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Abstract

Background: The universal presence of a gene (SMN2) nearly identical to the mutated SMN1 gene responsible for Spinal
Muscular Atrophy (SMA) has proved an enticing incentive to therapeutics development. Early disappointments from
putative SMN-enhancing agent clinical trials have increased interest in improving the assessment of SMN expression in
blood as an early ‘‘biomarker’’ of treatment effect.

Methods: A cross-sectional, single visit, multi-center design assessed SMN transcript and protein in 108 SMA and 22 age and
gender-matched healthy control subjects, while motor function was assessed by the Modified Hammersmith Functional
Motor Scale (MHFMS). Enrollment selectively targeted a broad range of SMA subjects that would permit maximum power to
distinguish the relative influence of SMN2 copy number, SMA type, present motor function, and age.

Results: SMN2 copy number and levels of full-length SMN2 transcripts correlated with SMA type, and like SMN protein
levels, were lower in SMA subjects compared to controls. No measure of SMN expression correlated strongly with MHFMS. A
key finding is that SMN2 copy number, levels of transcript and protein showed no correlation with each other.

Conclusion: This is a prospective study that uses the most advanced techniques of SMN transcript and protein
measurement in a large selectively-recruited cohort of individuals with SMA. There is a relationship between measures of
SMN expression in blood and SMA type, but not a strong correlation to motor function as measured by the MHFMS. Low
SMN transcript and protein levels in the SMA subjects relative to controls suggest that these measures of SMN in accessible
tissues may be amenable to an ‘‘early look’’ for target engagement in clinical trials of putative SMN-enhancing agents. Full
length SMN transcript abundance may provide insight into the molecular mechanism of phenotypic variation as a function
of SMN2 copy number.
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Introduction

Spinal muscular atrophy (SMA) is an autosomal recessive

neuromuscular disorder that manifests across a wide range of

severity. The cardinal clinical feature of SMA – diffuse skeletal

muscle weakness – is a consequence of dysfunction or loss of alpha

motor neurons. SMA is caused by loss-of-function mutations or

deletions of the gene SMN1 (Gene ID = 6606). A wide range of

disease severity can be partially attributed to the presence of

variable copy number of a neighboring near-identical gene, SMN2

(Gene ID = 6607) [1–3]. A single base pair difference between

these two genes greatly reduces the efficiency of exon 7 inclusion

into mature transcripts from the SMN2 gene, but the coded

protein sequence from full length SMN2 derived transcripts is

unaffected by this change. SMN2 thus produces only a fraction of

the functional full length protein compared to SMN1 [4]. The

SMN gene is constitutively expressed in all eukaryotic cells and

necessary to cell viability [5–8]. Motor neurons are particularly

vulnerable to reduced SMN protein levels for reasons unknown.

The invariable presence of the partially functional disease-

ameliorating SMN2 gene in individuals with SMA offers an

attractive target for development of therapeutics [9]. Proof-of-

concept studies with small molecule, antisense oligonucleotide or

gene therapy approaches targeting various mechanisms to

upregulate expression of SMN2 have extended survival and

improved motor function in SMN-deficient animal models [10–

16]. Clinical trials of available putative SMA treatments that non-

specifically act on SMN expression have, so far, failed to

demonstrate efficacy [17–19].

One impediment to efficient trial design is that the typical

individual with SMA old enough to cooperate with motor function

testing declines very slowly [20]. Many affected children settle into

a plateau phase with stable function for years even though they

may have manifested progressive weakness in the first year or two

of life [21]. The consequence of this course is that a meaningful

attenuation of the rate of degeneration would necessarily take a

long time to demonstrate. Availability of a valid clinical measure of

SMN expression could thus accelerate clinical trials of an SMN-

enhancing therapeutic, particularly in the early, dose-finding,

phase of development. Given that most new treatments currently

under development intend to increase SMN synthesis in the

nervous system, measurement of the abundance of SMN transcript

or protein in tissues accessible to clinical sampling could be an

immediate and plausible biomarker that fulfills the need for an

early read-out of target engagement.

The continuous spectrum of SMA phenotype severity is

generally divided into three ‘‘Types’’ of SMA based upon the

history of specific gross motor abilities achieved before the disease

curtailed further developmental progress [22]. ‘‘Type I’’ defines

those who never sat independently, ‘‘Type II’’ those who sat but

never walked, and ‘‘Type III’’ those who were able to achieve

independent ambulation. Over time, an individual having a milder

type of SMA may decline to a level that overlaps in function with

that manifested at an early point in the course of individuals

affected by more severe types. The genomic number of SMN2

copies correlates with SMA types [1,2]. Severity of motor

impairment in SMA is likely multifactorial, although disabling

mutation of SMN is the essential first step. The potential broad

range of SMA phenotype that is predicted by loss of SMN1 is

focused to some extent by characterization of SMN2 copy

number, but within each specific SMN2 genotype there is broad

spectrum of motor function, and over time the severity of motor

impairment can vary even more.

The BforSMA study was designed to explore potential

biomarkers of disease severity in accessible peripheral tissues –

blood and urine – that may be of value in the execution of clinical

trials. The cohort was selectively recruited to represent subjects

with a wide range of SMA type, motor function, and age, who

were then characterized clinically in a manner that would best

power two independent projects. Results of the first project, an

unbiased biomarker discovery effort, are presented in a companion

paper (see companion paper, Finkel et al.[55]). Here, we present

the second project, a targeted analysis of relationships between

SMN transcript and protein levels to SMN genotype, SMA clinical

type, present motor function, and age. The project had two major

goals. The first was to determine whether a previously identified

association between SMN2 copy number and disease severity

could be confirmed in an SMA cohort prospectively recruited to

include individuals having all three types of SMA manifesting a

broad range of motor impairment. A second, more focused, goal

was to evaluate a possible relationship between SMN transcripts

and protein levels in blood samples from SMA subjects compared

to controls, and within the range of SMA clinical severity.

Relationships between any of these measures of SMN in blood

samples and clinical features may, with proper further develop-

ment, prove invaluable for clinical trials of SMN-enhancing

therapeutics.

Important to this project was the recognition that age is an

important potential confounder to be included in the statistical

analysis. The power of this is enhanced by targeted recruitment of

a clinical cohort in which SMA type and age are not highly

correlated. At the outset of the study, the extent to which this

broad distribution could be accomplished was unknown, given

early childhood mortality of subjects with SMA Type I. Site

investigators were encouraged to keep this goal in mind during

subject recruitment.

To date, studies of SMN transcript and protein levels from

amniocytes, skin fibroblasts, lymphocytes or peripheral blood

mononuclear cells (PBMCs) from SMA subjects have reported

variable results, but a general correlation of transcript or protein

quantity with phenotype is identified only in individuals at the

lower end of the SMA functional continuum [23–27]. Protein

levels in tissues from SMA Type I infants were noticeably lower

than those of healthy controls, while the differences in protein

levels between Types II, III, carriers and control subjects were not

significant. Existing studies have not controlled for present level of

motor function or subject age, and the possibility that these factors

undermine or enhance the relationship of blood assessments of

SMN to clinical variables is unexplored. In addition, newly

developed SMN transcript measurements by absolute quantifica-

tion and improved ELISA-based protein assays have the

advantage of increased sensitivity and reliability [24–26], and

may prove helpful in characterizing the relationships between

protein and disease severity in various tissues. It is thus not yet

clear if blood-derived SMN transcript or protein levels can be used

as a sensitive and meaningful marker of disease severity.

Materials and Methods

Planning and Objectives
The protocol was developed by a combination of SMA patient

advocates, experts in biostatistics and bioinformatics, basic

scientists investigating the biology of SMA, drug metabolism and

pathway experts, and clinical trial specialists. The protocol

supported two related, but independent, objectives: (1) an unbiased

protein, metabolite and transcript biomarker discovery analysis,

and (2) the SMN-targeted biomarker analysis reported here,

SMN Expression in SMA

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e33572



which intends to identify the relationship of quantative measures

of SMN expression to clinical  features  of  SMA.  A  leading

instrument for the measurement of gross motor function in SMA

is the Modified Hammersmith Functional Motor Scale (MHFMS),

and although this scale was initially designed and validated

only for those with Type II SMA, it  is  suitable also to evaluate

Type III individuals who have lost independent ambulation and

to a lesser extent to some of those with only weak ability to

walk [28]. It is not suitable for evaluation  of  many with  SMA

III. The MHFMS was used to assess all SMA

control subjects. Subjects with Type I SMA were assigned a 

Hammersmith value of zero.

Study Design
A cross-sectional, single visit, multi-center, exploratory study

design was employed. Blood for SMN transcript and protein

analysis and SMN2 copy number determination was collected. No

therapeutic intervention occurred. There was special emphasis on

enrolling children as subjects across a range phenotype severity.

The full protocol is available in the Appendix S1.

Study Management
The administration and data coordination of the trial was

conducted by the New England Research Institutes (NERI,

Watertown, MA). A protocol committee was established to design

the protocol and review potential violations as the trial progressed.

Eighteen academic clinical sites headed by investigators with

special expertise in the care of children with SMA participated in

the study. A meeting of investigators and clinical evaluators from

each study site was held to introduce them to the study protocol.

All data entry was performed via a secure internet-based website.

Sample collection, handling and chain of custody procedures were

designed to ensure the best quality specimens for biomarker

analysis. Samples were divided for specific analysis and shipped

from study sites to the central lab, PPD, Inc. (Highland Heights,

KT.) SMN transcripts were measured by Dr. F. Danilo Tiziano

laboratory (Istituto di Genetica Medica, Università Cattolica S.

Cuore, Roma, Italy), SMN2 copy number from blood were

analyzed by Expression Analysis, Inc. (Durham, NC), and SMN

protein analysis by an ELISA assay developed and run at Enzo

Life Sciences (Ann Arbor, MI). The Project Director and Data

Management group at NERI was responsible for data processing

while their Biostatistics group handled the data analyses.

Ethics Statement
Institutional review board (IRB) approval for the protocol was

obtained from each BforSMA clinical site before enrollment at

that site and from the central Institutional Review Board, New

England Research Institutes. Written informed consent for

participation was obtained from the legal guardians of all

subjects and assent for participation was obtained directly from

subjects whenever applicable. This trial was registered with

ClinicalTrials.gov with identifier NCT00756821.

Sample Size Determination and Enrollment
The number and type of subjects enrolled was based upon the

expected power necessary for the unbiased discovery project. The

sample size had an 80% power at level 0.05 to detect an effect size

of 0.6 standard deviations between SMA and controls, which is

considered a moderate difference. An unbalanced number of

subjects from the three types of SMA for targeted enrollment was

selected (15 Type I, 45 Type II, and 40 Type III SMA subjects) in

part due to the expectation that recruitment of eligible subjects

with SMA Type I across the full age range would be difficult due

to the high level of mortality in childhood [29].

Inclusion and Exclusion Criteria
The ideal population would enable independent assessment of

the contribution of SMN genotype, SMA type, present functional

status, and age in biomarker characterization. The age range

chosen excluded subjects less than 2 years of age – to avoid

metabolic confounders of infancy, nascent developmental accom-

plishments, and incomplete cooperation with the functional

outcome measure – and also excluded those over 12 years of

age to limit the contribution of puberty-related confounders [28].

Additional eligibility criteria highly restricted the use of potential

disease-modifying prescription medication and excluded children

who were affected by acute diseases, unrelated to SMA. SMA

subjects were required to have genetic confirmation of disabling

mutation of SMN1 and were defined into standard categories of

SMA by their history of ability (Type II) or inability (Type I) ever

to sit unaided for 30 seconds, or ability to ever stand and walk 30

feet unaided (Type III) [22]. To limit biased ascertainment of

individuals into the healthy control cohort that might shift the

proportion of single-copy SMN1 genomes from that of the normal

population, only those SMA siblings known by previous genetic

evaluation to have 2 or more copies of SMN1 were eligible. Initial

caps on the maximum number of subjects enrolled per site were

instituted to enhance broad applicability of results.

Statistical Analysis for SMN Copy Number, Transcript and
Protein

Potential predictors of SMN protein, transcript and copy

numbers included: age, gender, SMA diagnosis and type, and

current level of function as measured by the MHFMS.

Relationships among SMN protein, individual transcript types

(listed below), and copy numbers were examined as well. One

extreme outlier of SMN transcript ratios (SMN2-FL/SMN-D7

ratio, 26 standard deviations above the next highest value) was

removed from analysis of that outcome alone. Predictors of

continuous outcomes were assessed using analysis of covariance

(ANCOVA) for categorical predictors and partial correlation for

continuous predictors. As a significant effect of age was found for

some outcomes, all models were controlled for age. Data was log-

transformed to reduce the impact of skewed data. All analyses

were performed with SAS v9.2 (SAS Institute, Cary, NC), and

p,0.05 was considered statistically significant. By design, our

study cohort included subjects whose function fell outside the

range of MHFMS detection, and thus were scored the constrained

maximum or minimum MHFMS value. Because ceiling and floor

values will increase (positive) or decrease (negative) slopes of

identified associations we performed the statistical analysis of SMN

transcripts and protein to MHFMS comparisons by including and

excluding those with border values.

SMN Copy Number
Quantification of SMN1 and SMN2 copy number was

conducted at Expression Analysis Inc., Durham, North Carolina

by quantitative real-time Taqman PCR (qPCR) [30]. Genomic

DNA was isolated from whole blood samples using Gentra

Puregene Blood Kit (Qiagen). Externally validated DNA standards

for SMN1 and SMN2 were kindly provided by Dr. Wendy Chung

from Columbia University Medical Center, New York, NY. The

SMN1 and SMN2 reactions were carried out in 16TaqMan

Universal PCR master mix (Applied Biosystems) containing

300 nM of SMN1 primers, 250 nM of SMN probe or 450 nM
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of SMN2 primers, 250 nM of SMN probe, 650 nM of SMN1

non-extending oligonucleotide, respectively. The non-extending

SMN1 oligonucleotide increases SMN2 assay specificity by

blocking nonspecific annealing of the allele-specific primer to the

opposite allele. To enable normalization of the input target DNA

added to each well, the internal control CFTR gene was amplified

simultaneously in a separate reaction well under identical thermal

cycling conditions. The CFTR reaction was carried out with

16TaqMan Universal PCR master mix containing 450 nM of

CFTR primers and 250 nM of CFTR probe. PCR was performed

on a 7900HT Sequence Detection System (Applied Biosystems)

using a 384-well format, and amplification was achieved using the

standard amplification protocol (Applied Biosystems) as follows:

50uC for 2 min, 95uC for 10 min, followed by 45 cycles of 95uC
for 15 s, and 60uC for 1 min. Each reaction was run in

quadruplicate with 25 ng of genomic DNA in a final volume of

15 ml. The number of SMN1 and SMN2 copies was calculated

using the comparative CT method [31]. Results were interpreted

separately by two independent investigators (Dr. Wendy Chung,

Columbia University Medical Center, NY, NY; and Dr. Louise

Simard, University of Manitoba, Winnipeg, Manitoba) and

confirmed in a separate analysis performed by Dr. Thomas Prior

at The Ohio State University using his published methodology

[27].

SMN Transcripts
Four specific transcripts were measured: (1) SMN2-Full Length

(SMN2-FL), (2) SMN1-Full Length (SMN1-FL), (3) SMN

transcript lacking exon 7 (SMN-D7), and (4) GAPDH, a

housekeeping gene commonly used for normalization in SMN

transcript analysis. Three combinations of these primary mea-

surements were also considered of potential relevance: (5) Total

SMN-FL (SMN1-FL+SMN2-FL), (6) Total SMN (SMN-

FL+SMN-D7), and (7) a ratio of SMN2 transcripts that reflects

exon 7 inclusion (SMN2-FL/SMN-D7). As SMN1-FL is only

found in control subjects, the values of SMN2-FL and Total SMN-

FL are the same in SMA subjects.

SMN2-FL and SMN1-FL levels in whole blood were evaluated

by absolute real-time PCR [26]. GAPDH transcript levels were

determined as positive controls both for reverse transcriptase PCR

(RT-PCR) and real-time PCR in similar fashion. Analysis of

SMN-D7 transcripts followed a procedure similar to that of

SMN1-FL and SMN2-FL transcript quantification using primers

SMN-D7-absF CTG ATG CTT TGG GAA GTA TGT TAA TT

and SMN-D7-absR CCA GCA TTT CCA TAT AAT AGC CAG

TA, and probe SMN-D7_absP 59FAM - CAT GGT ACA TGA

GTG GCT A -NFQ39.

SMN Protein
A total of 127 samples (SMA 105, control 22) were available for

SMN ELISA measurements. Whole blood was collected into

EDTA K2 tubes and approximately 4 mL was poured into CPT

vacutainers (#362760 BD, Franklin Lakes, NJ). PBMCs were

isolated by centrifugation at 1500 rpm within 2 hours of collection.

PBMC samples were shipped at ambient temperature to PPD for

further processing and frozen storage. Frozen samples were

transferred to Enzo Life Sciences (Ann Arbor, MI) for SMN

analysis. PBMCs were thawed in a 37uC water bath and viable cell

hemocytometer counts, performed immediately prior to lysis, were

used to determine the appropriate volume of lysis buffer (LB-11)

needed to establish a consistent concentration of the cell

suspension of 108 cells per milliliter. LB-11 containing 300 mM

NaCl, 10% glycerol, 3 mM EDTA, 1 mM MgCl2, 20 mM b-

glycerophosphate, 25 mM NaF and 1% Triton X-100 was used

along with protease inhibitors PIC8340 (Sigma #P8340, St. Louis,

MO) and phenylmethylsulphonyl fluoride (Sigma #P7626). The

cell suspension was gently vortexed and placed on ice for 30

minutes. The cell lysate was transferred to a 1.5 mL centrifuge

tube and was clarified by centrifugation for 10 minutes at 14,000

RCF, 4uC. The supernatant was transferred to a clean vial and

either assayed immediately or stored at –70uC until use.

Recombinant human SMN1 was generated from full-length

cDNA expressed in bacterial expression vectors and purified for

use as a standard in the ELISA. The capture antibody Sigma anti-

SMN clone 2B1 (#S2944) was coated at 100 uL onto Costar

Stripwell (#92592, Lowell, MA) at 3.5 ug/mL. After overnight

incubation at room temperature, the plate was blocked for 5 hours

with 1% BSA in PBS. Cell lysate samples and recombinant

hSMN1 or HeLa cell lysate standards were loaded at 100 uL per

well. Standards were diluted in 2-fold dilutions or from 0.0625-

4 ng/mL. Samples were incubated for one hour at room

temperature, washed and then incubated with a detection

antibody from ProteinTech (#11708-AP-1, Chicago, IL) at

2 ug/mL for one hour at room temperature. After washing, a

peroxidase conjugated goat anti-rabbit IgG from Jackson Im-

munolabs (5-#035-144, West Grove, PA) was applied at 50 ng/

mL to the plate and incubated for 30 minutes at room

temperature. After washing, plates were developed with TMB

substrate for 30 minutes at room temperature and the reaction

stopped after 30 minutes with 1N HCl acid. Plates were then read

on a spectrophotometer at 450 nm. Plates were sealed and gently

shaken during all incubations, and dilutions of sample and

standard were done in assay buffer (1% BSA, 0.1% Tween-20 in

PBS).

Results

Characteristics of the Study Cohort
A total of 130 subjects were enrolled, including 17 Type I, 49

Type II, 42 Type III SMA, and 22 healthy control subjects.

Enrollment figures slightly exceeded the original targets for each

group due to replacement, per protocol, of subjects in whom

specimens were of insufficient quantity (n = 7) or quality (n = 3). All

18 study sites contributed at least one subject over the course of 18

weeks concluding in March 2009. The age and gender distribution

of those enrolled is presented in the second table of companion

paper, Finkel et al [55]. Although age of onset correlates with

phenotype severity in SMA, a key recruitment goal of this study

was to minimize within the ascertained cohort the correlation

between present age and present functional status – because such

correlation might introduce an age bias into identified markers

and reduce the power of discrimination between factors associated

with SMN2 copy number, SMA type, and motor function. This

goal was achieved both overall and within SMA groups Type II

and III, and to a partial extent, SMA Type I (Figure 1, Table 1,

Figure S1 and Table S1, see companion paper, Finkel et al. [55]).

SMN2 Copy Number
Copy number of SMN2 varied in the SMA subjects from 1 to 6,

and distributed with SMA type in a manner consistent with

previous experience [1,2,32], confirming the hypothesis that there

is an inverse relationship between SMA severity and SMN2 copy

number in this cohort (Figure 2). SMN2 copy number increased

and was strongly associated (p = 0.002) with SMA type (Figure 2

and Table S2). SMA Types I and II most commonly had 2 and 3

copies of SMN2 respectively, and Type III SMA had 3 or 4 copies

of SMN2 (Table 2). This SMA cohort included a few prominent

outliers of the trend correlating SMA type to SMN2 copy number

SMN Expression in SMA
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including Type 1 subjects with high SMN2 copy number, and

Type III SMA subjects with a low SMN2 copy number.

Additionally, it was noteworthy that this cohort contained SMA

subjects with 5 or 6 copies of SMN2.

Deviations from the usual relationship between copy number

and SMA type further confirm that SMN2 copy number alone

does not predict individual phenotype severity. SMN2 copy

number was significantly lower in control subjects (p,0.001), with

values similar to other reports [1,33]. This trend, previously

reported, likely relates to two processes: (1) embryonic lethality of

genomes containing 0 copies of SMN1 and less than 2 copies of

SMN2, and (2) pathogenic SMA alleles often contain a conversion

type mutation wherein the sequence of SMN1 is converted to that

of SMN2, increasing SMN2 copy number in individuals with the

less severe forms of SMA [34–36].

Figure 3 shows the lack of a relationship between SMN2 copy

number and age, whether overall or by type, confirming the

success of the recruitment strategy to establish a cohort in which

SMA type and age were not correlated. In addition, there was no

correlation between SMN2 copy number and MHFMS score in

Type II or III SMA groups in isolation, or in the Type II+III

group combined, when subjects with maximum or minimum

MHFMS scores were removed (data not shown) (21 subjects with a

minimum score, and 42 subjects –22 with SMA and 20 control –

with a maximum score). There was no association between SMN2

copy number and gender. A post-hoc analysis determined that

exclusion of outlier subjects with high copy number did not result

in a meaningful change in any of the identified relationships.

SMN Transcripts, Age and Gender Comparisons
In a regression model controlling for SMA diagnosis and type,

SMN2-FL (p = 0.007), SMN-FL (p = 0.008) and SMN-total

(p = 0.036) transcript levels decrease with age. SMN-D7 and

GAPDH transcript levels did not change significantly with age

(Figure S1 and Table S1). There was no significant effect of gender

on any of the transcript measurements.

SMN Transcripts: Relationship to SMA Type, SMN Copy
Number, and MHFMS

The relationship of SMN transcripts to the three SMA types

and control groups is presented in Figure 4 and Table S2. SMN-

FL transcript levels increased with SMA type (Figure 4A, Table 2),

and levels in all three types were less than that found in controls,

Figure 1. Modified Hammersmith Functional Motor Scale
versus age by SMA cohort. Scores for the MHFMS were well-
distributed by age across the enrollment cohorts. It should be noted
that not all control individuals achieved a score of 40 on the scale, while
all Type I SMA subjects were assigned scores of zero in the assessment.
doi:10.1371/journal.pone.0033572.g001

Table 1. SMA and Control Subjects’ Clinical Data.

SMA Type I
N = 17

SMA Type II
N = 49

SMA Type III
N = 42

Control
N = 22

p-value*
Type I vs II vs III

p-value* SMA
vs Control

Age (years) 0.14 0.84

mean (SD) 5.70 (3.54) 6.55 (3.40) 7.51 (3.11) 6.95 (3.29)

median [range] 4.03 [2.39–12.66] 6.49 [2.16–12.98] 7.42[2.37–12.95] 6.02 [2.16–12.59]

Sex, n (%) 0.73 0.64

male 10 (58.8%) 26 (53.1%) 20 (47.6%) 10 (45.5%)

female 7 (41.2) 23 (46.9%) 22 (52.4%) 12 (54.6%)

MHFMS ,0.001 ,0.001

mean (SD) 0 (0) 14.02 (10.55) 34.1 (10.0) 39.8 (0.7)

median [range] 0 [0–0] 11 [0–36] 40 [2–40] 40 [37–40]

*ANOVA for continuous variables; Fisher exact test for categorical variables.
Legend: There were no significant differences in age or gender across the recruitment cohorts. The Modified Hammersmith Motor Function Scale differentiated
between SMA subjects and controls and between Type I, II and III subjects.
doi:10.1371/journal.pone.0033572.t001

Figure 2. SMN2 copy numbers in SMA and Control subjects.
SMN2 copy number is lower in Controls than it is in SMA subjects, in
whom copy number is related to type.
doi:10.1371/journal.pone.0033572.g002
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due to the presence of SMN1. SMN2-FL transcript level increased

with SMA type (Figure 4A, Table 2), but it was similar for Type III

subjects and controls. As hypothesized, the analysis of subjects with

SMA revealed a significant difference for SMN2-FL (and hence,

Total SMN-FL) transcript levels for Type I vs Type II, Type I vs

Type III and Type II vs Type III (p = 0.031, ,0.001, 0.024,

respectively). SMN-D7 transcript level was higher in Type II and

III compared to Type I and controls (Figure 4B, Table 2). It is

notable that the ratio of SMN2-FL/SMN-D7 was similar within

SMA groups (Figure 4D, Table 2), and is higher in controls, which

was mostly driven by lower levels of SMN-D7 in controls.

Surprisingly, GAPDH transcript levels were significantly different

in SMA Type I versus Type II or III subjects (Figure 4E, Table 2).

A noteworthy finding is that within the SMA subject group

there was no association of SMN2-FL, (Total SMN-FL) or any

other transcript levels to SMN2 copy number. The only significant

association between any SMN transcript and SMN2 copy number

is that of SMN-D7 assessed in the whole study group combining

SMA and control subjects (r = 0.31, p = 0.003).

SMN2-FL and SMN-D7 transcript levels in SMA subjects

showed some modest relationships to MHFMS score when the

transcripts were assessed in all SMA subjects, including those with

a maximum or minimum MHFMS score value (r = 0.34, p = 0.009

for Type II+III only for SMN2-FL; r = 0.60, p = 0.0001 for Type

III only for SMN-D7). When the analysis was confined to the 67

subjects having non-maximum or minimum MHFMS scores – to

address the possible confounders associated with floor and ceiling

effects – the relationship between SMN2-FL and SMN-D7

transcripts and MHFMS was lost.

Table 2. SMA and Controls SMN Transcripts, Protein and Copy Number.

SMA Type I SMA Type II SMA Type III Control

SMN2 Copy Number N = 16 N = 48 N = 42 N = 21

mean (SD) 2.5 (0.9) 3.0 (0.7) 3.5 (0.8) 1.7 (1.1)

median [range] 2.1 [1.8–5.2] 2.9 [1.8–5.2] 3.2 [2.2–5.9] 1.3 [0.0–4.2]

SMN Protein (pg/106 cells) N = 13 N = 43 N = 38 N = 22

mean (SD) 10.1 (4.8) 14.0 (7.3) 14.7 (10.0) 25.2 (19.6)

median [range] 10.6 [2.3–19.4] 12.8 [1.6–33.1] 12.4 [3.1–45.8] 18.8 [5.0–86.2]

SMN2-FL Transcripts (mol/ng) N = 13 N = 36 N = 31 N = 13

mean (SD) 38.3 (16.3) 49.0 (18.6) 58.1 (20.0) 51.5 (22.3)

median [range] 32.1 [19.1–70.2] 48.9 [17.3–94.8] 54.2 [31.8–111.2] 55.6 [15.5–91.7]

SMN-FL Transcripts (mol/ng) N = 13 N = 36 N = 31 N = 13

mean (SD) 38.3 (16.3) 49.0 (18.6) 58.4 (19.7) 134.1 (65.1)

median [range] 32.1 [19.1–70.2] 48.9 [17.3–94.8] 54.2 [34.0–111.2] 129.9 [40.9–259.8]

SMN-D7 Transcripts (mol/ng) N = 13 N = 36 N = 31 N = 13

mean (SD) 140.6 (69.8) 202.6 (73.0) 200.4 (97.5) 115.2 (64.2)

median [range] 133.5 [65.5–320.8] 212.0 [54.4–316.9] 188.9 [52.8–400.0] 121.3 [16.2–236.9]

SMN-total Transcripts (mol/ng) N = 13 N = 36 N = 31 N = 13

mean (SD) 178.8 (76.5) 251.6 (82.1) 258.8 (110.5) 249.4 (98.3)

median [range] 163.1 [95.7–361.3] 278.2 [78.3–367.8] 247.4 [95.5–475.4] 267.6 [63.9–448.8]

SMN2-FL/SMN-D7 Transcripts N = 13 N = 36 N = 31 N = 13

mean (SD) 0.31 (0.13) 0.26 (0.09) 34.1 (0.16) 0.44 (0.15)

median [range] 0.33 [0.13–0.52] 0.27 [0.09–0.45] 0.28 [0.14–0.81] 0.42 [0.22–0.68]

GAPDH Transcripts (mol/ng) N = 12 N = 36 N = 30 N = 13

mean (SD) 4937.0 (1900.1) 3662.0 (1870.4) 3165.1 (757.5) 4251.5 (2079.1)

median [range] 4535.0 [2428.6–8180.0] 3298.5 [1450.0–7860.0] 3054.5 [1580.0–4520.0] 3570.0 [2230.0–9330.0]

Mean and median values of SMN transcripts, protein and copy number for SMA Type I, II, III and Controls. Transcript values are presented as number of molecules per ng
of total RNA (mol/ng).
doi:10.1371/journal.pone.0033572.t002

Figure 3. SMN2 copy number relationship to age, and by SMA
Type or Control. Subjects with each SMA type are broadly distributed
across the age range, with the exception of type I SMA for whom there
is some bias to younger age. As a consequence, SMN2 copy numbers
are also broadly distributed. Values have been plotted with a small y-
axis offset to avoid overlap of values.
doi:10.1371/journal.pone.0033572.g003
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SMN Protein
As expected, SMN protein was significantly lower in SMA

samples compared to control (Figure 5). Counter to our

expectations, SMN protein levels did not differentiate between

types (mean of 14.1, 14.0 and 14.7 pg/106 PBMCs for Types I, II

and III; Table 2). SMN protein levels did correlate with SMN2

copy number for all SMA subjects as one group (r = 0.33,

p = 0.001), with the largest contribution of that relationship from

Type II SMA subjects (r = 0.41, p = 0.008). SMN protein also

correlated with total SMN-FL transcript when all SMA subjects

are combined with controls (r = 0.26, p = 0.021). In addition, SMN

protein did not correlate with MHFMS.

Discussion

Blood-Derived Measures of SMN
This is the first report in which SMN2 copy number, and

transcript and protein measures of SMN expression in blood using

the quantitative assay methodologies that reflect the current

consensus in the field, have been applied prospectively to a large

and broad cohort of subjects with SMA. Tables 3 and 4

summarize qualitatively the many comparisons made in this study

between measurements of SMN copy number, SMN transcripts,

and SMN protein to the clinical variables of MHFMS, SMA type,

and SMA diagnosis to healthy controls; and the relationship of the

several SMN measures to one another.

Our findings confirm the data from previous blood sample

studies that show lower SMN-FL transcripts and protein in the

most severely affected subjects with SMA Type I [23–26]. In

addition, this study extends these findings to identify relationships

in milder types of SMA, confirming the findings of Tiziano et al.

Figure 4. SMN transcript concentrations in SMA and Control subjects. A,C: SMN2-FL, SMN-FL and Total SMN transcripts generally increase
with SMA Type. SMN-FL (A) is a sum of SMN1-FL (present only in healthy controls) and SMN2-FL. B: SMN-D7 expression levels are lower in Type I
patients compared to other SMA Types but they are similar to that of Controls. D: Ratios of SMN2-FL to SMN- D7 differ between SMA Types and
Controls, however differences between SMA Types are absent with the exception of Type II versus Type III patients. E: GAPDH transcript levels are
elevated in SMA Type I and Controls relative to Type II and III patients.
doi:10.1371/journal.pone.0033572.g004

Figure 5. SMN protein levels in SMA and Control Subjects.
While SMN protein levels are lower in SMA relative to Control subjects,
protein levels by SMA type are not statistically different from each
other.
doi:10.1371/journal.pone.0033572.g005
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[26] in a smaller cohort. GAPDH transcript levels were statistically

different between SMA Type I versus Type II and III patients,

suggesting a need for caution in the selection of housekeeping

genes for transcript normalization. This lends further support to

the use of methods based on absolute standard curves for

transcript analysis in order to avoid biases in data interpretation.

There was no relationship between any measure of SMN

expression and motor function as measured by the MHFMS

within the subset of subjects having non-maximum or non-

minimum scores. One important caveat to these findings is that

this functional scale was designed for children with SMA Type II.

In this study a MHFMS score was given to all subjects (SMA Type

I assigned a score of ‘‘0’’), but only subjects with SMA Type II and

those with Type III SMA who are no longer able to walk achieved

scores that were inside the minimum and maximum boundary

values of the scale. There is, at present, no validated instrument of

functional motor assessment that encompasses the entire range of

SMA into a single scale. Comparisons of blood derived measures

of SMN expression to subject motor function were thus necessarily

constrained to a subgroup of subjects. Previous findings [26] of an

association of SMN transcript levels to MHFMS may be due to

small sample size of the cohort, to the inclusion of maximum and

minimum MHFMS value patients, and stronger correlations

between SMA type, age, and MHFMS within that cohort

compared to this study selectively recruited to minimize these

confounders. It is possible that significant associations of blood

measures of SMN expression might be possible for other

assessments of motor function that target the ranges above or

below that assessed by the MHFMS. One consideration for future

work is to extend the analysis made here for MHFMS to

additional functional tests that better evaluate patients with higher

and lower function, as well as do a longitudinal assessment of SMA

patients across functional groups.

SMN2 copy number is grossly related to the disease severity but

has only modest predictive value for individual patients. SMN

transcript levels were reduced in patients compared to controls in a

manner graded by SMA type. The differences in SMN-FL

abundance relative to SMA type (Figure 4) are modest when

compared to the more substantial differences in SMN-FL

comparing SMA as a group to healthy controls. This finding

supports a hypothesis derived from the genetic epidemiology of

SMA, that the differences in SMN expression capacity between

SMA types are relatively small. Embryos inheriting only a single

copy of SMN2 are subject to early lethality. The differences in

clinical expression between those with 2 and 3 copies SMN ranges

from early death to easy ambulation, indicating a substantial role

of small differences in SMN production capacity. These small

differences are apparent in the small group differences found in

SMN-FL concentration between SMA Types I, II, and III. Given

the wide overlap for SMN transcript levels among the different

SMA types, these measures may not have prognostic value as

stand-alone measures. Determination of their ultimate predictive

value thus requires further exploration, and in particular re-

examination in the context of treatment with SMN-targeting

drugs.

A notable finding is that SMN2-FL (Total SMN-FL) transcript

abundance correlates with SMA type, but not with SMN2 copy

number, but SMA type and SMN2 copy number are themselves

highly correlated. A similar lack of correlation between SMN

transcript and SMN2 copy number was found previously [26],

though the smaller cohort size in that study limited the impact of

the observation. The fact that SMN transcript is more powerfully

associated with SMA type than with SMN2 copy number could

identify a molecular basis for the lack of a tight prediction of SMA

type by SMN2 copy number. The absence of correlation between

SMN2 copy number and SMN2-FL transcript level may be the

consequence of (1) differences in regulation of transcription and

alternative splicing of individual SMN2 genes, (2) the presence of

non-intact variants of the gene, (3) variability in stability of SMN2

transcripts, (4) differences at the genomic level among SMN2

genes [37], (5) high variance in SMN levels or any combination of

these factors. These factors might also contribute to additional

variability in SMN2-FL levels among SMA patients.

The lack of strong correlation between SMN protein levels, and

SMN2 copy number or transcript levels in SMA patients suggests

that there may be significant modulation of SMN at the

posttranscriptional level. This regulation could be different for

different cell types and tissues and it may also vary by age.

Moreover, it should be pointed out that PBMCs may not fully

reflect SMN expression levels in more disease relevant cells like

motor neurons, muscle, or both. There is a large body of evidence

that suggests that other genetic modifiers of SMN can significantly

impact SMA phenotype in animal models and humans [38–41]. In

addition, the inclusion or exclusion of exon 7 into SMN2

transcripts is controlled by several protein factors that could

contribute to the levels of full-length transcripts [42–54]. It is

similarly understood that the functional outcome measures

assessed in this study are also subject to a wide range of factors.

Nevertheless, these results confirm that SMN transcript and

protein are measureable in blood, that there is important inter-

patient variability in transcript and protein levels, and that neither

transcript, protein nor SMN2 copy number are solely predictive of

phenotype. It will be critical to explore changes in intra-patient

transcript and protein levels over time and in other tissues and the

regulatory factors governing transcription and translation.

Table 3. Summary of SMN associations: Pairwise analysis
between various SMA groups.

SMA group vs. control Between SMA types

SMN2 copy number Yes Yes

SMN2-FL transcript No Yes

SMN protein Yes No

The ‘‘Between SMA types’’ column includes the following comparisons: Type I
vs Types II+III, Type I vs Type II, Type I vs Type III, Type II vs Type III.
doi:10.1371/journal.pone.0033572.t003

Table 4. Associations between SMN2 copy number, SMN2
full-length transcript, SMN protein and MHFMS.

SMN2
copynumber

SMN2-
FLtranscript MHFMS

SMN2 copy number N/A No No

SMN2-FL transcript No N/A No

SMN protein Yes* No No

The ‘‘SMN2 copy number’’ and ‘‘SMN-FL transcript’’ columns include the partial
correlation analysis for SMA+Controls, SMA (all SMA patients), Type I, Type II,
Type III, Controls. The ‘‘MHFMS’’ column includes the analysis for Type II, Type III
and Type II+Type III with exclusion from the analysis of subjects having
minimum or maximum scores.
*Correlation was only found for the SMA group (r = 0.33, p = 0.001) and Type II
group (r = 0.41, p = 0.008).
doi:10.1371/journal.pone.0033572.t004
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The absence of an association of SMN transcripts or protein to

motor function as assessed by MHFMS might be expected, as

SMA likely progresses due to downstream cellular consequences of

diminished SMN abundance. This is a robust negative finding, as

the power of this study cohort was aided by the successful

recruitment of a wide and evenly distributed range of SMA type,

SMN genotype, motor function and age. Nevertheless, these

findings do not preclude further exploring measures of SMN

expression in blood as a biomarker of early pharmacodynamic

assessment of in vivo ‘‘target engagement’’ of a putative SMN-

enhancing agent.

Further studies are also needed to evaluate the potential value of

blood-derived measures of SMN expression to SMA therapeutics.

The first will be to understand better its performance as a clinical

measure. An important extension of this initial cross-sectional

analysis will be a longitudinal analysis of individual patients, across

the spectrum of SMA type and age, to evaluate the stability of

measures of SMN expression over time. The extent to which

measures of SMN transcript or protein values in blood are stable

in repeated within-subject measurements, as suggested by

preliminary findings [26] will determine the power of these assays

to evaluate a systemically delivered SMN-enhancing therapeutic

agent. A second line of investigation will be to assess the

relationship of blood-derived measures of SMN to that of other

tissues, and in particular to the expression of SMN in the CNS. To

some extent this can be done by comparing SMN transcript and

protein in the more difficult, but still accessible, tissues such as skin

and muscle, or from CNS tissues available from post-mortem

samples of subjects with SMA. Alternatively, comparing blood to

CNS-derived measures of SMN expression in relevant animal

models may be useful to establish the strength of any relationship

between the two. Other future studies that may be valuable to

clinical trials, and a better understanding of the biology of SMA

and SMN-depletion, would be to identify of the relationship of

candidate biomarkers found in the companion study to the

markers of SMN abundance identified here.
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