-odds
scores as covariates (see Materials and Methods).
doi:10.1371/journal.pone.0017034.g007
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low-coverage (26) mammalian genome assemblies. This data set

will ultimately be supplanted by draft genomes, and is therefore of

transient interest. Nevertheless, it is likely to dominate the field of

mammalian comparative genomics for the next few years. Our

focus in this article has been to characterize the sequencing error

in these data, to examine its implications for phylogenomic

analysis, and to explore simple strategies for mitigating the effect of

error in certain applications of interest.

While these 26genome assemblies are generally of high quality,

they do display significant amounts of error. Base-call errors occur

at rates of ,1–3 per kb, and indels at ,0.5–1.0 per kb. The

overall error rate in these sequences, at an average of 2.5 errors

per kb, is comparable to the average rate at which nucleotide

differences occur between individuals of a typical mammalian

species (p). Importantly, these errors are highly localized, with

,4% of bases contributing roughly 90% of base-call errors and

75% of indel errors. Sequencing error appears to come primarily

from the ends of reads in single-coverage regions of the assembly.

The impact of this error in downstream analyses depends on the

relative rates of error and real events of interest. Some

mutations—such as lineage-specific insertions in protein-coding

sequences—are sufficiently rare that apparent mutations in the 26
alignments are considerably more likely to be spurious than real.

Accordingly, certain patterns of interest in comparative geno-

mics—such as the length distributions of short indels in coding

regions—can be strongly skewed by sequencing error. At the same

time, sequencing error does not severely impact all analyses of

interest. It had only a minor effect on inferred substitution rates,

and its effects on dN/dS estimates and on a state-of-the-art

comparative exon-finding method were more pronounced but still

limited.

Automatic methods for sequencing error mitigation (SEM) can

reduce the effects of error to a degree. Indel imputation, in

particular, is effective at reducing the number of spurious lineage-

specific indels, and can substantially reduce the distortion of indel

length distributions and numbers of lineage-specific indels imposed

by error. As a result, SEM could, in principle, produce significant

improvements in downstream phylogenomic analyses, especially

ones dependent on indel rates and patterns. In our experiments, it

did significantly improve performance in comparative exon

prediction. Performance improvements of ,1% in exon-predic-

tion, while not dramatic, are difficult to achieve without major

modeling or algorithmic innovations, and it is notable that they

were achieved in this case simply by preprocessing the input to the

algorithm. At the same time, this example demonstrates that

sophisticated machine-learning methods can effectively compen-

sate for the effects of sequencing error in functional element

prediction, and may only benefit slightly from a separate SEM

step. SEM may be of greater value in straightforward estimation of

mutation rates or with simpler methods for functional element

prediction.

Several general issues arise in deciding on an appropriate SEM

strategy. We settled on quite simple methods, based on thresh-

olding of quality scores, for efficiency and ease of interpretation.

However, our experiments with regression-based methods sug-

gested that the use of additional covariates can significantly

improve performance. It may be possible to improve performance

further by making use of a richer set of features in a more

sophisticated classification framework, including, say, the primary

traces for sequencing reads and the full multiple alignment of reads

used by the assembler [19]. A second question we faced was

whether to mask bases that are predicted to be erroneous or to

impute specific values for them. In general, masking is preferable

in that, when making unnecessary ‘‘corrections’’, it simply discards

data rather than introducing new errors. For indels, however, we

found masking impractical and instead settled on an imputation

strategy. The disadvantage of this approach is that it can produce

biases of its own, for example, by reducing the apparent indel rates

on terminal branches of the phylogeny. A third question is whether

to make use of alignments with other species in SEM. Alignments

are clearly informative about error but their use has certain

drawbacks: they cannot be used uniformly across the assembly

(because some regions do not align), they are not equally

informative about all species (because of differences in phyloge-

netic position), and their usefulness depends on the accuracy of the

alignment methods. We have used alignments for indel imputa-

tion, where they are particularly informative, but not for base

masking. However, alternative approaches may be preferable for

certain applications.

Our theoretical model suggests that regions of single read

coverage in the assembly are dominant in determining overall

error rates. Interestingly, this property is predicted to hold even at

quite high coverage—for example, more than 90% of errors are

predicted to derive from regions of single read coverage at 156
coverage (Figure 3). There are two major ways in which

simplifying assumptions of the model could impact our calcula-

tions. First, the model may underestimate the error rates at bases

covered by multiple reads, by assuming independence across reads

in computing aggregate quality scores. Our empirical data suggests

some underestimation of error rates does occur at large quality

scores (q$30) (Figure 1). However, because smaller quality scores

(q,20) are dominant in determining error rates, we expect this

underestimation to have only a minor effect on our conclusions.

Second, departures from the assumption of Poisson-distributed

read depth may lead to an excess of single-read regions at high

average coverage (see Figure S4). This would reduce the rate of

increase in expected sequence quality (Q*) as average coverage (l)

increases, making Q* sublinear in l (see, for example, the point in

Figure 3 at 6.86 coverage, representing guinea pig). However, it

should increase the fraction of errors coming from regions of single

read coverage at large l, making them more like those for small l.

Thus, we expect the conclusion that regions of single read

coverage are dominant even at large l to be robust to our

modeling assumptions. This property should be borne in mind

when interpreting claims that the vast majority of bases in a

genome assembly have high quality—for example, that 98% of

bases have quality scores of at least 40 [12,31]. While this ‘‘mostly

very high quality’’ property is undoubtedly useful in some respects,

it may still be compatible with fairly high overall error rates,

because few bases with high error rates can make a strongly

disproportional contribution to the overall average. Mathemati-

cally, this can be understood by noting that the expected sequence

quality Q* is determined not by the arithmetic mean of the

basewise quality scores, but by a generalized f-mean with

f (q)~10{q=10, which gives large weight to small values of q.

While most of the genome sequences considered here will

eventually be replaced by higher coverage assemblies, other

projects parallel this one in certain respects. For example, low-

coverage sequencing is underway for several fungi and unicellular

eukaryotes and for three East African cichlid fishes (http://www.

genome.gov/10002154). Metagenomic projects also tend to

produce low-coverage data for each organism of interest, because

of the diversity of source material, and some large-scale within-

species sequencing projects—including the 1000 Genomes Proj-

ect—have used relatively low-coverage sequencing strategies (say,

46) for SNP discovery. In addition, as shown by our theoretical

analysis, consideration of sequencing error can continue to be

important even with high-coverage assemblies, particularly for
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applications in comparative or population genomics. For these

reasons, there is a need to integrate better models of sequencing

error into a wide variety of sequence analysis methods, including

alignment, assembly, gene finding, and phylogenetic modeling.

Notably, improved standards at the assembly level would help to

enable the development of error-aware sequence analysis tools.

Ideally, assembly quality scores would be produced in a uniform

manner, read-depth information would be available for each

assembled base, and full read tiling paths would be obtainable for

assembled genomes.

Materials and Methods

26Assemblies
The twenty-two new genome assemblies (Table 1) were

assembled using a combination of the ARACHNE assembler

[32,33] and a novel ‘‘assisted’’ assembly method that used

alignments with the human, mouse, and dog genome assemblies

to improve long-range contiguity. They were then aligned with

each other and with existing finished or draft-quality genome

assemblies using the multiz program [34] and related tools from

the UC Santa Cruz alignment pipeline [35]. The final multiple

alignments, represented in Multiple Alignment Format (MAF),

consisted of 29 eutherian mammals plus three non-eutherian

outgroup species (opossum, chicken, and tetraodon), for a total of

32 species. For convenience in analyzing sequence alignments and

quality scores together, the MAF files were augmented to include

basewise quality scores, in a reduced representation. Specifically,

each raw quality score q was mapped to an integer q0 [ f0,:::,9g
using the formula q0~min(floor(q=5),9) (see http://genome.ucsc.

edu/FAQ/FAQformat). Thus, the raw quality scores were

captured with a resolution of 5 phred units, except that all scores

$45 were considered equal. (Notably, the ARACHNE assembler

sets a maximum quality score of 50.) This reduced representation

was used in our subsequent analyses.

Alignment with ENCODE sequences
BLASTZ [36] was used to align each scaffold of the 26

genomes to the corresponding high-quality ENCODE sequence

for that species, for every species for which ENCODE sequence

was available. This was followed by a step of chaining and netting

to produce a single-coverage alignment for each 26 assembly.

After a close inspection of these alignments, we realigned the

sequences using LASTZ (http://www.bx.psu.edu/miller_lab) to

reduce alignment error. These alignments were then passed

through a final set of chaining, netting, synteny, and reciprocal

best filters.

Polymorphism correction
Let desq be the rate at which differences suggesting events of type

e occurred in the 26/ENCODE alignments for species s in regions

having 26 quality score q. Let desQ represent the rates for the

highest quality regions (q$45). Polymorphism-adjusted error rates

were estimated, in a quality score-specific manner (for q,45), as

resq = desq2desQ. When assessing the performance of sequencing

error mitigation, a fraction desQ/desq of differences were assumed to

be polymorphisms for each q, s, and e. These fractions were used to

compute the expected number of masked sites that were

polymorphic, which was added to the count of false positives

and subtracted from the count of true positives. Similarly it was

used to compute the expected number of unmasked sites that were

polymorphic, which was added to the count of true negatives and

subtracted from the count of false negatives.

Theoretical model
Our theoretical model for the relationship between read depth

and sequencing error assumes (1) that the read depth at each base

is Poisson-distributed with mean l equal to the average coverage

[37]; (2) that true error rates are well predicted by nominal quality

scores (see Figure 2); (3) that quality scores are independent across

aligned reads at each position in the assembly, so that the joint

distribution of quality scores at a position i with read depth x,

p(qi,1,qi,2,:::,qi,x), is equal to a product of marginal distributions,

p1(qi,1)p2(qi,2):::px(qi,x), where p1 (q) is the probability of observing

a quality score q in an individual read; and (4) that a quality score

for an assembled base can be accurately expressed as a sum of the

quality scores in the individual reads (as assumed by ARACHNE).

Under these assumptions, several quantities of interest can be

computed easily for a given distribution p1 (q), which can be

estimated empirically using data from the public trace archives (see

below). For example, the overall distribution of quality scores for

an assembly with average coverage l is given by

p(qjl)~
X?
x~1

lxe{l

x!(1{e{l)
px(q)&

Xxmax

x~1

lxe{l

x!(1{e{l)
px(q) ð1Þ

where px is an x-wise convolution of p1, which can be computed by

a simple recursive calculation, and xmax is large relative to l (say,

the O.999 quantile of the Poisson distribution with mean l). The

expected overall error rate in the assembly, expressed in phred

units, is:

Q�(l)~{10log10

X
q

p(qjl)10{q=10

 !
ð2Þ

Further details are given in Methods S4.

To determine p1, we examined the empirical distributions of

single-read quality scores for fourteen 26assemblies (as well as one

76 assembly), using random samples of reads from the NCBI

Trace Archives http://www.ncbi.nlm.nih.gov/Traces/. For the

most part, these distributions were similar across species (Figure

S5), and we selected one that was fairly typical of the group for our

analysis (tupBel1). In estimating p1, we excluded reads and

trimmed portions of reads that were not incorporated into the

tupBel1 assembly.

Exonic error rates
To estimate the error rates per exon, we identified 2,668

nonoverlapping coding (CDS) exons within the ENCODE regions

from the UCSC Genes set, and counted differences between the

aligned 26 and ENCODE sequences within these exons. These

counts were corrected for polymorphisms in a quality score-

specific manner, as above, but using CDS-specific estimates of

polymorphism rates. The counts were multiplied by 20/14 to

adjust for the fact that ENCODE sequences were available for

only fourteen of twenty species, and, finally, converted to rates per

120 bp exon. Notably, this calculation reflected the reduction in

error due to incomplete coverage of the 26assemblies (we did not

compensate for this reduction).

Base masking
In the simplest case, each base xi was masked (changed to an

‘‘N’’) if, and only if, the corresponding quality score qi,T, where T

is a threshold (typically, T = 20). In the case of logistic regression, xi

was masked if, and only if, (1ze{BT yi ){1
vT 0, where B is a

vector of regression coefficients, yi is a vector of local covariates,
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including the local G+C content, the quality scores of flanking

bases, and a phylogenetic log-odds score (see below), but found a

combination of the local quality score qi and the log-odds score to

perform best. The regression coefficients B were estimated from

half of the ENCODE data, and accuracy was assessed on the

remaining half. Parameter estimation was accomplished with the

glm function in R.

The log-odds score for base xs from species s in alignment

column X is defined as S(X ,s)~log P(X jerroneous xs){
log P(X jno error): The quantity P(X jno error) is computed by

applying Felsenstein’s algorithm [38] to X, using a phylogenetic

model estimated from fourfold degenerate sites (26 Mammals

Consortium, in prep.). To compute P(X jerroneous xs), we

introduce a species-specific error transition matrix M (s)~fm(s)
i,j g,

such that m
(s)
i,j is the probability that the true base i is erroneously

represented as a j in the 26 sequence for species s (thus, m
(s)
i,i ~0

for all i,s). We then calculate:

P(X jerroneous xs)~
X

i[fA,C,G,Tg
m

(s)
i,xs

P(fX : xs?igjno error) ð3Þ

where fX : xs?ig denotes a version of X in which xs is replaced

with base i. This calculation assumes that the probability of

multiple errors in a single column X is negligible. The matrix M(s)

is estimated empirically from the 26/ENCODE alignments, using

separate data for training and testing. To accommodate variation

in substitution rates, we introduce a branch-length scaling factor

and optimize it (separately) for both the error and error-free

models, using methods recently described elsewhere [39]. As a

result, an apparent substitution at a conserved site is considered

more likely to be an error than a similar substitution at a less

conserved site.

Indel imputation
To identify lineage-specific (LS) indels, we applied a Sankoff-like

parsimony algorithm [40] to a reduced representation of each indel

region (IR) in the multiple alignments. An IR is a maximal sequence

of alignment columns having at least one gap character each and

flanked by gapless columns. To simplify these regions and focus on

short indel events, we considered only gaps of #10 bp, allowing

for gaps between MAF blocks provided that they connected

contiguous bases in a sequence. We represented the IRs as

matrices of 0s (gaps) and 1s (bases). Because all indel events were

given equal cost regardless of length, the starting matrix could be

compressed by replacing each sequence of identical columns with

a single representative [41]. Associated with a matrix of width n

were 2n possible indel states. To find parsimonious labelings of

ancestral nodes by indel states, we defined a 2n62n matrix,

W = {wi,j }, of state-transition costs, such that wi,j equaled the

minimum number of indel events for a transition from state i to

state j. Using W as a cost matrix for each branch, we applied the

max-product algorithm [42] to the phylogeny and enumerated all

states at each node that were consistent with parsimonious

labelings. Cases in which a leaf was represented by a 0 but its

parent was only allowed a 1 by parsimony were inferred to be LS

deletions. Similarly, cases in which a leaf was represented by a 1

but its parent was only allowed a 0 by parsimony were inferred to

be LS insertions. LS events were inferred column-by-column, so it

was possible that only part of an IR would be considered lineage-

specific. This was important because, with large number of species,

multiple overlapping LS events are not unusual, and in many cases

they can be unambiguously disentangled (the are effectively

independent). For reasons of computational efficiency, IRs with

n.10 (0.36% of all IRs) were ignored. As discussed in the text,

once an LS indel was identified in a sequence s, it was ‘‘corrected’’

(reverted to the ancestral state) if, and only if, it corresponded to

low-quality bases in s. As a measure of indel quality, we used the

minimum quality score in the five flanking bases on either side of

the indel and in any inserted bases. We experimented with several

alternative measures of quality but none performed better than

this simple measure. We emphasize that we did not attempt to

revise the alignment in this procedure; this would have required a

much more complex and computationally expensive algorithm.

Details concerning indel rates, dN/dS ratios, and the CONGO

exon predictions are provided in Methods S1, S2, S3.

Supporting Information

Figure S1 Distribution of low-quality bases along a
read. Empirical cumulative distribution functions showing

fractions of bases with phred scores ,20 that occur at various

distances from the 59 (solid line) and 39 (dashed line) ends of each

read. Low quality bases are strongly concentrated within 50 bases

of the 59 and 300 bases of the 39 end of each read. Distributions

are based on 9,905 randomly chosen tree shrew reads, which were

chosen conditional on inclusion in the final assembly. The position

on the x-axis is read position after the trimming performed a pre-

processing step by the assembler.

(TIF)

Figure S2 UCSC Genome Browser screen shot showing
potential spurious indels in multiple alignment. Screen

shot from the UCSC Genome Browser [6], showing the multiz-

based genome-wide alignments—including the twenty low-cover-

age genome assemblies—for a coding exon of the caveolin I (CAV I)

gene. Five apparent lineage-specific frame-shifting deletions in the

mouse lemur sequence are shown. Comparative-grade sequence for

mouse lemur from ENCODE region ENm001 indicates that these

deletions reflect errors in the 26 assembly, rather than genuine

deletion events in the evolution of the mouse lemur. This possibility

is further supported by low phred scores in the 26assembly (values

of 3–23 flanking the deletions, and a mean score of 14 in the region),

evidently reflecting single read coverage. Spurious indels of this kind

can have numerous damaging consequences in phylogenomic

analyses, for example, by distorting inferred indel rates, by causing

comparative gene finders to fail, or by producing false signatures of

accelerated lineage-specific evolution. While it is somewhat unusual

to observe a tight cluster of five indels in one sequence, as in this

case, spurious indels in coding regions are generally common in the

26alignments (see text).

(TIF)

Figure S3 Fraction of indels in the 26/ENCODE
alignments which can be mapped to the 44-way align-
ment. The black slices represent the fraction of these indels in

which no corresponding indel appears in the 44-way alignment,

and may be explained by polymorphism. The blue slices appear as

lineage-specific indels in the 44-way alignment, and are candidates

for error mitigation when the quality score is sufficiently low. The

red slices appear as non-lineage-specific indels and cannot be

addressed by our method. These may be explained by alignment

error or old polymorphism segregating in several species.

(TIF)

Figure S4 Empirical cumulative distribution functions
(CDFs) for read depths in various assemblies. The

distributions expected under comparable theoretical (Poisson)
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model are shown for comparison. Read depth was estimated from

the assembly.reads file produced by the ARACHNE assembler.

This file contains information about approximate placement of

each read in the assembly. Because these placements are not exact,

the depths should also be considered approximate.

(TIF)

Figure S5 Empirical cumulative distribution functions
(CDFs) for single-read quality scores in various assem-
blies. This figure is based on a random sample of ,10,000 reads

per assembly, and only represents the portion of each read which

is used in the assembly. Tree shrew (shown in bold) was chosen as

a representative species whose distribution was used in our model

for coverage and error.

(TIF)

Figure S6 Performance of base masking algorithms
which use linear-regression framework, for four spe-
cies. The dark black lines show the baseline results using only

quality scores. In red are the results where regression is performed

on the quality scores and a phylogenetic odds ratio comparing a

model with error to a model without error. In purple, blue, and

green, respectively, are results which use both quality score and

GC percentage in a 10 bp window, the minimum quality score in

a 10 bp window, and the mean quality score in a 10 bp window.

The only factor which seems to have a positive effect on the

prediction is the phylogenetic odds ratio.

(TIF)

Table S1 Species nomenclature.
(PDF)

Table S2 Summary of alignments of 26 genomes and
corresponding ENCODE sequences.
(PDF)

Table S3 Estimates of dN/dS for chr22 genes and four
primates.

(PDF)

Table S4 CONGO performance with and without SEM.

(PDF)

Table S5 CONGO performance by chromosome.

(PDF)

Methods S1 Estimation of indel rates.

(PDF)

Methods S2 Estimation of dN/dS.

(PDF)

Methods S3 CONGO exon-finding analysis.

(PDF)

Methods S4 Theoretical model.

(PDF)
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