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Innate sensory biases could play an important role in helping naı̈ve animals to find food. As inexperienced bees are known to
have strong innate colour biases we investigated whether bumblebee (Bombus terrestris) colonies with stronger biases for the
most rewarding flower colour (violet) foraged more successfully in their local flora. To test the adaptive significance of
variation in innate colour bias, we compared the performance of colour-naı̈ve bees, from nine bumblebee colonies raised from
local wild-caught queens, in a laboratory colour bias paradigm using violet (bee UV-blue) and blue (bee blue) artificial flowers.
The foraging performance of the same colonies was assessed under field conditions. Colonies with a stronger innate bias for
violet over blue flowers in the laboratory harvested more nectar per unit time under field conditions. In fact, the colony with
the strongest bias for violet (over blue) brought in 41% more nectar than the colony with the least strong bias. As violet
flowers in the local area produce more nectar than blue flowers (the next most rewarding flower colour), these data are
consistent with the hypothesis that local variation in flower traits could drive selection for innate colour biases.
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INTRODUCTION
Animals are constantly exposed to stimuli differing widely in their

potential importance. Modulation of these stimuli by the sensory

systems and cognitive processes allow the animal to assess their

relative salience and select appropriate behavioural responses to

the most important. One mechanism through which such adaptive

behavioural outcomes are promoted is through sensory biases,

either within the sensory system or subsequent cognitive processes,

causing animals to respond more strongly to certain, more

pertinent, stimuli [1,2]. Although sensory biases have received

attention in the context of animal signalling, predominantly

relating to mate choice [3,4] and predator avoidance [5], the

potential adaptive role of such biases has not been studied in

a foraging context where they could also be very influential [6].

The flower choices of pollinators represent a good model system in

which to study the adaptive role of sensory bias in the context of

foraging. Flowers send out signals to attract the attention of

potential pollinators in a competitive market place, and pollinators

are attuned to particular traits, such as the colour, morphology,

scent and temperature of the flowers they visit to find food [7–10].

Naı̈ve animals must initially use innate rules to find food.

Pollinators, such as bees, might use colour as a way to find flowers

when first exploring the world [11,12]. Sensory biases towards

particular colours might help naı̈ve bees find flowers, and perhaps

even help them to locate the most profitable ones in the local area.

Indeed, newly emerged bees, that have never seen flowers, show

distinct sensory biases for certain colours [13–15]. The bumblebee

Bombus terrestris L. shows a strong bias towards violet and blue

throughout its geographic range [9,16,17]. We hypothesize that

these innate sensory biases reflect the colour traits of the most

profitable flowers species.

Different flower colours appear to be linked to both the

reliability of finding high nectar rewards [18], and average amount

of sugar produced by particular flower species [9,17]. In the local

flora for this study, violet flowers were more productive than blue

flowers [17] (the next most productive flower colour). If local floral

traits do drive selection for local bee colour biases, we

hypothesized that bees with a stronger sensory bias for violet

(over blue) flowers should forage more effectively in this

environment. As social insects, bumblebee reproduction is re-

stricted to a subset of individuals within each colony. Hence for

bumblebees, intercolony (rather than inter-individual) trait

variation allows us to test the adaptive benefits of sensory bias

variation when foraging in the local environment. Since

bumblebee colonies produce males and new queens in proportion

to the amount of food available to them [19–21], we can use

colony foraging performance as a robust measure of colony fitness.

Our approach explores intercolony variation of floral colour

bias, a heritable foraging related trait [22], within a natural

population to measure the extent to which such sensory biases can

be regarded as adaptive, i.e. improving the colony foraging

performance in their natural environment. We do this by

comparing the performance of nine bumblebee colonies in colour

bias tests under laboratory conditions with the foraging perfor-

mance of the same colonies under natural conditions. Using this

approach allows us to directly correlate trait variation in sensory

bias with a proxy measure of colony fitness (foraging performance).
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METHODS

Laboratory colour bias tests
We tested the innate colour biases of bumblebees (Bombus terrestris

terrestris L.) by presenting them with artificial flowers in a laboratory

flight arena. The nine bumblebee colonies used in this study were

raised in the laboratory from nest searching queens caught around

Würzburg, Germany. The queens, and subsequent developing

colonies, were kept in darkness (except during necessary observa-

tions made under dim red light), under controlled temperature and

humidity conditions (27uC and 60% relative humidity), and fed

pollen-honey paste ad libitum prior to experiments. This rearing

procedure minimises the risk that intercolony differences are

caused by non-genetic factors. As all queens were collected and set

up within a few days of each other, this also minimised any

intercolony differences in colony age or development when tested.

Workers were not exposed to flower colours prior to experiments –

hence they began colour bias tests entirely colour-naı̈ve. Nest

boxes were connected to a flight arena (120 cm6100 cm635 cm)

in which workers were allowed to forage for 50% sucrose solution

(w/w) from 16 colourless, artificial flowers (UV-transmittent

Plexiglas plastic squares: 25 mm625 mm). These colourless,

rewarding training flowers were placed on vertical transparent

glass cylinders (diameter = 10 mm; height = 40 mm), arranged

randomly on the flight arena floor. The spatial positions of these

training flowers were regularly reshuffled so that bees would not

learn to associate particular arena locations with reward. The

sucrose solution reward on these colourless training flowers was

presented to the bees in a recessed well in the centre of each

flower, and was replenished using a micropipette as soon as it was

consumed. All workers in each colony were uniquely identified

with individually numbered tags (Opalith Plättchen, Christian Graze

KG, Germany). We observed the number of foraging trips (bouts)

made into the flight arena by each bee to ensure we only tested

strongly motivated foragers. For colour preference tests, the 16

colourless, rewarding training flowers were replaced by 16

unrewarding, coloured test flowers: 8 violet (bee UV-blue) and 8

blue (bee blue) targets. The colour bias of each forager was tested

individually during a single foraging bout in the flight arena

containing the array of coloured, but unrewarding, test flowers. All

flowers were changed between foraging bouts to ensure that

subsequent test bees received no odour cues from previously tested

foragers. Colony colour biases (n = 9 colonies) were calculated by

averaging across the 10–15 forager bees tested per colony (101

bees were tested in total). The number of flower choices evaluated

per forager ranged from 6 to 58 (mean61 SE = 16.460.9),

depending on how long each bee continued to choose unrewarded

flowers (1652 flower choices were recorded in total). The violet

(bee UV-blue) and blue (bee blue) flowers used in the colour

preference tests are easily distinguishable by bumblebees (Figs. 1

and 2, [23]). All training bouts and colour bias tests were

performed under high frequency illumination to simulate natural

daylight above the bee flicker fusion frequency. Illumination was

provided by two ceiling mounted fluorescent lighting rigs, each

containing seven light tubes: six DURO-TEST 40W True-Lite

tubes and one OSRAM 36W Blacklight tube. The flicker

frequency of each strip light was converted to 1200 Hz with

special ballasts (Osram Quicktronic QT-Eco 1 58/230-240), and

the light from each rig was diffused by a single sheet of Rosco 216

(Germany) UV-transmitting white diffusion screen to provide an

even and homogenous illumination source.

Foraging performance
The same nine bumblebee colonies for which we had obtained

laboratory colour bias data, were placed in the field (near

Gieshügel, Würzburg) to measure their nectar foraging perfor-

mance between 14 June and 12 July 2002. The area is typical

central European bumblebee habitat, giving colonies access to

multiple flower species in bloom in dry grassland, deciduous forest

and farmland. A colourless Plexiglas tunnel with a system of

shutters, attached to each nest entrance, allowed the observer to

control the movements of bees into and out of the colony. The

observer monitored the flow of forager traffic, and recorded the

time and mass of each individual forager when it departed, and

returned to, the nest from each foraging bout. Body mass was

measured by capturing bees at the entrance of the Plexiglas tunnel

as they departed and arrived and transferring them to an

electronic balance (Ohaus Navigator N20330, Ohaus Corpora-

tion, USA). Departure time was when the bee was released from

the vial after weighing, and arrival time was recorded when the

bee first reappeared at the tunnel. We determined the foraging

Figure 1. Spectral reflectance profiles of the violet (bee UV-blue) and blue (bee blue) artificial flowers used in colour preference tests.
Reflectance can vary from 0 (no reflectance) to 1 (all incident light is reflected). Reflectance functions for each flower type were measured in 1 nm
increments over the wavelength range from 300 to 700 nm using a spectrophometer (Ocean Optics S2000) with a deuterium/ halogen light source.
Violet (bee UV-blue) and blue (bee blue) flowers differ in the position of their short wave reflectance peak, which are at wavelengths of 435 and
460 nm respectively. Differences in reflectance above 650 nm are not relevant for bees since their visual spectrum ends around that value [46,47].
doi:10.1371/journal.pone.0000556.g001
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rate of individual workers by dividing the difference in body mass

(i.e. return minus outgoing mass) by the duration of the foraging

trip [21,24,25]. The departure mass of a bumblebee is a good

estimate of her empty body mass because foragers take only very

small amounts of nectar with them when leaving their colony [26],

enough to fuel only a few minutes of flight [7]. Therefore the bee’s

mass on its return represents a true reflection of the net amount of

nectar she has collected in her time away from the colony. As such,

a time-adjusted difference in body mass represents a sound

measure of foraging rate.

Foraging data were collected over 15 days (14, 16–18, 20–21,

26, 28–29 June, 5 and 8–12 July 2002). The number of colonies

for which foraging performance could be measured simultaneously

on a given day was determined by the number of observers

available: on the first day (14 June) all colonies were monitored

simultaneously, while on subsequent days (n = 14 days) colonies to

be monitored were picked at random to match the available

number of observers (n = 1–7 observers/day). Foraging data were

collected for each colony during 5–10 days, producing 17–

37.5 hours of continuous foraging behaviour per colony (Table 1).

In order to exclude orientation and defecation flights, previous

studies have considered only trips lasting at least 5 [21] or 10

[24,25] minutes as foraging bouts. In our data, foraging bouts

resulting in negative foraging rates varied considerably in length

(range 3–338, median = 52 minutes; n = 59), and made up only 5

of the 9 (56%) bouts shorter than 10 minutes. Therefore we

consider all bouts (n = 537; Table 1) as potential foraging bouts in

subsequent analyses.

Nectar production of the flower species visited by B. terrestris

workers near Würzburg were recorded in the spring and summer

months between 1999 and 2002 [17,27]. Production rates were

calculated for each flower species from the volume and

concentration of nectar produced by 30–60 flowers per species

over a 3 hour period during which visitation was prevented. From

these data the average amount of sugar produced (mg in 24 hours)

could be calculated for each flower species. The spectral

reflectance functions of all flower species were quantified,

converted into bee colour space loci and placed into one of six

bee-subjective colour categories: blue, blue-green, green, ultravi-

olet, UV-blue or UV-green [28]. To establish the nectar rewards

available to our 9 test bumblebee colonies during our foraging

experiment we determined which of the 75 flower species,

observed to be visited by B. terrestris [27], were flowering during

June and/ or July according to published phenology data [29].

The nectar production rates for these 63 species indicate that

violet (bee UV-blue) flowers were considerably more rewarding

than all other flower colours during our foraging experiments

(Table 2, Fig. 3). Indeed, violet (bee UV-blue) flowers were on

average more than twice (2.36) as rewarding as blue (bee blue)

flowers (the next most rewarding flower colour).

RESULTS
In this bumblebee population, we observed a significant overall

bias towards choosing violet (bee UV-blue) over blue (bee blue)

flowers in laboratory preference tests (x2 = 15.8, df = 8, p = 0.044).

In the nine colonies tested, the median bias for violet (over blue)

ranged from 47.7% to 63.6% (Fig. 4), with significant variation in

violet bias between the colonies at either end of this range (Mann-

Whitney U = 29.5, p = 0.012). In our subsequent field experiments

we observed large amounts of variation in nectar foraging success,

ranging from losses of 160 mg to gains of 1400 mg/ hour resulting

from single foraging bouts (median = 30 mg/hour). Foraging

performance across the nine test colonies differed by a factor of

1.8, from colony median foraging rates of 22 to 39 mg/hour

respectively (Table 3), with significant differences in performance

between the worst and best colonies (Mann-Whitney U = 1058,

p = 0.006).

Figure 2. Bee colour hexagon with colour loci of the two flower
colours tested. The point generated by a coloured object within the
hexagon informs us how bees will perceive the object through their
ultraviolet, blue and green photoreceptors, and through further
processing of receptor signals in the central nervous system. Each
object, such as a flower, is categorised into one of the six bee-subjective
colour categories defined by the colour hexagon (ultraviolet (u), UV-
blue (ub), blue (b), blue-green (bg), green (g), and UV-green (ug)),
depending on which of the three colour receptors of bees (UV, blue or
green) they stimulated most strongly [28,46]. Hence, colours are
categorised as bee-blue if they stimulate the bees’ blue receptors
substantially more strongly than the UV and green receptors, and are
categorised as UV-blue if they stimulate the UV and blue receptors
more or less equally strongly, but stimulate the green receptor very
little, etc. The spectral reflectance of the violet (bee UV-blue) and blue
(bee blue) artificial flowers colours was quantified for the spectral
properties of the fluorescent lighting used in laboratory colour tests
(Fig. 1), and converted into colour loci in bee colour space [28,48]. These
bee-subjective colour loci for the two artificial flower colours used in
the laboratory preference tests are indicated by circles coloured as they
would appear to humans. The distance between loci for these flower
colours is approximately 0.3 colour hexagon units: distances of 0.2 and
above are considered easily distinguishable for bumblebees [12,49].
doi:10.1371/journal.pone.0000556.g002

Table 1. Sampling effort and sample sizes for field foraging
performance tests.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

colony foragers bouts
foraging observations

days duration (hh:mm)

A 26 38 5 18:04

B 33 45 9 36:11

C 30 93 10 36:31

D 30 71 9 37:34

E 23 52 3 16:39

F 32 65 7 29:15

G 23 51 6 23:57

H 41 81 6 27:50

I 17 41 10 29:05

total 255 537 65 255:06

Data presented indicate the number of individual foragers and completed
foraging bouts recorded for each of the 9 colonies (A–I). The last two columns
indicate the number of days on which foraging performance was assessed, and
the total duration of completed foraging bouts recorded (hh:mm) per colony.
doi:10.1371/journal.pone.0000556.t001..
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Most importantly, we found that colonies with a stronger innate

preference for violet in the laboratory harvested more nectar per

unit time under natural conditions in the field (Fig. 5). Colony

median nectar foraging rate was significantly correlated with

colony median bias for violet (over blue: rs = 0.678; n = 9;

p = 0.045) for the nine colonies tested. Our results demonstrate

a positive correlation between the sensory bias of B. terrestris

colonies for violet (over blue) flowers with their nectar foraging

performance under the natural conditions to which they should be

locally adapted. The strength of this correlation indicates that bees

from the colony with the strongest bias for violet brought in almost

41% more nectar than bees from the colony with the least strong

bias. As violet flowers were on average more rewarding than blue

flowers (the next most rewarding flower colour) in the local area

(Fig. 3, [17]), this correlation supports our hypothesis that colonies

biased towards the more highly rewarding violet flowers do collect

more nectar per unit time.

This pattern is confirmed when considering these results in

conjunction with those from an earlier (2001), smaller scale study

with only 5 bumblebee (B. terrestris) colonies at the same location [9].

The results of this study also indicated a positive, though not

statistically significant, correlation between colony violet preference

and nectar foraging rate (rs = 0.82; n = 5; p = 0.089). However,

combining the results of these two independent studies produces

a statistically significant result (Fisher’s [30] test to combine

probabilities from independent tests of significance: x2 = 11.04,

df = 4, p = 0.026) demonstrated for two consecutive years.

In other studies, worker body size has been shown to have

a strong effect on foraging performance, with larger bees collecting

proportionately more nectar [24,25]. Although the size of workers

differed significantly among colonies in our study (x2 = 22.18,

Table 2. Nectar sugar production rates for plant species
flowering, near Würzburg, during the period of bumblebee
colony foraging performance experiments.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

flower species
bee-subjective
colour

nectar production
(mg/24 hours)

Papaver dubium L. uv 0

Papaver rhoeas L. uv 0

Papaver somniferum L. uv 0

Anagallis arvensis L. uv-b 0

Campanula glomerata L. uv-b 156

Campanula patula L. uv-b 75

Cynoglossum officinale L. uv-b 1358

Dactylorhiza majalis (Rchb.)
P.F.Hunt & Summerh.

uv-b 0

Echium vulgare L. uv-b 1537

Impatiens glandulifera Royle uv-b 11312

Lunaria rediviva L. uv-b 97

Lupinus polyphyllus Lindl. uv-b 0

Lythrum salicaria L. uv-b 794

Onobrychis viciifolia Scop. uv-b 58

Salvia pratensis L. uv-b 466

Salvia verticillata L. uv-b 520

Vinca minor L. uv-b 731

Allium schoenoprasum L. b 505

Calluna vulgaris (L.) Hull b 202

Epilobium angustifolium L. b 2332

Epilobium hirsutum L. b 240

Geranium robertianum L. b 811

Glechoma hederacea L. b 160

Lamium maculatum L. b 267

Lamium purpureum L. b 114

Lychnis flos-cuculi L. b 529

Medicago sativa L. b 408

Pinguicula vulgaris L. b 0

Prunella vulgaris L. b 332

Salvia nemorosa L. b 318

Silene dioica (L.) Clairv. b 714

Stachys palustris L. b 1384

Stachys sylvatica L. b 898

Symphytum officinale L. b 1061

Syringa vulgaris L. b 500

Teucrium chamaedrys L. b 221

Thymus pulegioides L. b 87

Trifolium pratense L. b 400

Vicia cracca L. b 723

Vinca minor L. b 546

Viola canina L. b 97

Cardamine pratensis L. b-g 745

Centaurea jacea L. b-g 187

Filipendula ulmaria (L.) Maxim. b-g 0

Knautia arvensis (L.) Coult. b-g 141

Lamium album L. b-g 467

Linaria vulgaris Mill. b-g 1736

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

Table 2. cont.

flower species
bee-subjective
colour

nectar production
(mg/24 hours)

Lunaria rediviva L. b-g 75

Rosa canina L. b-g 0

Sambucus nigra L. b-g 0

Silene album (Mill.) E.H.L.Krause b-g 933

Symphytum officinale L. b-g 1765

Trifolium hybridum L. b-g 187

Trifolium repens L. b-g 129

Lathyrus pratensis L. g 216

Lotus corniculatus L. g 330

Agrimonia eupatoria L. uv-g 0

Brassica napus L. uv-g 362

Helianthemum nummularium (L.)
Mill.

uv-g 0

Lamium galeobdolon (L.) L. uv-g 1360

Melilotus officinalis (L.) Pall. uv-g 88

Sinapis arvensis L. uv-g 1324

Verbascum densiflorum Bertol. uv-g 0

The 63 plant species included all flower during this period (June and/or July)
according to published phenological data [29], and are divided into six bee-
subjective colour categories (uv = ultraviolet, uv-b = uv-blue, b = blue, b-
g = blue-green, g = green and uv-g = uv-green). Data presented are mean
amounts of sugar produced (mg in 24 hours) per species, averaged across at
least 30 flowers per species [17,27].
doi:10.1371/journal.pone.0000556.t002..
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df = 8, p = 0.005), we found no correlation between colony median

forager mass and either the strength of violet preference

(rs = 0.208; n = 9; p = 0.574) or foraging performance (rs = 0.183;

n = 9; p = 0.637) among the nine colonies. Thus colonies with

larger workers did not show a stronger preference for violet (over

blue flowers) or collect more nectar in our study.

Figure 3. Nectar sugar production rates for plant species flowering, near Würzburg, during the period of bumblebee foraging performance
experiments. The 63 plant species included all flower during this period (June and/or July) according to published phenological data [29], and are
divided into six bee-subjective colour categories (numbers associated with each column indicate the number of species flowering in each colour
category). Flowers were protected from visitation with gauze for 3 hours after being emptied by a B. terrestris worker [17,27]. After the 3 hour
exclusion period, the nectar volume was quantified for 30–60 flowers per species: nectar concentration was measured with a pocket refractometer
(Atago HSR-500, Atago Co. Ltd., Japan). Data given here are the mean (6 1 SE) amounts of sugar produced (mg in 24 hours) by species in each bee-
subjective colour category.
doi:10.1371/journal.pone.0000556.g003

Figure 4. Variation among nine bumblebee colonies in their colour bias for violet (over blue) artificial flowers. In each box the thick horizontal
bar is the colony median, whilst the lower and upper edges represent the 25% and 75% quartiles respectively. Whiskers indicate the maximum and
minimum values that are not extreme, and outliers are represented by open circles. Outliers are data points that exceed the distance from the
interquartile range box by between 1.5 and 3 times the interquartile range (SPSS Statistical software, SPSS Inc., Chicago, USA). None of these data
points were excluded in any analyses. The number of bees tested and flower choices recorded for each colony are displayed along the x-axis, and
colonies (A–I) are ranked by increasing colony median value from left to right.
doi:10.1371/journal.pone.0000556.g004
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DISCUSSION
Linking intercolony variation in sensory bias revealed under

controlled laboratory conditions with the foraging performance of

the same bee colonies under natural conditions represents a novel

way to study the adaptive value of a foraging-related trait. Our

study indicates a positive correlation between the innate

preference of B. terrestris colonies for violet (over blue) flowers with

their nectar foraging performance under the real conditions in

which they operate (Fig. 5). As violet flowers were much more

productive than blue flowers in the local area (Fig. 3, [17]), our

findings are consistent with the hypothesis that colonies biased

towards the more highly rewarding violet flowers collect nectar at

a higher rate.

However, as correlation does not necessarily indicate a causal

relationship, we must consider alternative explanations for the

observed pattern. Potentially a spurious correlation could be

produced between colony colour preference and foraging

performance, if both these factors were correlated with a third

variable. Body size could be one such variable because previous

studies indicate that larger bumblebees are both more effective

nectar foragers [24,25] and have more sensitive eyes with greater

visual acuity [31]. However, although we found significant

variation in worker body size across the nine test colonies, we

observed no correlation between body size and either colour

preference or foraging performance in this study. Parasitism

represents another potential factor which could affect our

correlation, as the foraging behaviour of bumblebees can be

strongly affected by parasites [32–34]. However, there is no

evidence to suggest that parasites affect bee colour preferences,

and the degree of colour preference variation observed among

colonies in this study is very similar to that shown for other

laboratory colonies known to be parasite free [14]. Taken together

with the fact that the colour preferences of B. terrestris colonies are

heritable [22], this suggests it is very unlikely that the variation in

colour preference observed among the nine test colonies is not

genetically determined.

It is easy to imagine how strong innate colour preferences help

guide naı̈ve bees to find flowers on their first foraging trip away

from the nest, as very few objects except flowers fall within the

blue-violet colour range in a natural landscape. Such innate colour

biases presumably guide bees to investigate violet or blue objects

(flowers) in preference to leaves, rocks, etc. Following the same

logic, if violet flowers are consistently more rewarding than blue

flowers, then it would make adaptive sense to prefer violet objects

to blue ones if the bee has no other information. As bees gain

foraging experience, by visiting hundreds or thousands of flowers

per day [7,35], they establish an increasingly detailed picture of

which flower species (or colours) are the most profitable and when.

Bees are easily able to learn to associate multiple floral traits,

including colour [18,36], morphology [37,38], and scent [8] with

levels of reward, including nectar temperature [10], and such

learned associations allow individual foragers to modify, or even

overwrite, their inbuilt sensory biases within a short period of time

[8,39,40]. Despite the obvious utility to being able to modify floral

choices as a result of experience in this way when foraging in

a dynamic pollination market, experienced foragers also revert to

Figure 5. Correlation of innate floral colour preference for violet (over blue) and foraging performance in the wild, measured for nine
bumblebee colonies (B. terrestris) near Würzburg (rs = 0.678; n = 9; p = 0.045). Each data point represents the colony median value for each of
these traits.
doi:10.1371/journal.pone.0000556.g005

Table 3. Variation in nectar foraging performance for nine
bumblebee colonies.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

colony
foraging rate (mg/hr)

median
interquartile
range

range (min/
max) bouts

A 22.02 24.82 27.8/129.5 38

B 27.14 71.17 2112.5/255 45

C 27.93 47.70 2160/1400 93

D 25.56 53.24 2120/480 71

E 35.72 55.63 291.6/234.2 52

F 30.26 41.34 247.6/181.4 65

G 25.93 38.17 270.3/372 51

H 38.82 61.25 245.8/341.5 81

I 34.47 43.85 224.6/300 41

Data presented are the median, interquartile range, and range (minimum and
maximum) foraging rates for each colony calculated for the number of foraging
bouts indicated in the last column.
doi:10.1371/journal.pone.0000556.t003..
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their initial, innate preferences in some situations: for example

when rewards are similar across a range of flower species

[36,41,42].

Whilst such innate sensory biases appear to make adaptive sense

from the bee’s perspective, the question arises why flowers have

not exploited these colour preferences such that violet flowers

might ultimately produce less nectar than blue flowers while

maintaining the same pollination success. Such a strategy would

only be effective if bees always relied entirely on their innate

preferences to make flower choices, which is not the case. Like

other animals [1,6], bees rely most heavily on their innate sensory

biases when they are most inexperienced, i.e. during the first few

foraging bouts after leaving the nest. Their level of reliance on

such biases diminishes as they build up individual experience of

the rewards provided by individual flower species [7,8,14,36].

Hence, the vast majority of floral choices made during a bee’s

foraging career are at least partially informed by individual

experience. Therefore overall flower visitation rates are largely

dominated by the informed choices of experienced bees, rather

than as a result of the sensory biases of naı̈ve foragers.

As the colonies in our study with the strongest bias for violet

flowers also foraged most effectively in the local environment, why

has directional selection not eliminated intercolony variation in

this foraging-related trait? Although violet flowers are on average

the most productive in the local area (Fig. 3, [17]), they might not

always be the most profitable. The relative profitability of a flower

species, or colour, depends not only on reward production rates,

but also on a variety of other factors including the activity of other

flower visitors [43,44]. In fact a uniformly strong bias in all B.

terrestris colonies towards violet flowers, which would cause them all

to seek out violet flowers, could actually drive down the average

nectar reward received by each bee per violet flower visit below

that for other floral colours by resource competition. Under such

conditions, bees visiting other flower colours would receive more

reward per visit, meaning that naı̈ve and inexperienced foragers

from colonies with a weaker bias towards violet would actually be

at an advantage competing for nectar. In this way intercolony

variation in such sensory biases could be operating under

frequency dependent selection.

The appreciable variation in colour bias observed among

colonies in this wild bumblebee population (and even among

individual bees within the same colony) is in marked contrast to

the limited variation in the maximum wavelength sensitivity (lmax)

of bee photoreceptor types [16]. It appears that sensory (colour)

biases are considerably more plastic evolutionary traits, pre-

sumably because tuning spectral sensitivity of photopigments is

more difficult on an evolutionary scale than changing the synaptic

weights that control colour preference.

Earlier studies correlating colour bias variation among bumble-

bee species [22], or among populations within a single bumblebee

species [16,17,45], with differences in their respective foraging

environments have provided valuable insights into patterns of bee

colour bias evolution within a phylogenetic framework. Changing

our emphasis and focusing on the potential adaptive significance of

colour preference at the intercolony scale in this study, we add the

missing link, i.e. how variation in colour biases actually affects

foraging performance. Quantifying the level of local intercolony

variation in a foraging-related trait (violet-blue bias) and assessing its

potential effect on foraging performance using the same set of

colonies, we provide a more direct test of the potential adaptive

value of this sensory bias. This approach, linking demonstrations of

trait variation in the laboratory with its effect on animals operating

in their natural environment, represents a valuable tool which could

be usefully applied to studying the adaptive value of many other

foraging-related traits in future.
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