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Abstract

Survey data over the last 100 years indicate that populations of the endemic Hawaiian leafroller moth, Omiodes continuatalis
(Wallengren) (Lepidoptera: Crambidae), have declined, and the species is extirpated from large portions of its original range.
Declines have been attributed largely to the invasion of non-native parasitoid species into Hawaiian ecosystems. To quantify
changes in O. continuatalis distribution, we applied the maximum entropy modeling approach using MAXENT. The model
referenced historical (1892–1967) and current (2004–2008) survey data, to create predictive habitat suitability maps which
illustrate the probability of occurrence of O. continuatalis based on historical data as contrasted with recent survey results.
Probability of occurrence is predicted based on the association of biotic (vegetation) and abiotic (proxy of precipitation,
proxy of temperature, elevation) environmental factors with 141 recent and historic survey locations, 38 of which
O. continuatalis were collected from. Models built from the historical and recent surveys suggest habitat suitable for
O. continuatalis has changed significantly over time, decreasing both in quantity and quality. We reference these data to
examine the potential effects of non-native parasitoids as a factor in changing habitat suitability and range contraction for
O. continuatalis. Synthesis and applications: Our results suggest that the range of O. continuatalis, an endemic Hawaiian
species of conservation concern, has shrunk as its environment has degraded. Although few range shifts have been
previously demonstrated in insects, such contractions caused by pressure from introduced species may be important factors
in insect extinctions.
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Introduction

Concerns over non-target effects of introduced biological

control agents on native insects were most famously raised to the

public conscience by conservationists in Hawaii [1–2]. The

geographic isolation of the Hawaiian Islands has resulted in the

evolution of a remarkable diversity of endemic organisms, and

scientists expressed concern over the long-term threats to the

persistence of these unique species [2]. Based on a review of

biological control programs, and an assessment of the conservation

status of endemic Hawaiian terrestrial arthropods, introduced

biological control agents were postulated to be responsible for the

extinction of at least 15 endemic Hawaiian Lepidoptera [1].

Hawaiian species in the moth genus Omiodes Guenée (Lepidop-

tera; Crambidae) have been at the forefront of heated debates

concerning the safety and practicality of biological control on

endemic organisms. In the early 1900s, two of the 23 Hawaiian

species, the sugarcane leafroller (O. accepta Butler) and the coconut

leafroller (O. blackburni Butler), became pests of economic

significance on their respective crops [1,3]. In response, between

1895 and 1960, several parasitoids were brought to the islands and

released to suppress populations of the two endemic pests [3].

Subsequently, these introduced parasitoids were implicated in the

disappearance and possible extinction of 14 non-target Omiodes

species [1]. The release of these generalist parasitoids was

conducted prior to the adoption of modern, more stringent and

specific, biological control and risk assessment methodologies [4].

However, assertions of non-target impacts of the biological

control agents were largely based on casual field observations, as

opposed to research specifically designed to quantify non-target

impacts [2,5–6]. In response to this lack of data, retrospective

studies were initiated over the last 20 years to assess the non-target

effects of both accidentally and purposefully introduced parasitoids

on current populations of several native Hawaiian insects [3,7–9].

These studies confirmed that non-target attacks occur, but have

only recently demonstrated that non-target parasitism is sufficient

to cause population declines in native Hawaiian insects, though

parasitoids may not be solely responsible for native insect

extinctions [10,11].

Omiodes continuatalis (Wallengren) is an endemic Hawaiian

leafroller moth that feeds on both native and non-native grasses,

and was formerly widely distributed across the Hawaiian Islands
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[12]. This moth was listed as extinct in the 1980s [1], and while it

has since been rediscovered [13], surveys indicate that the species

has declined across large portions of its original range [11], and

like many endemic Hawaiian insects, it is of conservation concern.

The moth was historically found on all of the main Hawaiian

Islands, but now occurs only on the islands of Hawaii, Maui,

Molokai, Lanai and Kahoolawe [11]. The reasons for the species’

extinction from relatively pristine reserves on the islands of Kauai

and Oahu, and for its persistence in altered habitat on other

islands, remain unclear.

Understanding why native species may be eliminated from

nature reserves yet persist in altered landscapes is of broad

importance to the fields of ecology and conservation. Conservation

management often focuses on maintaining natural features of

reserves, primarily native vegetation, but such features may not be

the limiting factors defining suitable habitat for species of

conservation concern. The impacts of invasive parasitoids on host

species can vary greatly depending on the environmental

conditions of the habitats where they occur, and parasitoids cause

non-uniform range reductions in some species of Lepidoptera due

to interactions with the local environment [14]. Because O.

continuatalis appears to have suffered such non-uniform range

reductions, it is an ideal candidate for examining how changes in

habitat suitability over time, including parasitoid invasions, affect

the persistence of a species across landscapes. The objectives of this

study were to explore the spatial and temporal nature of the

decline of O. continuatalis by examining changes in the presence and

distribution of high quality habitat, as inferred from the historical

and current presence of the moths. We used a retrospective

ecological niche modeling (ENM) approach to reveal patterns of

habitat overlap and movement.

Here we apply the maximum entropy approach to illustrate and

quantify the probability of occurrence of a declining moth, O.

continuatalis, across the Hawaiian Islands, and explore how the

probability of occurrence has changed over time. By using

projections of future climatic conditions, we also predict how

habitat suitability is likely to continue to change in the future. We

explore the reasons behind changes in habitat suitability,

specifically referencing the distribution and impacts of introduced

parasitoids.

Materials and Methods

Collections
Current survey data. Current distribution data for O.

continuatalis were obtained from field surveys at 111 locations, for

186 cumulative trap nights, across the Hawaiian Islands between

2004 and 2010 (Fig. 1). Locations for field surveys were selected

based on the historical presence of Omiodes species, and/or the

presence of O. continuatalis host plants. Ultraviolet (UV) lights were

used either with bucket traps or on suspended white sheets to

survey for O. continuatalis adults, with at least one of the two trap

types set at each field site. These methods are effective for

collecting O. continuatalis, which are strongly attracted to UV lights

[11]. Moths observed but not necessarily collected during visual

surveys were also included in these data. Specimens from current

Figure 1. Map of historic and current O. continuatalis presence localities collected from around the Hawaiian Islands, as well as light
trap collection localities where O. continuatalis were not observed during current surveys. These points were used to develop the
Ecological Niche Models for each time period.
doi:10.1371/journal.pone.0051885.g001
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surveys were deposited at the University of Hawaii Insect Museum

(UHIM). Only data points representing the localities where O.

continuatalis were found (n = 19) (Fig. 1) were used in these analyses,

because the modeling methods used rely on presence-only data

(see below). Geographic coordinates were obtained for each of the

localities using a Garmin eTrex Vista HCx Global Positioning

System (GPS) unit, and by geocoding the localities using ArcGIS

10 [15] and Google Earth. All locality and environmental data

were visualized in ArcGIS 10.

Historical Survey Data
Historical O. continuatalis distribution data were obtained from

the labels of O. continuatalis specimens deposited in the Bishop

Museum insect collection (BPBM, Honolulu, HI). The Bishop

Museum is the only significant source of historical locality data for

O. continuatalis. Locality data (place name and elevation) for all O.

continuatalis specimens collected during the period 1892–1967,

were downloaded from the National Biological Information

Infrastructure website (http://www.nbii.gov). Collections of

Omiodes continuatalis occurred continuously over this 75-year period,

by many different collectors who primarily used light traps, but

apparently ceased in 1967 and were not resumed until our current

surveys. Specimen collection locations were reviewed and

geocoded using ArcMAP or Google Earth to obtain geographic

coordinates. Specimens without adequate information to geo-

reference localities within approximately 1 km were not used in

the analyses. Where multiple specimens were available for the

same locality, the locality data were geocoded only once. Out of 40

individual historical collections with adequately precise locality

information, we derived point data for 19 localities across seven

islands (Fig. 1).

Habitat Suitability Analysis
Selection of key habitat variables. We selected and

developed four environmental variables (elevation, vegetation,

and proxies for precipitation, and temperature) that would

maximize variance explained per site while also reducing over-

parameterization and auto-correlation (Table 1). We chose a

broad set of environmental attributes that varied on a relatively

coarse spatial scale (30 arc seconds, or , 1 km) because we had a

small number of localities from which to define the ENM, and

these were all based on light trap collections of adult moths (a

coarser indicator of distribution than larval surveys). By incorpo-

rating only this subset of descriptive variables we created a liberal

prediction of distribution compared to what might be predicted

based on larval distribution data, which are unavailable for O.

continuatalis due to their cryptic nature [16].

The abiotic variables PCAPrcp and PCATemp are the first

eigenvectors (EV’s) of a Principal Component Analysis (PCA)

conducted on a subset of the 19 current and future 30 arc second

bioclimatic variables (www.worldclim.org and www.ccafs-climate.

org) in the Spatial Analyst extension for ArcGIS 10. The

worldclim dataset was developed from data collected between

1950 and 2000 [17], and was used to develop the ENM describing

the contemporary and historic distributions of O. continuatalis.

Two PCAs were conducted such that the variance described by

temperature (PCATemp = Bioclimatic variables 1–11) and precip-

itation (PCAPrcp = Bioclimatic variables 12–19) were explained by

two separate analyses. Table 1 shows the manner in which the

bioclimatic variables were parsed. The first EV of the precipitation

PCA explained 99% of the variance in both the current and future

datasets. For temperature, the first EV explained only 60.8% and

74.1%, while the second EV explained 39.1% and 25.8% of the

variance in current and future climate datasets, respectively.

Supporting information Tables S1A-D show the EVs from PCAs,

and the proportional and cumulative variance explained by each.

The future bioclimatic variables were derived from the 2050

GFDL 2.1 climate change model under the A2a emission scenario,

which was described by Irving et al. [18] as appropriate for

predicting the effects of climate change in the Pacific Islands.

Correlations between all pairs of environmental and climate

variables (current and projected) were assessed using Pearson

correlation analyses in ENMTOOLS (vers. 2.1). Variables were

selected for inclusion in analyses only if they were less than 35%

correlated (positively or negatively) to another variable within the

same time period (current or future) This is a conservative

approach towards autocorrelation (i.e. multi-colinearity) consider-

ing other studies have used a selection threshold of less than 75%

correlation [19]. The second EV’s of both current and future

temperature PCA’s (i.e. PCAtemp 2) were removed due to their

extensive overlap with elevation. Our final analysis consisted of

three abiotic variables (elevation, PCAtemp, PCAprecip) and a

single biotic variable (vegetation). As recommended by Phillips

et al. [20], we used a categorical variable describing vegetation

type to better define the distribution of O. continuatalis.

Analyses. In both agricultural and conservation manage-

ment, ENM’s have been used to predict the suitable habitat of an

organism in either its ancestral region or novel areas of possible

invasion [21–27]. Using the ENM approach, ecologists can infer

inter- and intra-species fundamental niches [19,28–29] prevalence

[30–32], and niche overlap [33]. Though there are a large number

of other modeling approaches capable of defining these habitat

characteristics, the presence-only maximum entropy approach

implemented in the program MAXENT is one of the most widely

used and accurate techniques [28,34–38]. Using species presences

and environmental variables (elevation, soil, temperature, land-

cover etc.). MAXENT has been used to accurately estimate the ENM

under maximum entropy from as few as five occurrence records

[20–22,29,38].

As recommended by Pearson et al. [22], a presence only

modeling technique was used, in part to account for difficulty of

detecting O. continuatalis. Given the mobile nature of adult moths,

the failure to collect O. continuatalis during a particular trapping

event can imply false absence [39–42], making the presence-only

modeling technique implemented in MAXENT vers. 3.3.3 [20,38], a

more appropriate methodology for our data set [22,43]. Using the

presence only methodology implemented in MAXENT we were able

to compare historic, current, and future predictions (i.e. time series

analysis).

We used the maximum entropy ENM technique to analyze

historic and current data to describe the historic, current, and

future distribution of O. continuatalis. The maximum entropy

‘‘machine learning’’ methodology models the distribution of

environmental variables as extracted from occurrence localities

over geographic space. The approach then compares this

distribution to a null distribution of those environmental variables

over the same geographic space using a set of background points,

referred to as pseudo-absences. Using this modeling approach,

model significance and validation estimates can be approximated.

This methodological framework is discussed in more detail by

Phillips et al. [20], Phillips & Dudı́k [38], Franklin [44], and Elith

et al. [45].

Modeling parameters. Within MAXENT the maximum

number of background points was set to 10,000 with a

regularization multiplier of one. Bootstrap analysis was conducted

over 500 replicates and the output format was set to the logistic

option to better visualize the data. We used the threshold rule of

equal training sensitivity and specificity to model each distribution

Modeling the Decline of a Threatened Insect
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throughout Hawaii [46,47]. Equal training sensitivity and specificity

refers to the choice of a model that has an equal probability of

being sensitive (predicting true presences) as it does of being

specific (predicting true absences) [32,46,48]. For all other

variables the recommended default settings were used, as

described in Phillips et al. [20,38]. Because we had acquired

presence and absence data for the current distribution of O.

continuatalis, a separate ENM analysis was conducted (not reported

here) using the current data, where the default prevalence of 0.5

was changed to 0.22 (the number of presence points/total number

of points). We do not report this assessment because it was found

to overlap with the current ENM defining habitat under the

default (0.5) prevalence. As such, we only report the model

developed under the default prevalence to allow for direct

comparisons among time series. The Habitat Suitability Index

(HSI) per pixel was calculated in MAXENT, where a value of 0

represented unsuitable habitat and a value of 1 represented

completely suitable habitat. For ease of interpretation, each map

was projected in ArcGIS on an HSI scale from 0 to 0.86, because

0.86 was the largest HSI reported in any of the analyses.

Model validation. The presence-only area under the curve

(p-AUC) analysis describing the sensitivity and specificity of each

ENM prediction was calculated from a random test percentage of

20% of the data. Further validation of the model was conducted

following the protocols of Pearson et al. [22] in the program

PVALUECOMPUTE vers. 1 [22]. This Jackknife validation test

describes the probability of successfully predicting a randomly

selected occurrence point (q). The test generates a p-value

describing the analyses significance when compared to a random

distribution [22].

Model Comparison
We used the niche overlap tool in ENMTOOLS vers 1.3 [33] to

calculate pairwise niche overlap between developed models. The

niche overlap tool calculates two similarity metrics, the D and I

statistics [49], both of which range from 0 to 1. Here we report the

I statistic, as it is more appropriate for presence-only ENM

analyses [49]. A relative rank test and niche breadth analysis were

also conducted using ENMTOOLS. The relative rank test is

correlated with the I metric, but is a measure of habitat pairing

over all the possible habitat patches [33]. This test outputs a value

between 0 (no agreement) and 1 (complete agreement) [50].

The I and relative rank metrics were further analyzed with the

niche identity test in ENMTOOLS. The identity test assesses

whether the habitat suitability scores defined in two different

ENM’s are ecologically significantly different. In this test, the

actual niche overlap metric (i.e. similarity metric) is compared to a

one-tailed normalized null distribution to assess significance of the

analysis. The identity test used here compares the niche overlap or

relative rank of either the current or historical distribution of O.

continuatalis and that of a model developed from a random selection

of both sets of occurrence localities [33,49]. This identity test was

replicated 100 times with 1000 Markov Chain Monte Carlo

(MCMC) iterations, as recommended by Warren et al. [49].

We also conducted a niche breadth analysis using the Levin’s

niche breadth (B) analysis technique [51]. This metric describes

Table 1. An overview of the environmental variables used to define the ENM for O. continuatalis.

Description Source Ecological Relevance Variable type Citation

Elevation DEM: 10 meter digital
elevation model of the
Hawaiian Islands

http://ccma.nos.noaa.gov/
products/biogeography/
hawaii_cd_07/welcome.htm

Elevation is directly correlated in the distribution of
many native and non-native insects and is definitive
of microhabitat use [1,70–73]

Continuous/Abiotic [74]

Vegetation
Map

Hawaii USGS 30 meter
LANDFIRE Analysis
Vegetation map

http://landfire.cr.usgs.gov/
viewer/

Existing Vegetation Type analysis conducted for the
Hawaiian Islands describing vegetation ecotypes based
on canopy height and cover. It can used as a relatively
large scale predictor of biotic trends [75–76].

Categorical/Biotic [76]

Current
PCAtemp

The first Eigenvector
of a Principal
Component Analysis
of current (1950–2000)
temperature

http://worldclim.org Descriptive of the variance in temperature as described
by the first eigenvector of Bioclimatic variables 1–12.
Using this descriptor as a variable reduces multi-
colinearity (redundancy).

Continuous/Abiotic [17]

Current
PCAprecip

The first Eigenvector
of a Principal
Component Analysis
of current (1950–2000)
precipitation

http://worldclim.org Descriptive of the variance in precipitation as described
by the first eigenvector of Bioclimatic variables 13–19.
Using this descriptor as a variable reduces multi-
colinearity (redundancy).

Continuous/Abiotic [17]

Future
PCAtemp

The first Eigenvector
of a Principal
Component Analysis
of future (2050)
temperature inferred
from the GFLD 2.1
climate model A2a
emission scenario.

http://www.ccafs -climate.org/ Used the same Bioclimatic variables as the current
PCAtemp. A model evaluation conducted by Irving
et al., [18] indicated that the GFDL 2.1 climate model
performed adequately for Pacific region projections.

Continuous/Abiotic [77]

Future
PCAprecip

The first Eigenvector
of a Principal
Component Analysis
of future (2050)
temperature inferred
from the GFLD 2.1
climate model for the
A2a emission scenario.

http://www.ccafs-climate.org/ Used the same Bioclimatic variables as the current
PCAprecip. A model evaluation conducted by Irving
et al., [18] indicated that the GFDL 2.1 climate model
performed adequately for Pacific region projections.

Continuous/Abiotic [77]

doi:10.1371/journal.pone.0051885.t001
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the distribution of suitable habitat over the area tested. The Niche

Breadth analysis is here used to define how the relationship of

O. continuatalis to the environmental variables is changing over

time. Like the relative rank test, niche breadth test values range

from 0 (where only a single grid cell is considered suitable) to 1

(where all the grid cells are suitable) [33,50].

The area (km2) of suitable habitat per island was then defined to

better understand how the habitat is distributed throughout the

islands, and how the habitat will change with time on each island.

To quantify suitable habitat we first must define a threshold of

habitat suitability; here suitable habitat was defined as all pixels

with an HSI $0.5. This was not the threshold used in the MAXENT

model for validation estimates, rather we decided to use this cutoff

for ease of interpretation. Area of suitable habitat was then

estimated for each island in ARCGIS.

Results

ENM’s and their Validation
Figures 2A–B and 3A–B show the ENMs developed for the

historic, current, and future O. continuatalis distributions, each of

which represents the mean of 500 spatial data models. The test p-

AUC values 6 the standard deviation averaged over all 500 model

replicates are 0.86160.118 for the current ENM and

0.80460.124 for the historic ENM. Values of p-AUC greater

than 0.8, such as those in this study, are indicative of highly

specific and predictive models [28,52]. The Jackknife validation

test, an independent validation assessment for small sample sizes of

each predicted distribution, was conducted in PVALUECOMPUTE for

each collection period (i.e. historic and current). This analysis is

indicative of significantly predictive models when compared to a

random distribution (p,0.0001 for both historic and current

distributions). The Jackknife validation test predicted 78% of the

historic and 69% of the current presence points used in the

analysis.

ENM Comparisons and Overlap
Table 2 shows the niche comparison metrics [49], as compared

between current and historic collections under current and future

climate scenarios. The greatest overlap was between projections of

future distributions and the ENMs for the collection periods on

which the future projections were based. The least overlap was

between the 2050 projection based on current collection data and

the ENM for the historic distribution. Interestingly, the identity

test did not show ecologically significant differences between the

current and historic distributions as defined for the current

climate, yet there was a significant difference estimated when these

same comparisons were conducted on the future climate

projections (Table 2). The other comparison statistic used, the

relative rank estimate, also showed high overlap between the

current ENM and its future projection, and between the historic

ENM and its future projection. This test showed relatively low

overlap between current and historic ENMs. This would indicate

that the current and historic habitat patches are not occupied in a

similar manner. Both current and future climate projections for

the current and historic data were found to be ecologically

significantly different using the relative rank identity test (Table 2).

The niche breadth analysis in Table 3 gives a good indication of

habitat suitability/specificity over all the areas tested for each

model. Interestingly, higher levels of suitability were defined by the

future projections than the ENMs for current and historic

distributions. This predicts an expansion of suitable habitat under

projected future climate regimes, assuming all other variables

remain the same.

Yet a severe reduction in suitable habitat area is observed from

historic to current time periods, suggesting that the range

reduction from historical to current time periods is independent

of climate change, perhaps due to changes in habitat or biotic

interactions. As shown in Table 4, which compares suitable habitat

by island, the total percent reduction in suitable habitat between

historic and current distributions modeled under current climate

conditions is 98.2%, and this difference remains substantial

(90.2%) when modeled under future climate conditions. The

differential between the historic and current models (current and

future projections) corresponds to a total reduction of suitable

habitat across all islands of 2933 km2 and 21637 km2, respec-

tively. Although a total reduction in habitat occurs for the summed

area over all islands, some specific islands (i.e. Kahoolawe, Maui,

Hawaii) experience an expansion of habitat area from historic to

current periods modeled using current or future climate scenarios

(Table 4).

Discussion

The habitat utilized by a species is directly and indirectly

influenced by abiotic environmental conditions. First, each species

has a range of tolerance for abiotic environmental conditions, such

as temperature and moisture, and a particular combination of

these conditions is usually optimal for growth and reproduction.

Second, adequate food resources, and the quality and abundance

of these resources, whether they consist of detritus, specific host

plants, or prey, are influenced by abiotic conditions. Finally, the

range of a species is affected by pressures exerted by competitors,

parasites, predators, and diseases, all of which are related to

environmental conditions. A range shift in a species can therefore

be driven by either a change in environmental conditions

themselves (e.g. global warming or drought), or a change in any

one of several indirect pressures that interact with environmental

conditions (e.g., the addition of a novel predator or competitor).

Our objective in conducting the habitat suitability analyses was to

quantify how the distribution, extent and quality of habitat for O.

continuatalis has changed over time, and to explore possible

explanations for why such changes may have occurred in light

of the above mechanisms.

The predictive habitat distribution maps suggest that the

current optimal habitat for O. continuatalis is significantly reduced

compared to its historical range (Table 4). Additionally, these

analyses suggest that localities where O. continuatalis is currently

found are peripheral with respect to habitat considered optimal

based on historical data (Figures 2 & 3). The average elevation 6

standard deviation for historic optimal habitat, defined here as

habitat with an HSI .0.5, is 665 (6396) m with a maximum

elevation of 1,813 m. This contrasts with the contemporary

average elevation, which is 541 (6207) m, with a maximum

elevation of 1,167 m. The comparison indicates, for elevation at

least, that the new optimal habitat is a contraction of the historic

distribution.

We do not suspect that changes in food resources through

habitat alteration are responsible for the shift in optimal range for

O. continuatalis, although human land use impacts dominant

vegetation and habitat structure, and can reduce or eliminate

available resources, thereby reducing the persistence of popula-

tions [53]. For Lepidoptera restricted to feeding on rare or patchy

resources, habitat destruction and alteration often translates into a

decline or loss of larval host plants and adult nectar sources [54–

56]. However, O. continuatalis is polyphagous on grasses, and

readily utilizes several widespread non-native grass species,

including hilo grass (Paspalum conjugatum Bergius) and kikuyu grass

Modeling the Decline of a Threatened Insect
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(Pennisetum clandestinum Chiov.) [12], which occur abundantly in

many disturbed habitats, and are often the dominant groundcover

of roadsides and pastures. Therefore, host plant distribution is not

likely to be a direct limiting factor, although feeding on non-native

host plants may influence the likelihood that non-native parasitoids

will locate larvae. This hypothesis is supported by current survey

data, which record O. continuatalis in habitats ranging from

relatively intact native forest (Makawao Forest Reserve, Maui;

Keamoku Flow, Hawaii Island) to highly disturbed agricultural

areas (Haliimaile and Kula, Maui; Honokaa, Hawaii Island) and

pasture (Haleakala Ranch, Maui) where native grasses do not

occur. These data demonstrate that local extirpations of O.

continuatalis populations do not correlate with habitat alteration

through changes in land use.

Given that much of the optimal habitat contraction has been

from lower to higher elevations, it is tempting to invoke climate

change as a factor pushing O. continuatalis to higher elevations. In

general, insect populations are expected to migrate to higher

elevations and latitudes as global temperatures increase [57], and a

warming trend has been documented in Hawaii [58], as well as

changes in precipitation [59]. Although we would certainly expect

changes in climate to influence habitat suitability, perhaps via

interactions with parasitoids, the effect of climate change on

suitable habitat between historical and current time periods is

unclear. The historic and current ENM’s were both inferred using

the WORLDCLIM dataset developed from data collected between

1950 and 2000 [17], which encompasses one of the most dynamic

contemporary climatic periods ever recorded due to anthropo-

genic climate change [58,60]. Although the shift in suitable habitat

is consistent with what we might expect due to climate change, the

projected 2050 ENMs using both current and historical collection

data show an expansion of suitable habitat rather than a

contraction, suggesting that the decrease in suitable habitat

observed thus far is not simply a product of long-term climate

trends.

Figure 2. The Ecological Niche Models (ENM) defined in Maxent showing the distribution of O. continuatialis as collected from 2004
to 2010 and projected onto a set of biotic and abiotic variables. The figure shows the current ENM (A) along with that of the ENM projected
into 2050 (B). The 2050 GFDL 2.1 climate change model was used to derive projected future climate variables. As compared to the current distribution
(A) the 2050 projected distribution (B) shows an expansion of suitable habitat area (see Table 4).
doi:10.1371/journal.pone.0051885.g002
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If direct changes in abiotic factors are not responsible for the

shift in habitat suitability, ecological interactions are another

possible explanation. Introduced parasitoids and predators such as

ants and vespid wasps are often assumed to be responsible for

declines in Hawaiian Lepidoptera [1,2]. Direct field observations

confirm that O. continuatalis larvae are attacked by at least two ant

species, Pheidole megacephala (Fabricius) and Anoplolepis gracilipes (Fr.

Smith) [61], and they are likely attacked by other ant species as

well. There are no native social insects in Hawaii, thus native

insects are not evolutionarily equipped to defend against ant

predation [62,63]. There are at least 57 introduced ant species in

Hawaii [64], and the highest diversity and density of ant species

occurs at elevations below 900 m [65]. Given the extent of

historical optimal habitat for O. continuatalis, ants have undoubtedly

impacted lower elevation O. continuatalis populations. However the

broader pattern of declines and extirpations of O. continuatalis is

inconsistent with ant invasions across the Hawaiian Islands.

Omiodes continuatalis has disappeared from apparently suitable

habitats that currently have no ants, few ant species, or low

densities of ants. For example, Kokee State Park on Kauai has

experienced little invasion and establishment by ants [65], yet the

results of extensive field surveys in the area indicate that O.

continuatalis is no longer present, despite having been collected

there until 1937. In contrast, field sites that have yielded the

greatest number of O. continuatalis adults are infested with ants,

including the voracious predator P. megacephala [61]. While the

latter example shows only that O. continuatalis populations are able

to withstand the effects of predation by ants in some habitats, the

Figure 3. The Ecological Niche Models (ENM) defined in Maxent showing the distribution of O. continuatialis as collected from 1892
to 1967 and projected onto a set of biotic and abiotic variables. The figure shows the historically defined ENM (A) along with that of the ENM
projected 2050 (B). The 2050 GFDL 2.1 climate change model was used to derive projected future climate variables. As compared to the historic
distribution (A) the 2050 projected distribution of historic data (B) shows an expansion of suitable habitat area (see Table 4). Although the trend of
habitat expansion is similar to the contemporary (current and projected) models, the overall model prediction differs significantly (Table 2).
doi:10.1371/journal.pone.0051885.g003

Modeling the Decline of a Threatened Insect

PLOS ONE | www.plosone.org 7 January 2013 | Volume 8 | Issue 1 | e51885



former example confirms that factors other than ants and habitat

destruction are adversely affecting O. continuatalis populations.

Interactions with parasitoid wasps are also likely to have affected

the range of O. continuatalis, and these interactions may be

mediated by abiotic factors. Research over the last 20 years has

confirmed that introduced biological control agents and adventive

parasitoids utilize a broad range of native Hawaiian insects [3,7–

10]. These non-native parasitoid species have invaded relatively

intact native ecosystems [7,66], where other invasive predators

have not established. Both accidentally and purposefully intro-

duced parasitoid species are widely distributed throughout the

Hawaiian Islands [67]. At least 42 non-native parasitoid species

known to utilize Lepidoptera larvae or pupae have been collected

from field sites across the Hawaiian Islands, and no fewer than 24

of them have been found inhabiting high elevation native forest

habitats [7,11,20,66].

In previous studies, the authors estimated parasitism rates on O.

continuatalis at sites on Oahu and Maui using controlled exposure

trials [61], in which sentinel eggs and larvae were exposed to

parasitism. At least five non-native parasitoid species were found to

attack O. continuatalis, and the estimated risk of parasitism was

calculated to be higher at the Oahu site (65.3%) than at multiple

Maui field sites where estimated risk ranged from 4.9%–27.4%

[61]. An extensive metadata analysis of biological control

introductions suggests that parasitism rates above 36% can

independently suppress host populations [68]. While data from

Maui indicate a risk of parasitism below this level, the 65.3% risk

of parasitism for O. continuatalis on Oahu greatly exceeds this

threshold. These data are consistent with the results of our ENMs,

given that suitable habitat on Oahu has been more severely

reduced than suitable habitat on Maui (Table 4).

Mortality from non-native parasitoids, if it is related to the

environmental variables examined in this study, could explain the

pattern of island extinctions that have been observed in O.

continuatalis [11]. Recent and intensive survey efforts on Kauai and

Oahu failed to locate O. continuatalis, even in localities where the

species was previously collected [11]. The habitat suitability

analyses suggest that there is no longer suitable habitat (HSI $0.5)

for O. continuatalis on Kauai or Oahu, demonstrating a match

between our model, field data, and expert opinion. More rigorous

comparisons of parasitoid communities and rates of attack on the

different islands are necessary to establish whether parasitism is an

important factor in determining geographic range.

One important application of ENMs for threatened species is as

a predictive tool to inform survey efforts. The ENM based on

recent collection records identified suitable habitat in areas that

have not been recently sampled, suggesting areas where remnant

populations might be found. For instance, although there was no

Table 2. Niche comparison metrics as calculated in ENMtools.

Range Overlap

Contemporary Projection Historic Analysis Historic Projection

Contemporary Analysis 0.6228 0.0000 0.0071

Contemporary Projection – 0.1249 0.1498

Historic Analysis – – 0.9978

Relative Rank

Contemporary Projection Historic Analysis Historic Projection

Contemporary Analysis 0.8855 0.4896* 0.4881

Contemporary Projection – 0.4252 0.4257*

Historic Analysis – – 0.9674

Niche Overlap (I)

Contemporary Projection Historic Analysis Historic Projection

Contemporary Analysis 0.9840 0.8252 (n.s.) 0.8316

Contemporary Projection – 0.7990 0.8068*

Historic Analysis – – 0.9992

Here the range overlap (difference in ranges between time periods), relative rank overlap (difference in habitat pairing between time periods), and niche overlap (I)
(pairwise niche overlap between time points) metrics are shown. The results (significance or non-significance) of the identity test are also given for each applicable
comparison (Relative Rank and Niche Overlap). Due to the nature of the identity test we could only compare point distributions under either the current or the future
climate model, as such only two comparisons per model were conducted. Significance of the identity test (p,0.05) is indicated by ‘‘*’’, whereas non-significance
(p.0.05) is indicated by ‘‘n.s.’’. The analysis indicates highly divergent Historic and Contemporary (current and projected) distributions of O. continuatalis.
doi:10.1371/journal.pone.0051885.t002

Table 3. The Levin’s Niche breadth analysis outputs a scale of
specialization between 0 and 1, where ‘‘0’’ is a specialist and
‘‘1’’ is a generalist.

Niche Breadth

B1 (inverse concentration)

Contemporary Analysis 0.5067

Contemporary Projection 0.5444

Historic Analysis 0.6149

Historic Projection 0.6451

Here, niche breadth is used as a measure of the association to the
environmental variables over time. Interestingly, the contemporary current and
projected distribution of O. continuatalis shows lower niche specificity than
does the historic distribution.
doi:10.1371/journal.pone.0051885.t003
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habitat considered suitable (HSI $0.5) on the island of Oahu,

where this species is apparently extirpated, the best available

habitat was concentrated in the central basin of the island, an area

that has not been extensively surveyed. Similarly, the island of

Niihau, which is privately owned and inaccessible to biologists and

the general public, showed some suitable habitat. On Molokai, this

species has been recently collected only once, from a well-sampled

reserve in the central part of the island, yet the ENM suggests

similarly suitable habitat might occur in the inaccessible eastern

part of the island, where collection effort has been limited. In

contrast, the island of Kauai showed very low habitat suitability,

and may not be an ideal island on which to focus future survey

efforts. The current ENM could also be used to identify the most

viable locations for reintroduction efforts for O. continuatalis.

Analyses of mitochondrial genetic data from this species has

shown that populations exhibit both high levels of genetic diversity

and almost no evidence of island-based genetic isolation, making it

an ideal candidate for reintroduction on islands where it has been

extirpated (W. Haines, unpublished data). Using the current ENM

to identify introduction sites may increase chances of success.

Conclusion
In this study we identified a trend of shrinking and shifting

distributions of O. continuatalis, and discuss this trend in the context

of experimental data from previous studies indicating spatially

heterogeneous rates of attack by invasive parasitoids. While the

MAXENT approach is a promising tool to quantify changes in

distribution of declining species like O. continuatalis, this model does

not provide a means to determine the exact cause of the

population decline. However, the model does elucidate an

important temporal phenomenon: what used to be the highest

quality habitat for O. continuatalis is now less frequented by the

species, and the moths are now largely found in what was, based

on historical data, lower quality habitat. This paradigm has been

shown in birds [69] and demonstrates that current refugia may not

represent the most favorable combination of abiotic variables

under natural conditions, since present distributions might be

determined by novel ecological interactions, not abiotic factors

such as climate.

The ENM approach can be very important in drawing attention

to cryptic causes for the disappearance of species of concern from

historically suitable parts of their range. This is an essential first

step in effectively conserving and reintroducing threatened species.

The ENMs produced by MAXENT analyses can be used to target

areas for future surveys, or to identify potential sites of

reintroduction for example, on islands where O. continuatalis has

been extirpated. Our findings may also influence broader

programs targeting the conservation of native insects or other

declining species for which detailed ecological data is lacking, or

hard to collect, since the ENM methodology is applicable to most

habitat assessment efforts.

Supporting Information

Table S1 A–D: The results of the Principal Component
Analysis (PCA) of precipitation and temperature vari-
ables (i.e. Bioclim 12–19 and 1–11, respectively) for both
contemporary (A & C) and future (B & D) projections.
The Eigenvalue of each principle component is indicated, along

with the proportional and cumulative variance explained.
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