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Abstract

Background: Semantic memory has generated much research. As such, the majority of investigations have focused on the
English language, and much less on other languages, such as Hebrew. Furthermore, little research has been done on search
processes within the semantic network, even though they are abundant within cognitive semantic phenomena.

Methodology/Principal Findings: We examine a unique dataset of free association norms to a set of target words and make
use of correlation and network theory methodologies to investigate the global and local features of the Hebrew lexicon. The
global features of the lexicon are investigated through the use of association correlations – correlations between target
words, based on their association responses similarity; the local features of the lexicon are investigated through the use of
association dependencies – the influence words have in the network on other words.

Conclusions/Significance: Our investigation uncovered Small-World Network features of the Hebrew lexicon, specifically a
high clustering coefficient and a scale-free distribution, and provides means to examine how words group together into
semantically related ‘free categories’. Our novel approach enables us to identify how words facilitate or inhibit the spread of
activation within the network, and how these words influence each other. We discuss how these properties relate to
classical research on spreading activation and suggest that these properties influence cognitive semantic search processes.
A semantic search task, the Remote Association Test is discussed in light of our findings.
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Introduction

Search processes, both conscious and unconscious, are abun-

dant within the cognitive system, across all domains. To note just a

few examples – whenever we need to apply various semantic

memory tasks, we constantly invoke search processes within the

mental lexicon [1]; whenever we try to retrieve a name of someone

we know which is on ‘‘The tip of our tongue’’, we invoke a search

within the phonological network [2]; and finally, whenever we are

confronted with a problem, we invoke a search process throughout

the problem space [3]. All these, and other cognitive search

processes, share the underlying assumption that knowledge is

organized as a network, where some concepts are closer to each

other, while others are farther apart, an assumption that is dominant

within semantic memory research. The present study applies

correlation and network methodologies to examine a unique dataset

of association norms in Hebrew. Further than providing for the first

time a quantitative analysis of Hebrew semantics, the analysis

presented here revealed global and local network properties which

influence semantic search processes.

The classical models of semantic memory, developed in the

1970’s [1,4], have been mainly investigated by gathering association

norms. While the empirical collection of association norms has long

been established in the clinical sense (for a review see [5]) from the

1970’s onwards, the scientific interest in association norms shifted to

a dogma in which associations are viewed as a means to explore the

structure of the mental lexicon. As this dogma evolved, different

frameworks of the mental lexicon were developed, such as the

prototype framework based on Rosch’s research (i.e. [6]) and the

spreading activation framework offered by Collins and Loftus [7].

The spreading activation model for semantic memory presented

by Collins and Loftus [7] is a revision of the theory presented by

Collins and Quillian [8]. This framework conveys semantic

memory as a network in which concepts are represented as nodes

and the relationships between these concepts are represented by

links, or edges, in the network [9]. Furthermore, they suggest that

concepts in semantic memory are organized according to semantic

similarity – the more properties two concepts have in common, the

more closely related they are in the network.

As a result of challenges to the Collins and Quillian model [8],

the revised framework presents a ‘‘spreading activation’’ process:

once a specific node (concept) is activated within the network,

activation ‘‘spreads’’ to all other nodes which are connected to it.

They further suggest that links between concepts can vary in their
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strength – the speed with which activation spreads from one node

to another, activation that decays over time and distance [10]. The

relationship between two nodes can thus be described as a function

of the path length between them, which represents the associative

strength between the two concepts [11,12]. Thus, the higher the

association strength, the shorter the path between these two nodes

in the network [11]. Lorch [13] further studied the spreading

activation framework and examined how the strength of an

association determines the speed in which that association is

retrieved [13]. In a series of experiments, Lorch [13] showed that

while the strength of an association determines the activation level,

it does not determine the duration of the activation. Thus, he

concludes, association strength and duration of activation are

independent of each other.

Since the introduction of these two classic frameworks for

semantic memory in the 1970’s, and the extensive research based

on them, other computational models of semantic memory have

been suggested for semantic memory. A few examples of such

computational models are the Latent Semantic Analysis (LSA) and

the Hyperspace Analogue to Language (HAL) models, both

extract semantic relatedness through the analysis of co-occurances

of words within corpora of texts (for an extensive review, see [4]).

These models tackle the issue of semantic memory from the

analysis of text corpora whereas the prototype model [6] and the

spreading activation model [7] tackle this issue from the gathering

of data norms, and hence provide different perspectives on

semantic memory. Nevertheless, to date there seems to be no

unifying model for semantic memory.

In recent years, the Small World Network (SWN) has gained a lot

of attention with regard to its description of complex networks. This

model [14,15] refers to networks which are made up of many sub-

clusters and relatively short path lengths between these sub-clusters,

and has been found to successfully describe a wide range of

sociological, technological and biological networks [16]. Two main

characteristics of small world networks are the networks clustering

coefficient and its average shortest path length. The clustering

coefficient refers to the probability that two neighbors (a neighbor is

a node j that is connected through an edge to node i) of a randomly

chosen node will themselves be neighbors. The average shortest path

length refers to the average shortest amount of steps (nodes being

traversed) needed to be taken between any two pair of random

nodes. A small world network is characterized by having a large

clustering coefficient and a short average shortest path length [16].

The third main characteristic of small-world networks is its

degree distribution [P(k)] – the distribution of amount of edges (k)

per node in the network. This characteristic is significant due to the

fact that complex systems do not abide to the Gaussian (normal)

distribution, and rather present scaling law distributions (such as

exponential, or power-law) [17,18]. In fact, the shape of a networks

distribution provides a unique and characteristic signature for

different kinds of network structure and processes of network growth

[19]. Even though scaling laws are abundant in cognitive

phenomena, only quite recently has attention been focused on this

issue [20]. While small-world structures are essentially defined by

the combination of high values of clustering coefficient together with

low values of average shortest path length, scale-free structures are

characterized by non-Gaussian degree distributions, with fat tails.

As such, not all small-world networks are scale-free [20].

In the past few years, the application of the SWN model within

neuroscience research has been growing rapidly [21], slowly

assimilating into cognitive research. One such cognitive domain

that has embraced this analytic perspective is the language domain,

and in particular the study of the semantic mental lexicon. This

SWN research effort in the realm of semantics is based on the

analysis of free association norms [9,22]. For example, Steyvers and

Tenenbaum [19] explored the SWN properties of free associations

and other conventional semantic datasets. Recently, a similar

analysis was done on Dutch [23], Spanish and German free

association norms [9]. Finally, the SWN nature of phonological

networks in several languages has recently been investigated [24].

Studying the semantic lexicon with the use of complex network

methodology, based on association networks, poses great merit.

This is due to the general agreement, from a psychological point of

view, that associations are one of the organizing principles of

semantic memory [9]. Analyzing the mental lexicon through this

perspective may thus contribute to the understanding of memory

search processes by exploring the general principles governing the

structure of the mental lexicon [19], principles that classic lexicon

structure theory models (such as [7]) do not account for. In fact,

the research done so far has consistently exhibited the SWN of

semantics, and has led to the claim that this SWN organization of

the semantic lexicon satisfies cognitive constraints of information

retrieval [9]. In this sense, the high clustering coupled with the low

average shortest path length in the network allows for fast search

and retrieval of information [9]. With the advancement of

language research in these directions, efforts have shifted from a

general description of language network characteristics to the

study of various cognitive phenomena of language [9]. A few

examples of such research are developmental processes of

semantic acquisition and network growth [19,25], semantic

similarity [26] verbal fluency [27], semantic search [28,29] and

insight [30,31]. In fact, a small but growing amount of research

focuses specifically on search processes within the network

[27,28,30], which are constrained by the networks topology.

The above mentioned SWN characteristics of the semantic

lexicon have previously been investigated in English, Dutch,

German and Spanish [9,19,23], languages that originate from the

same Proto-German family. Thus, analyzing the SWN properties

of a non Proto-German language could help generalize these

findings. In fact, there is a long standing debate within the

cognitive field on the relationship between language and thought,

and whether language effects thought, a debate which is far from

being decided [32,33]. Hebrew is a Semitic, very ancient language,

that is greatly different (in syntactical and morphological sense)

from the Proto-German languages, and in many senses is still true

to its biblical form. As such, studying the architecture of the

Hebrew semantic lexicon can significantly contribute to research

of the mental lexicon and for the first time provide a solid ground

for studying semantic processes in Hebrew.

Furthermore, in the present research we employ novel network

methodologies to explore global and local features of semantic

networks which influence search processes within the semantic

network. This was achieved by analyzing a unique dataset of free

associations in Hebrew, examining for the first time the character-

istics of the Hebrew semantic lexicon. We begin by examining its

global network features and by charting the networks’ topology. Next

we investigate the local features of the network, a process which

allows us to observe causal relations between the nodes of the

network. We conclude our research by proposing that the global and

local characteristics of the network entail cognitive semantic search

processes and illustrate our proposal with the Remote Association

Test [34], a task which measures semantic creative ability.

Materials and Methods

Data
The data analyzed in this study consists of free association

norms in Hebrew gathered by [5]. In their study, 60 subjects were

Global/Local Features of Semantic Networks

PLoS ONE | www.plosone.org 2 August 2011 | Volume 6 | Issue 8 | e23912



presented with target words and had one minute to generate as

many association responses as they could to each presented target

word. The method used to collect this dataset, therefore, differs

from previous word association datasets - in these other datasets,

subjects were requested to generate either only one [35] or three

associations [23] to a target word. For example, the dataset

collected by [35] contains association norms gathered since the

1970’s and amounts to nearly three quarters of a million associa-

tion responses to five thousand target words, and is the largest

dataset of free association norms in English. In this dataset,

subjects are presented with a target word and are requested to

write down the first word that comes to mind which is meaningfuly

or strongly related to that target word. As such, subjects report

only associations which are strongly connected to the target words

and omit associations which are weaker in their associative

connection to that target word. However, the method used to

collect the dataset analyzed in this research gathers strong as well

as weaker associations to target words. This method is superior to

previous methods in collecting association norms, as it exposes a

greater part of the mental lexicon, and helps to statistically

strengthen significant associations to target words within the

network. Furthermore, this method conveys a superior way to

examine semantic similarity, as defined by Collins and Loftus [7] –

the more different properties (association responses) generated to a

target word, the more it is possible to relate that target word to

different target words in the sample network.

In total, the subjects were presented with 800 different target

words, in four separate sessions (200 target words in each session; see

[5] for a full description). The words equally represented all letters of

the Hebrew alphabet, and the number of words beginning in a

certain letter was proportional to that letter’s share in the Hebrew

lexicon. In addition, morphological and semantic considerations

were taken into account while compiling the set of target words [5].

On average, each target word received 154 different association

responses, which were normally distributed (Figure 1).

Preprocessing
In order to analyze the dataset, we first standardized the data

into a matrix, in which every column is a different target word and

every row is a different association response to a target word,

deriving a 1236646800 matrix. Since many similar association

responses were received for different target words and due to

various typing errors within the data, we proceeded to a

preprocessing phase in order to construct a matrix where each

row was a unique singular association response. This preprocess-

ing stage entailed two actions – standardizing association responses

(i.e. neighbourRneighbor; 3.5% of all responses) and converting

plural into singular (i.e. fruitsRfruit; 13.5% of all responses). Next,

all standardized association responses were organized into a single

matrix (123664 association responses by 800 target words) and

identical association responses were merged using the Minitab

software (www.minitab.com), in order to condense the matrix in

such way that each row is a single unique association response.

This resulted in a 25814 (association responses) by 800 (target

words) matrix.

Global level system analysis
Association correlation network. The association cor-

relation matrix. First, we computed the association correlation

matrix from the association data. The correlations between the

target word associations profiles (the associations of the target words

given by all subjects), were calculated by Pearson’s formula:

C(i,j)~
S(Xi(n){mi)(Xj(n){mj)Tn

sisj

: ð1Þ

Where Xi(n) and Xj(n) are the associations of word i and j, and si

and sj are the STD of the association profiles of target words i and j,

and n is the number of possible associations. Note that the target

word-target word correlations (or for simplicity the association

correlations) for all pairs of words define a symmetric correlation

matrix whose i,jð Þ element is the correlation between target words i

and j.

Network representation of the association correla-

tions. The association correlation matrix can be studied in

terms of an adjacency matrix of a weighted, undirected network.

In this view, each target word is a node in the network, and an

edge (link) between two nodes (words) is the correlation between

these two nodes, with the correlation value being the weight of that

link. Thus, the association correlation matrix represents a fully

connected weighted network in which the nodes represent the

Figure 1. Association Histogram. Histogram of the number of association responses to target words.
doi:10.1371/journal.pone.0023912.g001
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target words, and the links represent the correlations between

these words.

Informative sub-graphs of the association correlation

network. The complete association correlation network for N

target words contains N(N{1) edges. Since most of the edges

have small values (weak correlations), the relevant information

about the network (e.g. topology, organization), can be obscured.

Several methods have been developed to overcome this obstacle

by constructing from the complete network a sub-graph that

captures the most relevant information embedded in the original

network. A widely used method to construct informative sub-

graph of a complete network is the Minimum Spanning Tree

(MST) [36–41]. Another informative sub-graph which retains

more information (in comparison to the MST) is the Planar

Maximally Filtered Graph (PMFG) [42] which is used here. Both

methods are based on hierarchical clustering and the resulting sub-

graphs include all the N nodes in the network whose edges

represent the most relevant association correlations. The MST

sub-graph contains (N{1) edges with no loops while the PMFG

sub-graph contains 3(N{2) edges.

Construction of the PMFG informative sub-graph. To

construct the planar maximally filtered graph (PMFG) we first

order the N(N{1) values of the correlation matrix C in

decreasing rank. We then start from the pairs of nodes, say i

and j, with the highest correlation and draw a link jRI between

them. The process continues according to the rank order where in

each iteration a link is added if and only if the resulting graph

(network) is still planar, i.e. it can be drawn on the surface of a

sphere without link crossing [42]. In the resulted sub-graph,

referred to as Gf g, the original values of the correlations are not

retained (i.e. all the links have a weight 1). We also note that the

sub-graph Gf g contains (for N&1), 3(N{2) edges – the

maximum number of directed edges for planar graph.

Network parameters
The network parameters calculated were mainly performed

with the Brain Connectivity Toolbox for Matlab [43]. The

network parameters calculated were the Clustering Coefficient

(CC [15]), the average shortest path length (L), the network’s

diameter (D), and the mean degree number (,k.) [16]. The

exponent of the degree distribution (c) was calculated by the

method described in Clauset, Shalizi and Newman [44].

Furthermore, in order to examine the network’s clustering

coefficient and average shortest path length, a random network

was created with the same number of nodes and edges. For this

random network, we calculated its clustering coefficient (CCrand)

and its average shortest path length (Lrand). Finally, the small-

world-ness measure (S; [45]) was calculated to quantitatively and

statistically examine the small-world nature of the network. This

measure examines the trade-off between the networks clustering

coefficient and its average shortest path length and is the first

quantitative measure established for examining how much truly a

network is ‘‘small-worlded’’, in the sense that any S.1 entails a

SWN.

Network Topology. Constructing the association correlation

network enables studying its topological properties. First, we made

use of Newman’s modularity measure [46] to investigate whether

the network is made-up of cliques of words, by calculating its

modularity index (Q) and its clique index (Ci). In order to verify

the cliques found by the modularity algorithm, we classified the

target-words a-priori into categories. This classification was based

on either a prior categorization research [47], or, when no

categorization information existed for a target word, was based on

the general category emerging from the top ten association

responses generated to the specific target word. This process

resulted in 107 different category groups, of various sizes.

‘‘Word-centrality’’ in the semantic network. The

semantic network representation allows searching for words that

have a significant importance in the semantic lexicon. In network

theory, the importance of each node in a given network is

quantified using different measures, such as the betweeness

measure and eigenvalue centrality [16]. Here we make use of a

new concept, the ‘‘word-centrality’’. We define a quantitative

measure of word impact, defined as the difference between the

average shortest path of the network after removing word i with

the average shortest path of the full network,

WC(i)~SSP(A6[i)T{SSP(A)T: ð2Þ

Where A is the network adjacency matrix, and SSPT is the

average shortest path of the network.

Local level analysis
Dependency Network Analysis. The dependency network

approach provides a new analysis of the activity and topology of

directed networks. The approach extracts causal topological

relations between the network’s nodes, and provides an important

step towards inference of causal activity relations between the

network nodes.

In the case of network activity, the analysis is based on partial

correlations, which are increasingly used to investigate complex

systems (i.e. [48]). In simple words, the partial (or residual)

correlation is a measure of the effect (or contribution) of a given

node, say j, on the correlations between another pair of nodes, say i

and k. To be more specific, the partial correlations of the (i,k) pair,

given j is the correlations between them after proper subtraction of

the correlations between i and j and between k and j. Defined this

way, the difference between the correlations and the partial

correlations provides a measure of the influence of node j on the

(i,k) correlation. Therefore, we define the influence of node j on

node i, or the dependency of node i on node j2D(i,j), to be the

sum of the influence of node j on the correlations of node i with all

other nodes.

Partial correlations. The first order partial correlation

coefficient is a statistical measure indicating how a third variable

affects the correlation between two other variables [49]. The

partial correlation between nodes i and k with respect to a third

node j2PC(i,kjj) [50] is defined as:

PC(i,kjj)~ C(i,k){C(i,j)C(k:j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1{C2(i,j)�½1{C2(k,j)�

p : ð3Þ

Where C(i,j), C(i,k) and C(j,k) are the node correlations defined

above.

The correlation influence and correlation depen-

dency. The relative effect of the correlations C(i,j) and C(j,k)
of node j on the correlation C(i,k) [48] is given by:

d(i,kjj):C(i,k){PC(i,kjj): ð4Þ

This avoids the trivial case of the node j appearing to strongly

effect the correlation C i,kð Þ, mainly because C i,jð Þ, C i,kð Þ and

C j,kð Þ C j,kð Þ have small values. We note that this quantity can be

viewed either as the correlation dependency of C(i,k) on node j

(the term used here), or as the correlation influence of node j on

the correlation C(i,k).

Global/Local Features of Semantic Networks
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Node activity dependencies. Next, we define the total

influence of node j on node i, or the dependency D i,jð Þ of node i

on node j to be:

D(i,j)~
1

N{1

XN{1

k=j

d(i,kjj): ð5Þ

As defined, D i,jð Þ is a measure of the average influence of node j

on the correlations C i,kð Þ, over all nodes k not equal to j. The

node activity dependencies define a dependency matrix D whose

i,jð Þ element is the dependency of node i on node j. It is important

to note that while the correlation matrix C is a symmetric matrix,

the dependency matrix D is nonsymmetrical – D i,jð Þ=D j,ið Þ since

the influence of node j on node i is not equal to the influence of

node i on node j.

Note that the association correlation network and the

association dependency network target different levels of analysis

of the Hebrew lexicon. The association correlation network

presents the similarity of target words, according to the association

responses provided by the subjects. The association dependency

network provides local information on the interaction between

words; this network reflects how one word affects the correlations

of all other target words. Thus, for example, the nodes dough

(‘batzek’) and flour (‘kemach’) have a strong similarity in the

association responses given to both words, and thus are connected

to each other in the association correlation network (global level).

However, the node dough (‘batzek’) does not have a strong

influence on the correlations of the node flour (‘kemach’) with all

other nodes, and thus these two nodes will not be connected in the

association dependency network (local level). The association

correlation network provides the global information of the

semantic lexicon, whereas the association dependency network

provides the local (and potentially causal) information of the

semantic lexicon.

Results

Association correlation network
We begin by calculating the association correlation matrix.

Next, we use the dendrogram hierarchal clustering process [51]

to cluster words that have high association correlation. A

dendrogram illustrates the arrangements of the clusters produced

by the hierarchal clustering process. Dendrograms are usually used

in computational biology to illustrate the clustering of genes or

samples (i. e. [52]). Here we make use of the Euclidean distance as

the distance metric to calculate the dendrogram of the association

correlations.

In Figure 2 we present the dendrogram of the association

correlation matrix, and the association correlation matrix

normalized and ordered according to the dendrogram. We note

that using this representation, we observe cliques of words with

strong semantic similarity.

Next, we construct the association semantic network from the

association correlation matrix, using the PMFG filtering process

(see above). We then calculate different SWN properties of the

semantic network. The values of the different SWN parameters

calculated are summarized in Table 1.

These results clearly show the SWN characteristics of the

Hebrew association correlation network. The clustering coeffi-

cient is much higher than that of the random graph (CC =

0.6831 . CCrand = 0.0054). The small-world-ness measure clear-

ly signifies a SWN (S = 34.37), which was also statistically tested

and found significant (see [45] for a description of their sig-

nificance test method). Unexpectedly, the average shortest path

length for the network was higher than that for the random graph

(L = 10.0349 . Lrand = 3.94).

Examining the degree distribution clearly reveals a non-

Gaussian distribution, with a scale-free [19] power law (c= 3.5).

The calculated exponent is within the range of scale-free SWN, as

described by Barabási and Albert (17; see also 19]. Figure 3

presents the degree distribution of the nodes in the network.

As can be seen in Table 1, our modularity measure calculation

yielded a result of 0.56, suggesting that the data are highly modular

and contain many different cliques. The algorithm also divided

the data into 56 cliques, significantly lower than our a-priori

classification (of 107 different categories). A closer examination of

the modularity classification revealed some very large cliques, which

contain several sub-cliques mixed together. These differences call

for further future research, but might be due to the small sample size

of target words out of the entire mental lexicon. Notably, once we

plotted the graph of the network (see below), we witnessed several

discrepancies in our a-priori classification and the way the target

words group together.

Figure 2. Association correlation matrix. The dendrogram hierarchal clustering method is used to find cliques of words with a strong semantic
similarity (left panel), and then to order the normalized association correlation matrix (right panel).
doi:10.1371/journal.pone.0023912.g002
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Cliques of the Hebrew association correlation network
To visualize the network we plotted the graph using Cytoscape

[53], and in order to present the Hebrew target words as the labels

of the nodes, we phonetically transcribed them into English

(Figure 4). A close examination of individual cliques shows a strong

organization of words by a common semantic category. Following

are two such examples:

The clique shown in Figure 5 is dedicated to the meaning

surrounding bread making – the word farmer (‘ikar’), who is man

(‘adam’), is connected to agricultural tools such as sickle (‘magal’),

pitchfork (‘kilshon’) and tractor (‘traktor’), which are needed to

plow stocks (‘shibolet’) of wheat (‘chita’). These are connected to

flour (‘kemach’), used to make dough (‘batzek’). Next, the dough is

baked in the oven (‘tanur’) which results in something that is baked

(‘aphui’). This can be a bun (‘lachmaniya’) which can be bought at

the bakery (‘maphiya’). Furthermore, in the oven (‘tanur’) some food

can be cooked (‘mevushal’), such as a pie (‘pashtida’), for example.

Finally, dough can be bought at the store (‘makolet’), along with

other groceries such as butter (‘chemaa’) or cheese (‘gvina’), which

unfortunately can sometimes get spoiled (‘mekulkal’).

A second example of cliques within the network is that of three

cliques connected to each other in the full network (Figure 6). One

clique relates to a person’s foot – regel (‘foot’), thumb (‘agudal’),

ankle (‘karsol’), shoes (‘naalayim’) and even wax (‘sheava’); a second

clique relates to the sky – bright (‘bahir’), horizon (‘ophek’), light

blue (‘tchelet’), star (‘kochav’), and kite (‘afifon’); finally, the third

clique relates to hiking – wandering (‘nedudim’), dunes (‘diuna’),

earth (‘adama’), scenery (‘nof’), east (mizrach’), rock (‘even’), hill

(‘givaa’), valley (‘emek’), summit (‘pisga’), high (‘gavoah’), peak (‘si’),

avalanche (‘mapolet’), and rolling down a slope (‘dirder’).

These three cliques are connected to each other via two

‘gateway nodes’ (Figure 7) – barefoot (‘yachef’) connecting the foot

clique to the hiking clique, and sunset (‘shkia’) connecting the

hiking clique to the sky clique. Thus, besides serving as another

example of how the target words in the network organize into

semantically related cliques, this example also illustrates how the

different cliques are connected.

‘‘Word-centrality’’ in the Hebrew association correlation
network

Finally, we investigated the impact of a given word i on the

semantic network. To this end, we iteratively chose each word and

deleted it from the sample, then recalculated the association

correlation matrix, the semantic network and finally the average

shortest path in the network. We then calculated the impact of

each word, as defined above (Figure 8).

As described above, the path length of the network represents

the relations between the nodes in the network, and more

specifically directly relates to association strength which is a

determining factor in the spread of activation [11–13]. As such,

calculating the impact score of every node measures its general

effect on the spread of activation within the network.

A positive impact score signifies that after the deletion of word i,

the average shortest path length became longer than the average

shortest path length of the full network, indicating that this word

has a positive effect on the spread of activation within the network.

We refer to these words as ‘facilitating hubs’ (FH). In contrast, a

negative impact score signifies that after the deletion of word i, the

average shortest path length became shorter than the average

shortest path length of the general network, indicating that this

word has a negative effect on the spread of activation within the

network. We refer to these words as ‘inhibiting hubs’ (IH).

Investigating the impact score of the words in the network, we

chose a +1 standard deviation (STD) threshold above (below) the

mean impact effect (�xx~0:015479), which we deemed as words

having significant effect on the network (either facilitative or

inhibitive). In our network, we found 22 FH and 15 IH, which are

summarized in Table 2.

While the importance of FH and IH demands further research,

it is interesting to note the FH ‘pashtida’ (pie; impact 0.868739)

and the IH ‘mevushal’ (cooked; impact 20.48049). Both connect

the clique of bread making to the rest of the network (Fig. 6) but

have opposite effects on the spread of activation in the network.

This might indicate that activation spreads faster to the clique of

bread making through the FH ‘pashtida’, than through the IH

‘mevushal’.

Table 1. Summary of results of network analysis: n – number
of nodes in the network; L – average shortest path length;
D – diameter; CC – clustering coefficient; ,k. - mean degree;
c– power-law component; CCrand – Clustering coefficient of
random graph; Lrand – average shortest path length of
random graph; S – small-world-ness measure; Q – modularity
measure; Ci – community index.

Parameter Value

N 800

L 10.0349

D 25

CC 0.6831

,k. 5.9425

c 3.5

CCrand 0.0054

Lrand 3.9450

S 34.3728

Q 0.5647

Ci 56

doi:10.1371/journal.pone.0023912.t001

Figure 3. Degree distribution plot. Plot of degree distribution of
target words in the correlation network, in a log-log scale.
doi:10.1371/journal.pone.0023912.g003
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Figure 4. Network 2D visualization. Representation of the entire network of 800 words, as they are grouped together in the planar graph,
constructed from the association correlations. Each word is a node in the network (green circle), and a link between two words represents their
association correlation (blue line).
doi:10.1371/journal.pone.0023912.g004

Figure 5. The making bread clique. An example of a clique from the full network, semantically concentrated on the notion of making bread.
doi:10.1371/journal.pone.0023912.g005
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Association dependency network
We constructed the association dependency network from the

association correlation matrix, by calculating the partial correla-

tions and then using the PMFG filtering process (see above) to

extract the association dependency network, resulting in an

8006800 binary directed network. To inspect the association

dependency network topology we plotted the network using

Cytoscape [53], presented in Figure 9A.

Exploring the topology of the network reveals a highly modular

topology. Calculating the modularity measure [46] returned a

value of Q = 0.7334, which confirms the high modularity of the

network. Examining these different ‘influence cliques’ reveals that

they too (similar to the association cliques) organize around a

common semantic theme.

One such influence clique is presented in Figure 9B, and is

concerned with the notion of making bread. Unlike the clique

presented in Figure 5, this influence clique reveals the influence (or

causal) relationship between the different nodes within the clique.

As such, in this clique, the node oven (‘tanur’) influences the nodes

flour (‘kemach’), dough (‘batzek’) and baked (‘aphui’). The node

flour (‘kemach’), in turn, influences the nodes dough (‘batzek’),

baked (‘aphui’) and bakery (‘maphiya’). The node dough (‘batzek’)

influences the nodes baked (‘aphui’) and bakery (‘maphiya’), and

the node baked (‘aphui’) influences the node bakery (‘maphiya’).

Note that the node bakery (‘maphiya’) is only influenced by the

other nodes in the clique but does not influence any other nodes in

the clique.

On this network we calculated for every node its outDegree,

which signifies the influence score of each node (i.e. how many

nodes are affected by node i); the inDegree, which signifies the

affected score of each node (i.e. how many nodes influence node i);

and the Relative Influence [48], which signifies the relative

influence a node i has in general within the network, and is defined

as

RI~
outDegree(i){inDegree(i)

outDegree(i)zinDegree(i)
: ð6Þ

On average, the general outDegree and inDegree of the entire

Dependency network are equal (�xxiD~�xxoD~2:9925), which

indicates a stability of influence and effect within the network.

However, the outDegree and inDegree distribution are quite

different and presented in Figure 10. While the outDegree

distribution ranges between 0–60 with a standard deviation of

Figure 6. The outdoor cliques. An example of three cliques from the full network, semantically concentrated on foot, sky and hiking. The three
cliques are related in their semantic focus, with the left centered on the notion of feet, and the right bottom centered on the notion of the sky, and
the top right centered on the notion of hiking.
doi:10.1371/journal.pone.0023912.g006
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4.96, the inDegree distribution ranges between 0–10 with a

standard deviation of 1.44.

In order to examine the differences between the outDegree and

inDegree distribution, we analyzed the nodes Relative Influence

score, which provides a more objective significance of a node i in

the network. This analysis resulted in a classification of five

different RI node types – nodes that only influence the network

and have full influence strength (influence nodes), nodes that only

receive influence and have full receiver strength (receiver nodes),

nodes that have equal influence-receiver strength (zero nodes),

nodes that have a partial influence strength (positive nodes) and

nodes that have a partial receiver strength (negative nodes). In our

network we found 35 influence nodes (4.375% of the network), 65

zero nodes (8.125% of the network), 201 positive nodes (25.125%

of the network), 239 receiver nodes (29.875% of the network) and

260 negative nodes (32.5% of the network). Figure 11 presents the

percentage distribution of the different influence nodes.

It should be noted that while only 4% of the nodes act as

influence nodes in the network, nearly 30% of the nodes act as

receiver nodes in the network, and putting the zero nodes aside,

there is a 29.5% positive (influence effect) - 52.325% negative

(receiver effect) division of the network. This shows that the

network influence dynamics is governed by a relatively small

Figure 7. An example of ‘‘Gateway nodes’’. The cliques presented in Figure 6, concerning the notion of foot, hiking and sky, are connected by
two ‘‘gateway nodes’’ – barefoot (‘yachef’) and sunset (shkia’).
doi:10.1371/journal.pone.0023912.g007

Figure 8. Impact score of the network. The impact of a given word
i on the semantic network, calculated as the difference between the
average shortest path of the full network to that of the network after
deletion of the word i.
doi:10.1371/journal.pone.0023912.g008
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number of influence (full or partial) nodes and a larger number of

receiver (full or partial) nodes.

table-1-captionWhile the role of the 35 influence nodes is

unclear and constitutes only 4% of the entire network, all of these

nodes have strong outDegree scores in the network, suggesting that

these nodes act as influence hubs in the network. Among the top

10 nodes with the highest outDegree scores (most influential nodes

in the network), 60% are such influence nodes. Figure 12 presents

the top 10 strongest nodes in the network, according to their

outDegree scores, and highlights the influence nodes.

Finally, we compared the results of the association dependency

network analysis and that of the association correlation network

analysis, by examining the relationship between the Facilitative

(Inhibitive) Hubs impact score and their Relative Influence score.

While there were only weak correlation coefficients between the

RI and the impact score of the Facilitative (Inhibitive) Hubs

(CRI ,FH~0:06 and CRI ,IH~0:33), on average the RI of the FH

was positive (�xxRI(FH)~0:163) and the RI of the IH was negative

(�xxRI(IH)~{0:08).

Discussion

Here we present a novel approach for studying the global and

local features of semantic networks, and apply our approach to

examine the Hebrew mental lexicon. The similarities between

words based on their free association responses were calculated

and used to construct the association correlation matrix. These

association correlations were then used to analyze the Hebrew

lexicon from a global and local perspective. From the global

perspective, this was done by constructing a network representing

the Hebrew semantic lexicon and by investigating the character-

istics and topology of this network. From the local perspective, this

was done by constructing a network which represents the influence

effect that different nodes (words) in the network have on each

other, and by exploring the characteristics of this influence effect.

Table 2. Summary of Facilitation Hubs (left table) and
Inhibition Hubs (right table).

FH Impact IH impact2

Saad (to nurse) 1.969611 Zricha (sunrise) 20.57214

Heechil (fed) 1.759909 Mevushal (cooked) 20.48049

Nedava(donation) 1.628782 Kurkum(turmeric) 20.45816

Sinor (apron) 1.220627 Itria (noodle) 20.45045

Kruvit (cauliflower) 1.022254 Kamun (cumin) 20.44953

Aruga (flowerbed) 1.01617 Bishel (to cook) 20.42135

Kabtzan (beggar) 0.965875 Histabech (got in trouble) 20.40847

Asuphi (waif) 0.894084 Poshea (criminal) 20.34226

Pashtida (pie) 0.868739 Goses (dying) 20.33363

Salat (salad) 0.866699 Munsham (being ventilated) 20.33363

Neft (oil) 0.768617 Chol (sand) 20.26792

Orev (crow) 0.464451 Tipel (treated) 20.24959

Ataleph (bat) 0.44322 Hanaa (enjoyment) 20.18504

Atzitz (flowerpot) 0.425491 Hanaka (breast-feeding) 20.17735

Hityatem (to be
orphaned)

0.350795 Arisa (cradle) 20.1773

Benzin (gasoline) 0.345807

Givol (stem) 0.306829

Seara (storm) 0.293871

Izdarechet
(margosa tree)

0.269877

Miphrasit (sailboat) 0.269191

Mechonit (car) 0.260143

Dolar (dollar) 0.212108

The words are ordered in descending order of their impact strength.
doi:10.1371/journal.pone.0023912.t002

Figure 9. Association dependency network. A 2D visualization of the full association dependency network (left panel), and an example of a
dependency clique in the network, showing association dependencies and related to the notion of making bread (right panel).
doi:10.1371/journal.pone.0023912.g009
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Furthermore, we investigated the relationship between the global

and local levels of the network.

The method used in this research is novel in two ways, the use of

free associations and our network analysis technique. The free

association dataset analyzed differs from previous free association

datasets in the amount of associations generated by subjects per

target word. As discussed above, we believe this method may offer

a better way to explore the mental lexicon structure, and is in

accord with Collins and Loftus [7] notion of semantic similarity.

As such, we provide for the first time a quantitative method to

explore this notion of semantic similarity. Furthermore, the

method we used to extract the most important relations between

words in the network (correlations and dependencies) allowed us to

deal with the computational complexity of the data, while still

retaining the core relationship between the target words.

From the global point of view of the network, we have shown

the SWN nature of the Hebrew mental lexicon. This conclusion

joins a growing mass of work on the SWN nature of semantics in

different languages [9,19,23], and supports the notion of the

general SWN structure of the mental lexicon. While the average

shortest path length of the network was larger than that of the

random network (L = 10.034.Lrand = 3.94), which requires

further analysis, it must be noted that in the research presented

by Steyvers and Tenenbaum [19] and by De-Deyne and Storms

[23], all average shortest paths calculated for the networks they

analyzed was either equal to or greater than the average shortest

path lengths calculated for the random networks.

Furthermore, the construction of the network allows us to

identify how the target words organize into sub-cliques, based on

semantic categories. Thus, this method revealed how words

organize themselves into natural or ‘free’ categories. This is

illustrated by the example presented in Figure 7, where cliques

concerned with feet, hiking and sky are joined by the words

‘‘Barefoot’’ (‘yachef’) and ‘‘Sunset’’ (‘shkia’). This connection is a

probable outcome of the collective past-time of hiking outdoors.

Note that the gateway node ‘‘Barefoot’’ is directly connected to the

node ‘‘dune’’ (‘diuna’), as people often tend to walk barefoot on

dunes, and that the gateway node ‘‘sunset’’ is directly connected to

the node ‘‘east’’ (‘mizrach’), which is where the sun rises. We

suggest that other research domains studying the organization of

the mental lexicon can benefit from these ‘free categories’.

Finally, our calculation of the impact effect of a given word on

the general network enables the identification of words that

facilitate and inhibit the spread of activation within the network.

This impact effect requires further investigation, but can be

experimentally used in semantic memory paradigms, in order to

investigate the organization of memory and memory retriebal

patterns. Furthermore, it can be implemented in the study of

individual differences, including clinical populations (e.g. patients

suffering from schizophrenia, Asperger or semantic dementia) as a

clinical tool.This clinical aspiration is strengthened by a recent

study on Autism, which used complex network analysis to

investigate neurophysiological differences between autistic and

control subjects [55]. This analysis revealed that when compared

to a control group pf healthy participants, persons with autism

display a smaller Clustering Coefficient, higher average path

length and higher modularity index in their functional brain

networks.. We expect to find similar differences within their

cognitive semantic mental lexicon, and propose that our methods

can be used as a tool to map their semantic lexicon and,

potentially, lead to treatment protocols that may enhance normal

spreading of activation within their semantic lexicon.

Figure 10. OutDegree and InDegree distributions. OutDegree (left panel) and inDegree distribution (right panel) of node dependency. The
outDegree refers to how many nodes are influenced by node i, whereas the inDegree refers to how many nodes influence node i. The x-label
outDegree (or inDegree)refers to to the outDegree (or inDegree) score and the y-label frequency refers to the amount of nodes with that outDegree
(or inDegree) score.
doi:10.1371/journal.pone.0023912.g010

Figure 11. Relative influence score characterization. Percentage
of different types of nodes, based on their relative influence score –
influence nodes are nodes who have an outDegree . 1 and inDe-
gree = 0; receiver nodes are nodes who have an outDegree = 0 and
inDegree . 1; zero nodes are nodes who have an outDegree = inDe-
gree; negative nodes are nodes who have an outDegree , inDegree;
and positive nodes are nodes who have an outDegree . inDegree.
doi:10.1371/journal.pone.0023912.g011
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From the local system point of view, our analysis of the

association dependency network allowed us to explore the local

properties of the interaction of nodes within the lexicon. This

analysis revealed a balanced influence dynamics of the network,

showing that this balanced dynamics is mainly governed by a small

amount of strong influence nodes (that only influence other nodes

but are not influenced by any other nodes), and by a relatively

large amount of ‘receiver’ nodes (nodes that are only influenced by

other nodes but do not influence any nodes). Thus, the

dependency network exhibits a ‘‘scale-free’’ charactaristic of

dependency distribution. This node dependency information can

enrich semantic network growth models [19] and may also provide

a practical method to investigate language acquisition defecencies

in children.

Finally, while the association correlation and dependency

networks analyses relate to different and independent levels of

the network, we did discover a weak relationship between the two,

suggesting that the Facilitative Hubs have a tendency to act as

influencing nodes and that the Inhibitive Hubs have a tendency to

act more as receiver nodes in the network. These two independent

properties of the lexicon (spread of activation and influence

strength) are consistent with Lorch’s findings, that contradicted the

conventional approach that strong associations are activated faster

and to a higher level than weak associations [13] and showed the

independent effect of association strength and Stimulus Onset

Asynchrony (SOA; time interval between prime and probe pre-

sentation) on spreading activation. Thus, the global and local network

properties reported here present a complementary qunatitative

explanation to the different properties of the spreading activation

phenomena, as described by Lorch [13].

While previous research examined the SWN of several Proto-

German languages and mainly in English [9,19,23], this is the first

SWN research examining a non Proto-German language –

Hebrew. Hebrew is an ancient, Semitic language, which greatly

differs in its syntactical and morphological nature from Proto-

German languages. As the long standing debate in cognitive

research on the relationship between language and thought

[32,33] is far from being over, examining the Hebrew semantic

mental lexicon and presenting its SWN nature contributes and

strengthens the notion of the universality of semantic network

organization, and also offers for the first time a computational

analysis of Hebrew semantics which provides a solid ground for

similar future research. While the syntactic and morphological

properties of Hebrew were not investigated here, our methodology

can be used to study these properties. One such possibility is to

examine the Hebrew phonological network, and as such expand

the work done by Arbesman, Strogatz and Vitevitch [24].

In addition to shedding light on the structure of the Hebrew

mental lexicon, these global and local features may explain various

semantic cognitive search processes through semantic memory [1].

It is plausible to assume that while commencing the search process

through the mental lexicon, the properties of the node which

facilitates (or inhibits) the spread of activation and which determines

influence strength play a part in the success of the search process.

Ergo, the network properties of the semantic mental lexicon

discovered here, which were examined on the Hebrew mental

lexicon, enable semantic cognitive search processes.

One example of a task entailing a cognitive semantic search is

Mednick’s Remote Association Test (RAT [34]), focusing on

individual differences in verbal creativity.Mednick envisioned the

general creative process as ‘‘the forming of associative elements into new

combinations which either meet specified requirements or are in some way

useful. The more mutually remote the elements of the new combination, the more

creative the process or solution’’([34] p. 221). Mednick [34], who defines

creativity as the process of combining remote associations,

developed the RAT in order to test his theory. In this test,

subjects are presented with a triplet of seemingly unrelated words

(i.e. Electric, Wheel, High) and are required to find a single fourth

word that is related to each of these three words (chair – electric-

chair, wheelchair, high-chair; [34]).

We suggest that the network properties of the lexicon described

above, combined with the small world theory of insight [30], can

explain the search processes undertaken in Mednick’s RAT, a

notion consistent with his general model of creativity [34]. Once

presented with the primed words, the subject must activate a

search through the semantic network to find the adjoining target

word. If the target word is weakly connected or far away from one

or more of the primed words, the search process may not have

enough activation strength or ‘get stuck’ within a strongly

connected clique of words surrounding one or more of the primed

words. Thus, the search cannot be completed. We suggest that the

diffusive, high capacity, divergent nature of unconscious thought

Figure 12. Top 10 strongest nodes based on their outDegree scores. X axis represents the nodes and Y axis represents the outDegree score.
Highlighted in orange are nodes which are influence nodes, as described above.
doi:10.1371/journal.pone.0023912.g012
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[54] can facilitate the successful fulfillment of the uncompleted

search process, perhaps through the creation of new connections,

or through the traversing of different paths within the network

[30]. This notion may thus explain the significance of the

unconscious phase of creative problem solving known as the

incubation phase [31] and is also consistent with Griffiths, Steyvers

and Firl [28], who examined the similarities between search

processes within the semantic network and the Google search

algorithm [29].

In summary, the work presented here adds to a growing mass of

work analyzing the SWN nature of the semantic mental lexicon,

and is the first such work in the Hebrew language. The method we

have used provides a novel way to explore how words organize

together and interact with each other within the mental lexicon.

We propose that this SWN architecture of the mental lexicon may

have significant implications for the understanding of various

cognitive semantic search processes, and plan to further explore

the results presented here with additional advanced clustering and

network methodologies. We will also empirically investigate our

results using various semantic paradigms, such as the RAT [34], to

explore the nature of semantic search processes, in particular the

effect that facilitative and inhibitive hubs have on these semantic

paradigms. Finally, as described above, our methods provide

practical tools which can be applied in various fields, such as

semantic memory, insight problem solving and cognitive process-

ing in clinical populations.

While many questions on the nature of semantic memory and

its properties remain open, we propose that bridging together

cognitive phenomena such as creativity and the empirically proven

Small World nature of the English [19], Dutch [23], Spanish,

German [9] and now the Hebrew semantic lexicon, may establish

a solid empirical and experimental ground for studying semantic

search processes.
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