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Abstract

We present an extension of the two-class multifactor dimensionality reduction (MDR) algorithm that enables detection and
characterization of epistatic SNP-SNP interactions in the context of a quantitative trait. The proposed Quantitative MDR
(QMDR) method handles continuous data by modifying MDR’s constructive induction algorithm to use a T-test. QMDR
replaces the balanced accuracy metric with a T-test statistic as the score to determine the best interaction model. We used a
simulation to identify the empirical distribution of QMDR’s testing score. We then applied QMDR to genetic data from the
ongoing prospective Prevention of Renal and Vascular End-Stage Disease (PREVEND) study.
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Introduction

The view that the genetic basis of common human diseases can

be explained by sequence variation in a few genetic loci has been

recently replaced by a new appreciation for the complexity of

biological networks and the interplay between proteins that jointly

influence phenotypes [1]. The recent advances in high-throughput

genotyping techniques have made large quantities of genotype

data commonplace in genetic epidemiology studies and therefore

have enabled researchers to interrogate the entire genome.

Researchers have extensively analyzed single SNP effects for a

wide variety of diseases/phenotpyes with variable results, but in

most cases with a large proportion of the genetic component

(heritability) left unexplained. It has been proposed that these

limitations are due to the analytical strategy that limits analyses to

only single SNPs [2], and it is therefore becoming more

commonplace to assess the challenge of identifying SNP-SNP

interactions.

The problem of identifying interactive SNP effects in a case-

control study, which can be formulated as predicting binary

outcomes, has been studied extensively and has demonstrated

great promise in recent years [3–5]. Multifactor Dimensionality

Reduction MDR was developed as a nonparametric and model-

free data mining method for detecting, characterizing, and

interpreting epistasis in the absence of significant main effects in

genetic and epidemiologic studies of complex traits such as disease

susceptibility [3]. The goal of MDR is to change the representa-

tion of the data using a constructive induction algorithm to make

non-additive interactions easier to detect using a classification

method such as naı̈ve Bayes or logistic regression. Comparative

studies [6,7] that use extensive simulations show that MDR has the

best performance when the true multi-SNP effects are non-

additive [2,3,7–12].

Despite the fact that MDR has been extended to various settings

[13–17], there have been few attempts to develop methods that

systematically identify SNP-SNP interactions in relation to

quantitative outcomes such as body mass index, tumor size and

survival time. Because in many cases, analyzing phenotypes as

continuous rather than binary outcomes can be more powerful

due to large variability in the outcome distribution it is important

to develop methods that permit the analyses of continuous traits.

Many methods including Combinatorial Partitioning Method

(CPM) [18], Repeated Partitioning Method (RPM) [19] and U-

statistics [20] were developed to identify interactions for quanti-

tative traits. CPM and RPM are both computationally intensive

and the U-statistics approach is limited to detecting interaction

models with main effects. In 2006, Generalized MDR (G-MDR)

[17] was proposed to extend the MDR algorithm to be applicable

to continuous phenotypes and allow covariate adjustment. In

2011, Model based MDR (MB-MDR) [21] was developed to
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improve MDR using parametric regression; this method can also

be applied to continuous outcomes. However, neither G-MDR

nor MB-MDR provides a computationally efficient algorithm that

is easy to implement. MB-MDR is implemented in R (http://

www.r-project.org/) but it can only search over all one-way and

two-way interaction models. G-MDR still requires a dichotomous

outcome in the data file. Furthermore, the success rate of each

algorithm on continuous outcomes was not evaluated using

simulations.

In the current paper, we present an extension of the multifactor

dimensionality reduction (MDR) algorithm to detect and charac-

terize epistatic interactions in the context of a quantitative

outcome (QMDR). We first present the type-I error and success

rate of the proposed method using simulated datasets under

different epitasis models. We then present the results of QMDR

applied to genetic data from the ongoing prospective Prevention of

Renal and Vascular End-Stage Disease (PREVEND) study.

Materials and Methods

In this section, we introduce T statistics and describe how they

can be used in the MDR framework in the context of quantitative

outcomes.

MDR Algorithm
Traditional MDR is a data reduction approach that identifies

multi-locus combinations of genotypes that are associated with

either high or low risk of disease and uses them to define a new

single high/low risk attribute. The general process of defining a

new attribute as a function of two or more other attributes is

referred to as constructive induction or attribute construction [22].

Constructive induction using MDR for binary outcomes (e.g. case-

control status) is accomplished in the following way:

1. Assume there are m SNPs in the dataset; in order to examine a

K-order interaction, select K SNPs from the m SNPs.

Figure 1. Empirical distribution of the 10-fold cross-validated testing score. The three curves on each figure represent the testing score
from 2-way, 3-way and 4-way models.
doi:10.1371/journal.pone.0066545.g001
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2. Construct a contingency table using these K SNPs and

calculate case-control ratios for each multi-locus genotype.

3. Let R be the ratio of cases to controls in the whole dataset. For

each multi-locus genotype, if the ratio of cases to controls

exceeds T, it is considered high-risk. Otherwise, it is considered

low-risk. Once all genotypes are labeled ‘high-risk’ and ‘low-

risk’, a new binary attribute is created constructed by pooling

the ‘‘high risk’’ genotype combinations into one group and the

‘‘low risk’’ into another group.

MDR uses a simple probabilistic classifier that is similar to a

naı̈ve Bayes classifier [8] to model the relationship between

variables constructed using MDR and case-control status. Naı̈ve

Bayes classifiers were assessed using balanced accuracy [23].

Balanced accuracy is defined as the arithmetic mean of sensitivity

and specificity:

1=2 TP= TPzFNð ÞzTN= TNzFPð Þð Þ

~ sensitivityzspecificityð Þ=2
ð1Þ

where TP are true positives, TN are true negatives, FP are false

positives, and FN are false negatives. For each dataset, MDR

evaluates all possible K-way interactions and identifies the best

model using balanced accuracy. To determine the K loci that give

the best model overall, MDR uses ten-fold cross-validation:

1. Divide the dataset into 10 partitions. Using 9/10 of the data as

a training set and the rest as a testing set.

2. Compute the training balanced accuracy for each K-way

interaction in the training set.

3. Using the K-way model that has the best training balanced

accuracy, predict the case-control status in the testing set.

4. Repeat steps two-three 10 times so that each partition is

included in the testing set once.

5. Compute a testing balanced accuracy by using the case-control

predictions and actual case-control status for all 10 testing sets.

For the K-way models that are chosen from the training sets,

record how many times each is identified as the best model

(cross-validation consistency).

The best MDR model is selected as that with the maximum

testing balanced accuracy and highest cross-validation consistency.

The latter is used as a tie-break. If both statistics are tied, then the

more parsimonious model is chosen as the overall best model.

Quantitative MDR Algorithm
Quantitative MDR (QMDR) extends the MDR algorithm

described above to work with quantitative or continuous

phenotypes. Instead of comparing the case-control ratio of each

multi-locus genotype to a fixed threshold R, we propose to

compare the mean value of each multi-locus genotype to the

overall mean. Constructive induction by QMDR is done as

follows:

1. Assume there are m SNPs in the dataset; in order to examine a

K-order interaction, select K SNPs from the m SNPs.

2. For each multi-locus genotype combination defined by the K

SNPs, calculate the mean value and compare it with the overall

mean.

3. If the mean value from the genotype combination is larger than

the overall mean, the corresponding genotype is considered

high-level. Otherwise, it is considered low-level. Once all of the

genotypes are labeled ‘high-level’ and ‘low-level’, a new binary

attribute is created by pooling the ‘‘high-level’’ genotype

combinations into one group and the ‘‘low-level’’ into another

group.

With quantitative outcomes, we cannot use balanced accuracy

to characterize the relationship between the QMDR attribute and

phenotype. Instead, we compare the outcome between high and

low level groups defined by the QMDR attribute using a T-test

and then use the T-statistic as a training score to choose the best

model. The cross-validation procedure for QMDR is the same as

that used in traditional MDR. The difference is that we define the

training score and testing score from the T-test (replacing the

training and testing balanced accuracy). We use the training score

to determine the best K-order interaction model and use the

maximum testing score to identify the best overall model. When

there is no SNP effect, QMDR attributes from the testing set are

equivalent to ones randomly assigned to the high or low level

group. Therefore we expect that the null distribution of the testing

score follows a normal distribution with mean 0. We can then use

an empirical null distribution to estimate the p-value of the chosen

model. In the next section, we will use simulated data to compare

empirical p-value and the permutated p-value to verify the above

hypothesis.

Simulations
To demonstrate the strength of the proposed method, we

designed two simulations: Simulation I focused on estimating the

threshold for 5% type I error using a quantitative outcome and

SNPs that are independent of each other. Simulation II aimed at

estimating the success rate of our proposed QMDR with a

quantitative outcome and two functional interacting SNPs

embedded within a set of 18 independent SNPs.

Simulation I. The goal of simulation I was to study the

testing score’s null distribution. To this end, we let the SNP

number m = {10, 20, 50} and the sample size n = {200, 400, 800,

1600}. For each combination of m and n, we simulated m SNPs

with a minor allele frequency drawn from a uniform distribution

over the interval (0.1, 0.5) using Bernoulli distribution. We then

simulated n continuous outcomes from a standard normal

distribution. We simulated the SNP data and outcomes indepen-

dently of each other so that there is no association between SNPs

and outcome. We repeated this to create 2000 null datasets for

each m by n combition. Thus, we created 24,000 total datasets. All

simulations were carried out in R (http://cran.r-project.org/). We

ran QMDR for each dataset and searched over all 1–4 way

interactions. The testing score was obtained using a 10-fold cross-

validation.

Simulation II. The goal of simulation II was to study the

success rate of the proposed method. We also compared QMDR

with the original MDR algorithm and GMDR to demonstrate the

success rate gained by using the continuous outcome.

We first generated datasets based on different penetrance

functions. We previously developed a total of 70 different

penetrance functions that define a probabilistic relationship

between the outcome and SNPs where the outcome is dependent

on genotypes from two loci in the absence of any marginal effects

[23]. These purely epistatic models were distributed evenly across

seven broad-sense heritabilities (0.01, 0.02, 0.05, 0.1, 0.2, 0.3, and

0.4) and two different minor allele frequencies (0.2 and 0.4) using

Bernoulli distribution, where all functional SNPs in the data set

had either one or the other minor allele frequencies. A total of five

models for each of the 14 heritability-allele frequency combina-

tions were generated for a total of 70 models. We also vary the

sample size to include sample size n = {400, 800, 1600}. Since the

Quantitative Multifactor Dimensionality Reduction
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original outcome is case-control status and the penetrance function

denotes the probability of being a case for each genotype

combination, we make the following change to simulate contin-

uous outcome using the same penetrance functions:

Let fij be the element from the ith row and jth column of a

penetrance function. and are the two functional interacting SNPs.

The Quantitative outcome was simulated from a normal

distribution

yD SNP1~i, SNP2~jð Þ*N(fij ,1) ð2Þ

We repeated 100 times to get 100 datasets for each model.

Real Data Analysis
The sample analyzed in this study was obtained from the

ongoing prospective Prevention of Renal and Vascular End-Stage

Disease (PREVEND) study [24]. The PREVEND study was

designed to prospectively investigate the natural course of

albuminuria and its relation to renal and cardiovascular disease

in a large cohort drawn from the general population. Details of the

study protocol have been described previously [25,26]. In

summary, during 1997–1998, all 85,421 inhabitants of the city

of Groningen, the Netherlands, from the ages of 28 to 75 years old,

were sent a one-page postal questionnaire. After exclusion of

subjects with type 1 diabetes mellitus, females who were possibly

pregnant, and males and females not able or willing to participate,

a total of 6,000 subjects with a urinary albumin concentra-

tion$10 mg l21 and a random control sample of subjects with a

urinary albumin concentration,10 mg l21 (n = 2592) completed

the screening protocol and formed the baseline PREVEND cohort

(n = 8592). From this cohort, we selected a random sample of 2527

subjects (1338 females and 1189 males) as being representative of

the entire population from which the PREVEND cohort was

selected. These individuals were used in the present study to

explore genetic predictors of tissue plasminogen activator (t-PA)

Figure 2. Empirical distribution of the 10-fold cross-validated testing score. The three curves on each figure represent testing scores from
datasets with 10, 20, and 50 SNPs.
doi:10.1371/journal.pone.0066545.g002
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and plasminogen activator inhibitor-1 (PAI-1) levels in the general

population. We examined 7 polymorphisms from the renin-

angiotensin, bradykinin and fribrinolytic systems that have been

previously reported [24].

We carried out analysis in females and males separately since

the distributions of t-PA and PAI-1 are gender specific. For each

gender and expression combination, we first used an ANOVA and

F-test to identify the main effect of each polymorphism. We

filtered out the significant main effects via a two-step procedure:

First, we fit a linear regression with PAI-1 or tPA plasma

concentrations and all of the SNPs with a significant main effect

(p,0.05). Secondly, we applied QMDR using the residual as the

new quantitative trait to search over all possible two-way, three-

way and four-way interactions. We used 10-fold cross-validation to

determine the best overall model. We then ran a 10,000-fold

permutation testing to estimate the p-value of the chosen model.

Finally we compared the p-value obtained through permutation

testing with that estimated using the empirical scores from

simulation I.

Results

Simulation I Results
The testing scores were expected to follow a standard normal

distribution, since when the sample size is large (n .50), the T-

statistics are asymptotically standard normal. However, from

figure 1, the empirical distributions were not exactly standard

normal. The estimated standard deviation was 1.6 with a slight

right skew. We believe that this deviation was due to extra

variation in the cross-validation procedure that resulted from the

overlap among the training sets.

On the other hand, as seen in figure 1 and 2, we can tell that the

null distributions are similar across different sample sizes, number

of SNPs and interaction orders. The right tail regions, in

particular, show almost perfect overlap. This indicates that we

can use the 95th quantile of the empirical distribution as a

threshold to eliminate weak QMDR models, which is exactly what

permutation testing can offer. Since the null distributions are

‘‘invariant’’, we can potentially save a lot of computing time by

comparing the testing score with a pre-calculated empirical

distribution. In table 1, we used the 95th quantile of datasets with

400 samples to estimate the type I error. The estimated type I

error was tightly distributed around 5% with a range from 4.1% to

6.2%.

Simulation II Results
For each dataset, we used a median cut off to change the

continuous outcome to a dichotomous outcome for analysis with

the original MDR.

We applied MDR, GMDR and QMDR to search for the best

one-way, two-way and three-way interaction model. The overall

best model is determined by testing score and CV consistency. We

counted the number of times that a SNP pair was correctly

identified and divided that number by the total number of datasets

(1000 for this simulation) to get the estimated success rate, as

shown in table 2. QMDR and GMDR is generally more powerful

than MDR. QMDR performs better than GMDR when the

sample size is high or the heritability is above 0.1. However,

GMDR performs better in low sample size and low heritability

settings. One interesting thing to note is that GMDR’s success rate

increase very slowly (ranging from 82% to 83%) at heritability 0.4

as sample size increases. The reason is that GMDR use balanced

accuracy to rank interaction models. The variance of the

quantitative outcome is ignored at this stage. The computing time

for 100 datasets for GMDR is 7.9 min vs 4.4 min for QMDR.

This indicates that QMDR is more efficient than GMDR.

Real Data Results
The ANOVA for PAI-1 revealed a significant main effect from

PAI 4G/5G with F-test p-value of 0.0006 for female and 0.002 for

male. This verified previous findings [24,27]. For tPA, we found a

significant main effect of ATR1AC in females only (p = 0.04) and

none in males.

After adjusting out the main effect of PAI 4G/5G and

ATR1AC using residuals, we ran QMDR to identify interaction

models. In table 3, we list the best interaction models identified

from 10-fold cross-validation for PAI-1 and tPA expression in

males and females. The best model for PAI-1 in females is a four-

way interaction of BR2_58CT, ATR1AC, ACEID and

BRB2EX1. The 10,000 permutation testing revealed a significant

p-value of 0.014. Since we also found a significant main effect of

PAI 4G/5G, we ran a linear regression model with PAI 4G/5G

and an interaction between BR2_58CT, ATR1AC, ACEID and

Table 1. Estimated type I error using the 95th quantile of the
testing scores from datasets with 400 samples.

Type I error rate n = 200 n= 400 n= 800 n= 1600

2-way

m= 10 4.8% 5.4% 5.8% 5.9%

m=20 5.2% 5.1% 6.1% 5.5%

m=50 5.5% 5.3% 5.8% 6.2%

3-way

m= 10 4.8% 4.1% 5.6% 6.2%

m=20 5.3% 5.8% 5.9% 5.3%

m=50 4.2% 4.4% 6.1% 5.4%

4-way

m= 10 4.1% 4.0% 4.9% 6.3%

m=20 4.5% 4.8% 4.9% 4.5%

m=50 4.1% 4.3% 4.6% 4.7%

doi:10.1371/journal.pone.0066545.t001

Table 2. Success rate table for MDR, GMDR and QMDR.

Success rate h = 0.4 h = 0.3 h = 0.2
Heritability
h = 0.1 h = 0.05 h= 0.02 h= 0.01

n=400

QMDR 80.7% 69.3% 42.0% 12.7% 2.2% 0.6% 0.2%

GMDR 81.9% 73.2% 46.1% 15.2% 3.8% 0.8% 0.6%

MDR 66.4% 50.4% 26.7% 7.6% 1.8% 0.7% 0.6%

n=800

QMDR 85.4% 83.7% 74.6% 41.1% 8.6% 1.7% 0.7%

GMDR 83.1% 83.0% 76.0% 43.9% 10.0% 1.5% 0.8%

MDR 85.0% 79.8% 60.6% 26.1% 4.7% 1.1% 0.4%

n=1600

QMDR 83.4% 80.1% 78.0% 75.0% 25.6% 5.3% 1.3%

GMDR 82.2% 77.6% 75.7% 76.5% 30.5% 6.5% 1.8%

MDR 81.9% 80.1% 78.6% 58.1% 15.8% 3.7% 1.2%

doi:10.1371/journal.pone.0066545.t002
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BRB2EX1 as the predictors and found that those 5 SNPs could

explain 9.5% of the total variance of PAI-1 in females.

Considering the sample size (.1000) and the continuous outcome,

this indicated a strong association between PAI-1 and the 5 SNPs

in females. The best interaction models from the other 3 datasets

were not significant as determined by the permutation testing.

One interesting thing to note was that removing the main effect

did not exclude it from being chosen in the best interaction model.

For example, PAI 4G/5G’s main effect was removed from PAI-1

in males and the best interaction model is four-way interactions of

PAI 4G/5G, BR2_58CT, ACEID and BRB2EX1. We note that

the amount of variance explained by the significant model was

much better than previously reported using other analytical

methods.

The empirical p-values were very close (difference less than 2%)

to those obtained from permutation tests. For p-values that are

within the critical region, the empirical p-values are more accurate

(1.4% vs 1.8%). This suggests that we can rely on the empirical

distribution from simulations to estimate the significance of

QMDR models, potentially saving months of computation time

in genome-wide association studies.

Discussion

In this paper, we presented a novel algorithm to identify SNP

interactions associated with a quantitative outcome. There are two

unique contributions from this paper: first of all, we offer a

computationally efficient algorithm, QMDR, to identify epistatic

models that are associated with a quantitative outcome. We have

distributed free Java-based software for this QMDR on source-

forge.net. Secondly, we present a testing score that is ‘‘invariant’’

for all sample sizes, number of SNPs and interaction orders.

Simulations and real data analyses both showed that the empirical

p-value is very close to permutated p-value thereby permitting a

significant reduction in computing time.

QMDR changes the representation of the data by pooling

different genotype combinations into a two-level single attribute.

This challenges the traditional analysis method of using many

dummy variables to represent every genotype combination. Due to

limitations in sample size, some of the dummy variables used in

traditional models can be represented by very sparse or no data.

This makes the modelling of high-order combinations very

difficult. QMDR solves this dilemma elegantly by collapsing all

high-level genotypes and all low-level genotypes into a two level

attribute. This not only makes it easier to detect higher order

interaction terms, but also makes it possible to incorporate the

QMDR attribute into other statistical and machine learning

algorithms, such as Boosting [28] and neural networks. This will

allow researchers to build more accurate models that involve

multiple genotype combinations. As we can see from real data

results, QMDR successfully identifies a four-way interaction model

that is strongly associated with female PAI-1 levels. This is good

example of how QMDR can gain biological information above

that previously obtained using a more traditional ANOVA

approach [24].

QMDR also offers a cross-validation procedure to pick the best

model based on the testing score. Since high-order interactions

tend to have better training scores than low-order interactions,

these cross-validation procedures are necessary to limit model

over-fitting. The QMDR algorithm also explores the empirical

distribution of the testing score from the null models and applies it

to estimate the significance of the selected model. From the

simulation, we demonstrated that QMDR can detect the presence

of multiplicative interaction models, even when main effects are

not statistically significant. These epistatic combinations tend to be

missed or dropped when using traditional linear regression

approaches. Last but not least, QMDR is computationally

efficient. One of the first algorithms developed to explore gene-

gene interactions was the Combinatorial Partitioning Method

(CPM) [18]. While elegant, CPM’s functionality is limited by its

inefficiency; its computing time increase exponentially with the

number of genes examined (0(2
r

)). In contrast, QMDR’s

computing time is 0(r2) for two-way interactions. QMDR is has

a nearly two-fold computational speed advantage over GMDR, as

demonstrated through simulations. This increase in speed is vitally

important and makes QMDR a feasible method to use when

exploring large datasets such as genome-wide association studies.

Despite the advantages stated above, one limitation to the

approach is that the QMDR method does not have a way to adjust

for covariate effects such as age, gender and smoking status, an

often necessary step to obtain an unconfounded SNP interactions-

outcome association. Investigators can, however, first fit a model

with potential confounders and the outcome of interest and then

use the residuals in QMDR, as we did to adjust for SNP main

effects in this paper. However, if there are too many covariates,

this approach may overfit the data and sometimes fail due to

limited sample size. One strength of QMDR is that it can be

extended to the analysis of interactions among non-genetic

variables as well as gene-environment interactions. For example,

QMDR will facilitate pharmacogenomic analyses by identifying

combinations of drug treatments and genotypes that affect time to

progression.

In summary, we demonstrate that QMDR is a promising

dimension reduction method for the efficient identification of SNP

interactions. We believe that it will play an important role as part

of a research strategy to understand genetic influences on disease

outcomes that embraces the complexity of the genotype-pheno-

type mapping relationship.

We have uploaded Java-based QMDR software as part of

MDR 3.0 to: http://sourceforge.net/projects/mdr/.

Table 3. Best overall model identified by QMDR.

File Best model CV testing score Empirical P-value Permutated P-value

PAI (Female) BR2_58CT & ATR1AC & ACEID & BRB2EX1 3.46 0.018 0.014

PAI (Male) PAI4G5G & BR2_58CT & ACEID & BRB2EX1 0.98 0.244 0.259

tPA (Female) BR2_58CT & ACEID 1.60 0.152 0.167

tPA (Male) PAI4G5G & BR2_58CT & BRB2EX1 1.11 0.222 0.241

doi:10.1371/journal.pone.0066545.t003
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