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Abstract

Background: The development and progression of hepatocellular carcinoma (HCC) is significantly correlated to the
accumulation of genomic alterations. Array-based comparative genomic hybridization (array CGH) has been applied to a
wide range of tumors including HCCs for the genome-wide high resolution screening of DNA copy number changes.
However, the relevant chromosomal variations that play a central role in the development of HCC still are not fully
elucidated.

Methods: In present study, in order to further characterize the copy number alterations (CNAs) important to HCC
development, we conducted a meta-analysis of four published independent array-CGH datasets including total 159
samples.

Results: Eighty five significant gains (frequency $25%) were mostly mapped to five broad chromosomal regions including
1q, 6p, 8q, 17q and 20p, as well as two narrow regions 5p15.33 and 9q34.2-34.3. Eighty eight significant losses (frequency
$25%) were most frequently present in 4q, 6q, 8p, 9p, 13q, 14q, 16q, and 17p. Significant correlations existed between
chromosomal aberrations either located on the same chromosome or the different chromosomes. HCCs with different
etiologies largely exhibited surprisingly similar profiles of chromosomal aberrations with only a few exceptions.
Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the genes affected by
these chromosomal aberrations were significantly enriched in 31 canonical pathways with the highest enrichment observed
for antiviral immunity pathways.

Conclusions: Taken together, our findings provide novel and important clues for the implications of antiviral immunity-
related gene pathways in the pathogenesis and progression of HCC.
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Introduction

The development and progression of hepatocellular carcinoma

(HCC) is significantly correlated to the accumulation of genomic

alterations [1]. Therefore, it is important to have a clear landscape

of the genomic aberrations that occur during the multistep process

of hepatocarcinogenesis. Previous studies have used high-resolution

molecular karyotyping analyses to provide a comprehensive catalog

of structural aberrations of the whole chromosomes in HCC [2].

However, this method is highly specialized and time-consuming. As

a consequence, only a very limited number of HCC cases have been

evaluated in these studies. Moreover, the modest resolution of the

karyotyping analysis made it difficult to fully define the overall

genomic profiles of HCC in a more accurate manner. Comparative

genomic hybridization (CGH) has been developed in recent years to

monitor the DNA copy number changes at a global level [3].

However, traditional CGH techniques still have the limitation of

modest resolution (approximately 2 Mb for amplifications and 10–

20 Mb for deletions) and thus could not detect changes in smaller

chromosomal regions [4]. In comparison, array-based CGH (array

CGH) is a newly developed technology that allows for high-

throughput and high-resolution (at 1 Mb) screening of genome-

wide DNA copy number changes (either amplifications or deletions)

at the gene level [5]. Array CGH combines fluorescence techniques
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with the microarray platform that allows for the comparison of

DNA content in two differentially labeled genomes: a test genome

(patient) and a reference genome (control). The microarray platform

also allows for the simultaneous scanning of thousands of individual

DNA sequences from the whole genome, and provides high-

resolution data on the locations of identified aberrations in a single

experiment. To date, array-CGH has been applied to a wide range

of solid tumors, including liver, breast, gastric, kidney and bladder

cancers [6,7,8,9,10]. Recently, another technology platform based

on single nucleotide polymorphism (SNP) array has been developed

to determine the copy number abnormalities of genomic DNA at

sub-kilobase resolution [11,12]. Except for an advantage of high

resolution, this platform also has a limitation of high signal-to-noise

ratio which is hard to improve[13].

Many investigators have made varying attempts to search for

genes implicated in hepatocarcinogenesis. Screening for chromo-

somal regions with frequent gains and losses is one of the first steps

toward the identification of genes. Using the traditional and array-

CGH, frequent DNA copy number gains at chromosomes 1q, 8q

and 20q, and frequent DNA copy number losses at 1p, 4q, 8p,

13q, 16q and 17p have been identified in HCC samples

[6,14,15,16,17,18,19]. Some of these regions contain known

candidate oncogenes or tumor suppressor genes, such as

ZNF217 (20q13) [20], TP53 (17p13), RB1 (13q14) [21]and cyclin

D1 (11q13) [22]. However, it is believed that the currently

identified genes represented only a small percentage of causal

elements in hepatocarcinogenesis and the vast majority of genes

with chromosomal aberrations that may play a central role in

HCC development are still unknown.

Meta-analysis is a systematic and quantitative synthesis of prior

evidence [23]. It offers the opportunity to critically evaluate and

statistically combine the results of comparable studies or trials in

order to achieve more robust and reliable results as well as identify

novel findings that are not apparent in individual studies. In

previous reports, a meta-analysis of CGH data comprising of 785

HCCs has been carried out and identified significant correlations of

chromosomal deletions on 4q, 13q, and 16q with hepatitis B virus

(HBV) etiology [24]. Recently, using the array-CGH technology,

several different studies have generated a wealth of data on more

than 100 analyzed HCC samples that await a more comprehensive

interpretation [16,25,26,27]. The aim of this study was to identify

potential genes and pathways important to HCC by utilizing the

available data from published array CGH studies of human HCC.

Materials and Methods

Data collection of array CGH studies in HCC
Datasets for HCC array CGH studies were identified from

public resources including the supplementary files of published

papers, NCBI Gene Expression Omnibus (GEO, http://www.

ncbi.nlm.nih.gov/geo), ArrayExpress (http://www.ebi.ac.uk) da-

tabase using hepatocellular carcinoma and array-based compar-

ative genomic hybridization as keywords. Datasets from studies

using HCC cell lines were excluded. We identified four datasets

with complete original data that are publicly available, including

two from the supplementary files of published HCC array CGH

studies and two from the GEO database (GSE8351 and

GSE22635) [16,25,26,27]. The detailed information was listed in

Table 1. Three of the four studies used BAC clone as the

hybridization probe while one used synthetic oligonucleotides as

the hybridization probe. A total of 159 HCC tissue samples in

these four datasets were collected, including 54 samples with HBV

infection, 57 with hepatitis C virus (HCV) infection, 6 with the

infections of both HBV and HCV, 3 with positive hepatitis B virus

X protein (HBx), and 39 samples without viral infection.

Data pre-processing for the integration across different
platforms

Because the four array CGH datasets in this study were

generated using different types of technical platforms that contain

different numbers of probes at varied spacing and resolution, they

cannot be directly compared and combined. To transform the

datasets from different platforms into a common format for the

purpose of meta-analysis, we pre-processed the original dataset of

each study based on a procedure previously described with minor

modification [24,28]. The detailed procedure used in this study is

described below:

First step: reconciliation of genome mapping data

generated from BAC clones and oligonucleotide

probes. In the original datasets, chromosomal positions of

BAC and oligo probes were assigned based on the different

versions of human genome assembly, such as hg15, hg17 and

hg18. Therefore, we used the annotation database of UCSC

human genome (hg19/GRCh37) to re-assign the start and end

chromosomal positions for all BAC and oligo probes from the four

datasets. The unmappable probes were excluded from further

analysis.

Second step: assignment of chromosomal positioning

anchors. Because the copy number alterations (CNAs) of

chromosomal segments were detected on different scales by

different probes in the four datasets, it was difficult to directly

compare and integrate these datasets. To resolve this issue, we

assigned a set of chromosomal positioning anchors that were

composed of the start and end chromosomal positions of all the

probes used in the four datasets. The log2-transformed DNA copy

number ratio for each anchor was then determined for all the

samples from different datasets based on the following principles.

Table 1. Information of 4 collected public datasets (n = 159).

ID References Platform Etiology, N

All HBV HCV HBV/HCV HBx non-viral

1 Mohini A.Patil et al.(2005) BAC 44 34 3 — — 7

2 Yasuyo Chochi et al.(2009) BAC 42 6* 34* 2* — —

3 Christof Schlaeger et al.(2008) BAC 63 11 14 4 3 31

4 Kazuya Taniguchi et al.(2010) Oligo 10 3 6 — — 1

Total 159 54 57 6 3 39

*Information of virus infection for individual samples is unavailable. HBV, hepatitis B virus; HCV, hepatitis C virus; HBx, hepatitis B virus X protein.
doi:10.1371/journal.pone.0028404.t001

Array CGH Meta-Analysis in HCC
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For any dataset, when anchors lied in the probes of the dataset, the

log2-transformed ratio for probe was assigned to corresponding

anchors. When an anchor lied outside of any detected probes of

the dataset, a missing value was created and set to the anchor.

Using this approach, we were able to delineate the same

chromosomal positions to the different probes used in the

different datasets of the four studies.

Third step: scaling and segmentation across multiple

platforms. To integrate data across multiple sources for meta-

analysis, multi-platform segmentation with proper scaling was

performed by using a multi-platform circular binary segmentation

(MPCBS) algorithm recently reported by Zhang et al [28], which

was implemented into an R package which can be accessed on R-

Forge under a project name MPCBS (http:// r-forge.r-project.org/).

This algorithm, which is based on a simple multi-platform change-

point model, relies on a weighted sum of t-statistics to scan for copy

number changes and does not require a pre-standardization of

different data sources. To minimize the computational complexity

and maximize the generality, chromosomes were segmented

individually and sex chromosomes were not included.

Fourth step: determination of gain and loss events. After

segmentation, the CNAs of chromosomal segments were

determined using a nonhierarchical k-means clustering (k = 3)

algorithm [29]. All log2-transformed ratio values of the segments

generated in the third step were clustered and classified into three

subgroups by two threshold values (0.141 and 20.136), representing

copy number gain (.0.141), copy number loss (,20.136), and no

copy number change (between 20.136 and 0.141).

Fifth step: evaluation of pre-processing perfor-

mance. Pearson Correlation Coefficient (PCC) analysis was used

to evaluate the performance of pre-processing. We first calculated the

PCC value of log2-transformed ratio between any two samples from

the same datasets. Then we estimated the correlation among samples

of different platforms before and after pre-processing. The PCC

values of any two samples should not show the dependencies on the

platform after high-quality preprocessing.

Profiling of chromosomal aberrations and pathway
analysis

Based on the definition of gain and loss events, we conducted

genome-wide profiling of CNAs for all the HCC samples included

in the four datasets and calculated the frequencies of chromosomal

aberrations for each sample. We then, using a Chi-square test,

compared the frequencies of copy number gains and losses

separately between HBV-HCC and HCV-HCC, or between

HCC with and without viral infection. In further analyses, we only

focused on those highly prevalent events of copy number gains and

losses (frequency .25%). We first evaluated the correlation

between any two CNAs by calculating the PCC value. Then,

the genes in these segments with frequent gains/losses were

mapped into the pathways derived from the Kyoto Encyclopedia

of Genes and Genomes (KEGG) database [30]. The pathways that

were significantly affected by the identified CNAs were determined

by Fisher’ exact test.

Results

Profile of chromosomal alterations in all HCC samples
We profiled the CNAs (gains or losses) of chromosomal

segments in human HCC through a meta-analysis of four

available independent array CGH datasets including total 159

samples. To integrate all datasets from different platforms, the raw

data were pre-processed and the pre-processing performance was

evaluated using the PCC analysis. Our results indicated that the

PCC values of individual samples within a platform were

significantly higher than those between two different platforms

before data pre-processing. After pre-processing, the correlation

obtained for samples between different platforms after pre-

processing was significantly improved with an increase of average

correlation coefficient from 0.198 to 0.349 (Fig. 1). These data

showed that the four independent datasets have been successfully

transformed into a comparable form. Next, chromosomal gain and

Figure 1. Comparison of correlations among log2-transformed ratios of 159 samples from four independent datasets before (a)
and after preprocessing (b). In triangle (a) and (b), color points dotted in rectangles represent PCC values of log2-transformed ratio between any
two samples from different datasets, while color points dotted in small triangles represent those from same dataset. The brightness of color blue is
directly proportional to the value (0 – 1) of Pearson correlation coefficient.
doi:10.1371/journal.pone.0028404.g001

Array CGH Meta-Analysis in HCC
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loss events were determined using log2-transformed ratio thresh-

olds of 0.141 and -0.136 derived from the k-means clustering

analysis and the frequencies of chromosomal aberrations were

calculated for all HCC samples. Our results indicated that 85

chromosomal segments exhibited a frequent copy number gain

($25%) and 88 exhibited a frequent copy number loss ($25%).

Detailed data was not presented here because of the space

limitation. They are available when required. As shown in Fig. 2,

the significant gains were mostly mapped to several broad

chromosomal regions including 1q, 6p, 8q, 17q and 20q, as well

as four narrow regions including 5p15.33- 5p14.2, 9q34.2-34.3,

20p13 and 20p11.21. Significant losses were frequently observed

in 4q, 6q, 8p, 9p, 13q, 14q, 16q, and 17p. Among these regions,

chromosome 1q was most significantly affected by copy number

gain and chromosome 8p was most significantly affected by copy

number loss. In particular, gains in 1q32.1, 1q24.1, and 1q21.3-

23.3 were detected in .70% of all HCC samples, and losses in

8p23.3-21.3 were detected in .55% of the samples.

Correlations between significant chromosomal
aberrations

Spearman’s rank correlation coefficient was calculated to assess

the correlations between different chromosomal copy number

gains and losses described above at the significant level of

p,0.001. Our results indicated that significant correlations existed

between specific chromosomal aberrations either located on the

same or different chromosomes and the significances from the

same chromosome were usually higher than those from different

chromosomes. As shown in Fig. 3(a), significant finding from the

same chromosome were mainly identified for chromosomes 1q,

4q, 5p, 6p, 6q, 8p, 8q, 9p, 13q, 14q, 16q, 17p, 17q, 20p, 20q and

between 6p and 6q, 8p and 8q, 17p and 17q, 20p and 20q. As

indicated in Fig. 3(b), significant correlations mainly existed

between 1q gains and 5p gains, and 6p gains or 4q losses, with a

positive correlation coefficient of at least 0.25, 20q gains and 9p

losses or 14q losses with a negative correlation coefficient of over

20.3. In addition, losses of 4q, 9p, 13q, 16q and 17p frequently

co-occurred with a correlation coefficient ranging from 0.26 to

0.46. Significant correlations were also observed between 6p gains

and 8p losses, 8p losses and 9p losses, and 14q losses and 16q

losses.

Canonical pathways significantly linked with
chromosomal aberrations

To explore the potential effects of chromosomal aberrations

implicated in the molecular mechanism of HCC development, we

further analyzed the functional KEGG pathways enriched with

genes located on the chromosomal segments with significant copy

number alterations. Our results indicated that the genes affected

by chromosomal aberrations were significantly enriched in 31

canonical pathways. The list of pathways together with the related

gene information was summarized in Table 2. According to the

Figure 2. Profile of chromosomal alterations in all HCC samples (n = 159). (a), heatmap of CNAs across all chromosomes. (b), the
frequencies of CNAs across all chromosomes. Copy number gain and loss events of chromosomal segments were determined using log2-transformed
ratio thresholds of 0.141 and 20.136 derived from the k-means clustering analysis. The color brightness is directly proportional to the frequency of
CNA. Color red represents copy number gain and color blue represents copy number loss. CNA: copy number alteration.
doi:10.1371/journal.pone.0028404.g002

Array CGH Meta-Analysis in HCC
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biological function, these pathways were divided into three major

categories: 18 immune-related pathways, 3 cancer-related path-

ways and 10 metabolism-related pathways. Among these path-

ways, antiviral immunity pathways were most significantly

affected, such as the antigen processing and presentation pathway

(hsa04612), RIG I like receptor signaling pathway (hsa04622),

natural killer cell mediated cytotoxicity pathway (hsa04650),

cytosolic DNA sensing pathway (hsa04623), toll like receptor

signaling pathway (hsa04620), and cytokine and cytokine receptor

interaction pathway (hsa04060). Moreover, we found many

pathways were interrelated and driven by the presence of same

or similar sets of genes. For example, seven immune-related

pathways (hsa05320, hsa04612, hsa04622, hsa04650, hsa04623,

hsa04620 and hsa04140) were driven by signals in the same core

set of the interferon-alpha family genes (IFNA1, IFNA10, IFNA13,

IFNA14, IFNA16, IFNA17, IFNA2, IFNA21, IFNA4, IFNA5, IFNA6,

IFNA7, IFNA8) that are contiguously located within a 0.3 Mb

region on chromosome 9p21.3. These genes play a vital role in the

non-specific antiviral immunity that occurs at the early phase of

viral infections. We also found that 10 immune-related pathways

harbored another core set of genes, the human leukocyte antigen

gene family [27]. In addition, six metabolism-related pathway

(hsa00982, hsa00140, hsa00053, hsa00983, hsa00980, hsa00040)

had the same core set of genes, the uridine diphosphate

glycosyltransferase 2 family (UGT2A1, UGT2A3, UGT2B4,

UGT2B7, UGT2B10, UGT2B11, UGT2B15, UGT2B17,

UGT2B28), that are contiguously located within a 2 Mb region

on chromosome 4q13.2. Only a few cancer-related pathways were

found to be significantly affected by the chromosomal aberrations

identified in this study with a common gene set. However, several

oncogenes and tumor suppressor genes are mapped to these

pathways, such as TP53, RB1, and MYC, which have been shown

to play an important role in hepatocarcinogenesis [21,31].

Etiology-related chromosomal aberrations
We investigated the profiles of etiology-related chromosomal

aberrations in HCCs. As indicated in Fig. 4, HCC samples with

different etiologies exhibited very similar profiles of chromosomal

aberrations with only a few exceptions. When we compared the

profiles of 48 HBV-related and 23 HCV-related HCCs, 14 copy

number gains and 59 losses had significantly different frequencies.

Almost all of these segmental gains and losses were harbored in

HBV-related HCCs, except for gains of 12p13.1-12p12.3 and

losses of 3q26.1-3q26.2 and 3q26.2-3q26.33 that appeared in

HCV-related HCCs with significantly higher frequencies. The

significant copy number gains and losses in HBV-related HCCs

were most commonly located on chromosomal region 10p, and

14q and 4q, respectively. We also performed the comparison of

chromosomal aberration profiles between virus-related HCCs and

non-virus-related HCCs, and identified 27 gains and 17 losses

showing a significant difference in frequencies. All significant losses

were present in virus-related HCCs and most were located on

chromosomal region 16q. In comparison, significant gains were

mostly located on chromosomal regions 2p and 4p in virus-related

HCCs, whereas chromosomal regions 8p and 10p in non-virus-

related HCCs.

Discussion

Meta-analysis of array CGH is valued as an integrated

approach to simultaneously analyze information from different

studies for the detection of chromosome aberrations with

enhanced resolution and accuracy. A recent study has successfully

performed a meta-analysis of array CGH data derived from a

series of primary cancers to cluster tumor type by CNAs [24]. In

this study, we, for the first time, conducted a cross-platform meta-

analysis of HCC array CGH data obtained from different studies.

Figure 3. Correlations between significant chromosomal aberrations either located on the same (a) or different (b) chromosomes in
all HCCs. Chromosomal segments with significant gain were highlighted in red and those with significant loss in blue. Spearman’s rank correlation
coefficient was calculated to assess the correlations between different chromosomal copy number gains and losses at the significant level of
p,0.001.
doi:10.1371/journal.pone.0028404.g003
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We developed a preprocessing methodology to normalize the

original data based on the MPCBS statistical algorithm and

demonstrated that this data pre-processing exhibited an optimum

performance on multi-platform integration.

In the present study, our meta-analysis identified 85 significant

chromosomal gains and 88 losses. The majority of these significant

aberrations were consistent with previous reports using conven-

tional CGH approaches or including smaller sample size. In

addition, our study identified several aberrations located in very

narrow chromosomal regions, such as copy number gains on

5p15.33-5p14.2, 9q34.2-9q34.3 or 20p13-20p11.21 and copy

number loss on 9p24.3-9p21.1 or 14q. The 5p15.33 regions

contains hTERT gene, which encodes the catalytic subunit of

telomerase, a critical component in telomere regulation. In an

array CGH study, Yasuyo et al. [16] have reported that the gain of

5p15.33 was detected in 50% of HCC samples. Gain of this region

has also been reported to be associated with progression of bladder

cancer [32]. The 5p15.2 region hosts the potential target gene,

delta catenin (CTNND2), over-expressed in prostate cancer [33].

The chromosomal region 9p24.3 harbors three putative tumor

suppressor genes, DMRT1, DMRT3 and DOCK8. A recent study

has reported the frequent deletion of this region in squamous cell

carcinoma of the lung [34]. Furthermore, our results indicated

that significant correlations existed between chromosomal aber-

rations either located on the same chromosome or the different

chromosomes, suggesting that these aberrations might appear non-

randomly. It remains to be further elucidated whether there are

sequential correlations among the occurrence of these genomic

aberrations in the development and progression of HCC.

We also compared genomic aberrations between HCCs with

different etiologies and observed two noteworthy findings. First,

our study found that HCCs with different etiologies exhibited very

Table 2. The functional KEGG pathways enriched with genes located on the chromosomal segments with significant CNAs in all
HCCs.

Pathway KEGG ID
Mapped gene number/
Pathway gene number P value

SYSTEMIC_LUPUS ERYTHEMATOSUS hsa05322 94/140 ,1.00E-13

AUTOIMMUNE THYROID DISEASE hsa05320 38/53 1.57E-12

ANTIGEN PROCESSING AND PRESENTATION hsa04612 48/89 1.52E-08

ALLOGRAFT REJECTION hsa05330 23/38 2.78E-06

VIRAL MYOCARDITIS hsa05416 37/73 3.85E-06

RIG I LIKE RECEPTOR SIGNALING PATHWAY hsa04622 36/71 4.97E-06

NATURAL KILLER CELL MEDIATED CYTOTOXICITY hsa04650 60/137 5.55E-06

ASTHMA hsa05310 18/30 2.91E-05

CYTOSOLIC DNA SENSING PATHWAY hsa04623 28/56 5.97E-05

TYPE I DIABETES MELLITUS hsa04940 23/44 8.76E-05

LEISHMANIA INFECTION hsa05140 33/72 1.58E-04

TOLL LIKE RECEPTOR SIGNALING PATHWAY hsa04620 43/102 2.56E-04

GRAFT VERSUS HOST DISEASE hsa05332 21/42 3.70E-04

REGULATION OF AUTOPHAGY hsa04140 17/35 0.002

COMPLEMENT AND COAGULATION CASCADES hsa04610 29/69 0.002

DRUG METABOLISM CYTOCHROME P450 hsa00982 29/72 0.004

STEROID HORMONE BIOSYNTHESIS hsa00140 22/55 0.011

CYTOKINE CYTOKINE RECEPTOR INTERACTION hsa04060 87/267 0.014

INTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION hsa04672 19/48 0.018

ASCORBATE AND ALDARATE METABOLISM hsa00053 11/25 0.019

CELL ADHESION MOLECULES CAMS hsa04514 46/134 0.021

NITROGEN METABOLISM hsa00910 10/23 0.025

PROXIMAL TUBULE BICARBONATE RECLAMATION hsa04964 10/23 0.025

SMALL CELL LUNG CANCER hsa05222 30/84 0.027

AMYOTROPHIC LATERAL SCLEROSIS ALS hsa05014 20/53 0.028

DRUG METABOLISM OTHER ENZYMES hsa00983 19/51 0.036

METABOLISM OF XENOBIOTICS BY CYTOCHROME P450 hsa00980 25/70 0.037

BLADDER CANCER hsa05219 16/42 0.037

RIBOFLAVIN METABOLISM hsa00740 7/16 0.040

BIOSYNTHESIS OF UNSATURATED FATTY ACIDS hsa01040 9/22 0.046

PENTOSE AND GLUCURONATE INTERCONVERSIONS hsa00040 11/28 0.048

Note: The pathways that were significantly affected by the identfied CNAs were determined by Fisher’ exact test.
KEGG, Kyoto Encyclopedia of Genes and Genomes; CNA, copy number alteration.
doi:10.1371/journal.pone.0028404.t002

Array CGH Meta-Analysis in HCC
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similar profiles of chromosomal aberrations. Second, we found

that chromosomal aberrations appeared more frequently in HBV-

HCCs than in HCV-HCCs, and in virus-related HCCs than in

non-virus-related HCCs. These findings suggest that virus

infection, especially HBV infection, may play a major role in

hepatocarcinogenesis by causing chromosomal aberrations. In our

analyses, we observed that the significant copy number gains were

most commonly located on chromosomal region 10p and

significant losses on 14q and 4q in HBV-related HCCs. Yeh et

al. have reported that allelic loss at chromosome 4q21-23 occurs

frequently in human hepatocellular carcinoma [35]. Fas-associated

phosphatase-1 (FAP-1) gene, a potential candidate TSG, is located

in this region. Another study has demonstrated that three regions

at 14q exhibit the frequent loss of heterozygosity in head and neck

squamous cell carcinoma. Several candidate TSGs such as

CHES1, BMP4, SAV, and PNN exist in these region [36]. These

TSGs may play critical roles in hepatocarcinogenesis. Previous

CGH studies have also analyzed the CNA profiles of HCCs with

HBV or HCV infection. One study has reported that the

amplification of 11q13, which corresponds to the chromosomal

region harboring the genes for cyclin D1 and hst-1, is frequently

observed in HBV-positive HCCs. In contrast, loss of 10q has been

detected exclusively in HCV-positive HCCs [14]. Another study

has demonstrated that a single high level amplification is only seen

on 5q21 in HBV-related HCCs [37]. In addition, Christof

Schlaeger et al compared HBV- and HCV-associated HCCs by

array CGH, and observed that major differences in the

frequencies of gains were at 1q32.1, 7q22.1, 10q26.3-qter in

Figure 4. Profiles of etiology-related chromosomal aberrations in HCCs. (a). the comparison of chromosomal aberration profiles between
HBV-related HCCs and HCV-related HCCs. (b), the comparison of chromosomal aberration profiles between virus-related HCCs and non-virus-related
HCCs. Copy number gains and losses with a significant difference in frequencies were highlighted in red and blue, respectively.
doi:10.1371/journal.pone.0028404.g004

Array CGH Meta-Analysis in HCC
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HCV- positive tumors, and losses at 4q34.3-qter, 9p24.3, and

14q21.2-32.33 were more significant in HBV–positive tumors

[27]. The inconsistency among these results is possibly due to the

different technology platforms and sample selection. Further

validation using large sample size is warranted.

The tumorigenesis of HCC is a multi-step and multi-factorial

process. Many attempts have been made to identify the abnormal

pathways underlying hepatocarcinogenesis. Epidermal growth

factor (EGF) signaling pathway is one of the most thoroughly

evaluated signaling cascades in human HCC [38]. Genetic

evidence has been also provided by a recent study showing gains

of chromosome 7 in human HCC, where EGFR is located. A series

of studies have also found the dysregulation of pathways involved

in cellular differentiation and proliferation in HCC, such as the

WNT canonical pathway and the Hedgehog signaling pathway

(HH) [39,40,41,42]. Interestingly, the most noteworthy finding of

this study is that the genes affected by chromosomal aberrations in

HCC were most significantly enriched in antiviral immunity

pathways, followed by the cancer-related pathways and metabo-

lism-related pathways. This is highly biologically plausible, given

the important functions of immunity pathways in the response to

viral infection and chronic inflammation [43]. Previous studies

have provided various lines of experimental evidence in accor-

dance with our findings. For example, Kirsten et al. have reported

a significant amplification of 6p21.3 that corresponds to the HLA-

region in ovarian cancer [44]. In addition, somatic deletions in

chromosomes 9 and 22 have been studied in 21 paired HCC and

adjacent tumor-free liver tissue samples [45]. Among informative

HCC cases, the highest rates of loss of heterozygosis (LOH) were

observed for 9p21 (40% or 4/10 at IFNA) and 9q23 (23% or 3/13

at D9S318). Clinical data indicate that chromosome 9p21

deletions occurred preferentially in larger tumors (.5 cm

diameter). Another study has also reported that LOH on IFN-

alpha locus at 9p21 is a prognostic indicator of bacillus Calmette-

Guerin response for non-muscle invasive bladder cancer [46].

Similarly, Roman et al. [47] has investigated the chromosomal

aberrations in head and neck squamous cell carcinomas by array

CGH and found that the genes involved in cytokine-cytokine

receptor interaction pathway were the largest group of genes (23/

149) showing chromosomal gains. The copy number of several

interleukin genes (IL10, IL19, IL20 and IL24) mapped to1q32 have

been significantly increased and all these genes were previously

found to be associated with the development of HNSCCs. In

addition to the interleukins at 1q32, there were amplified genes

from other regions of the genome, such as CCL26, EGFR, IL17R,

IL28A, IL29, IL2RB, IL12RB1, VEGF, XCL2, TNFSF9 and CD40.

Taken together, these lines of evidence strongly suggest that the

functional aberration of antiviral immunity pathways may be

significantly involved in the development and progression of HCC.

In summary, we conducted a cross-platform meta-analysis of

HCC array CGH data. We identified multiple chromosome

regions with significant aberrations in genes enriched in antiviral

immunity pathways. Our results provide a sketchy description of

the genomic alterations in HCCs and generate further testable

hypotheses that the deficiency of antiviral immunity pathways may

play key roles in hepatocarcinogenesis.
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