
Abnormalities in Oxygen Sensing Define Early and Late
Onset Preeclampsia as Distinct Pathologies
Alessandro Rolfo1, Ariel Many1, Antonella Racano1,3, Reshef Tal1, Andrea Tagliaferro1, Francesca Ietta1,

Jinxia Wang5, Martin Post3,4,5, Isabella Caniggia1,2,3,4*

1 Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, 2 Department of Obstetrics and Gynecology, University of Toronto, Toronto,

Ontario, Canada, 3 Department of Physiology, University of Toronto, Toronto, Ontario, Canada, 4 Department of Pediatrics, University of Toronto, Toronto, Ontario,

Canada, 5 The Hospital for Sick Children, Toronto, Ontario, Canada

Abstract

Background: The pathogenesis of preeclampsia, a serious pregnancy disorder, is still elusive and its treatment empirical.
Hypoxia Inducible Factor-1 (HIF-1) is crucial for placental development and early detection of aberrant regulatory
mechanisms of HIF-1 could impact on the diagnosis and management of preeclampsia. HIF-1a stability is controlled by O2-
sensing enzymes including prolyl hydroxylases (PHDs), Factor Inhibiting HIF (FIH), and E3 ligases Seven In Absentia
Homologues (SIAHs). Here we investigated early- (E-PE) and late-onset (L-PE) human preeclamptic placentae and their
ability to sense changes in oxygen tension occurring during normal placental development.

Methods and Findings: Expression of PHD2, FIH and SIAHs were significantly down-regulated in E-PE compared to control
and L-PE placentae, while HIF-1a levels were increased. PHD3 expression was increased due to decreased FIH levels as
demonstrated by siRNA FIH knockdown experiments in trophoblastic JEG-3 cells. E-PE tissues had markedly diminished HIF-
1a hydroxylation at proline residues 402 and 564 as assessed with monoclonal antibodies raised against hydroxylated HIF-
1a P402 or P564, suggesting regulation by PHD2 and not PHD3. Culturing villous explants under varying oxygen tensions
revealed that E-PE, but not L-PE, placentae were unable to regulate HIF-1a levels because PHD2, FIH and SIAHs did not
sense a hypoxic environment.

Conclusion: Disruption of oxygen sensing in E-PE vs. L-PE and control placentae is the first molecular evidence of the
existence of two distinct preeclamptic diseases and the unique molecular O2-sensing signature of E-PE placentae may be of
diagnostic value when assessing high risk pregnancies and their severity.
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Introduction

Preeclampsia is a placental disorder that affects about 5–10% of

all pregnancies and clinically manifests itself in the third trimester

with a wide variety of maternal symptoms, including hypertension,

proteinuria, and generalized edema [1,2]. The placenta plays a

key role in the genesis of this disease as its removal at the time of

delivery results in rapid resolution of the clinical symptoms.

Although preeclampsia appears suddenly in the third trimester, the

initial insult underlying its genesis occurs likely in the first trimester

of pregnancy, at the time when trophoblast cell differentiation/

invasion commences. Histomorphological studies have reported

that preeclamptic pregnancies are characterized by defective

remodelling of maternal spiral arteries due to poor invasion by

trophoblast cells in the decidua [3]. Consequently, vessels at the

maternal-placental interface remain highly resistant and utero-

placental perfusion is reduced, thereby lowering placental oxygen

tension. It is widely believed that placental hypoxia plays a causal

role in the disease process.

The highly conserved hypoxia-inducible family (HIF) of

transcription factors is a major player in the physiological response

to chronic and acute hypoxia [4]. The HIF family consists of

heterodimers comprised of one of three alpha subunits (HIF-1a,

HIF-2a and HIF-3a) and a beta subunit (HIF-1b). Under hypoxic

conditions the alpha subunits are stable, allowing it to accumulate

in the nucleus, where upon binding to HIF-1b it recognises HIF-

responsive elements (HRE) within the promoter regions of

hypoxia-responsive target genes. Under normoxic conditions, the

alpha subunits are rapidly degraded by means of ubiquitination

and proteasomal degradation [5,6,7,8]. The ubiquitination process

requires the product of the von Hippel-Lindau tumor suppressor

gene (VHL), which functions as a substrate recognition component

of an E3 ubiquitin ligase complex [5,6,7,8]. The most extensively

studied isoform of the a-subunits is HIF-1a. Oxygen-dependent

prolyl hydroxylases control the abundance of HIF-1a by

hydroxylating two specific proline residues (402 and 564), an

event which is required for VHL binding and subsequent HIF-1a
degradation [9,10]. The prolyl hydroxylase-domain containing
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proteins 1, 2 and 3 (PHD1, PHD2 and PHD3) function as oxygen

sensors as they require O2 as co-substrate to catalyze the prolyl-

hydroxylation reaction, indicating that oxygen levels directly

influence their enzymatic activity [11,12,13]. Moreover, in vitro

experiments have shown that PHDs mRNA levels are up-

regulated in conditions of low oxygen [14], further highlighting

their role as O2 sensors. In contrast to HIF-1a, the stability of

PHD1 and PHD3 decreases under hypoxic conditions [15].

Recent studies have shown that under hypoxic conditions, PHD1

and 3 are degraded by specific E3-ubiquitin-ligases, termed SIAHs

[Seven In Absentia Homologues] [15,16]. There are two known

human SIAH genes, SIAH-1 (that encodes for two different

isoforms: SIAH-1a and SIAH-1b) and SIAH-2. Like PHDs,

hypoxia stimulates their transcription and induces the accumula-

tion of these ring finger proteins through an HIF-independent

manner [15]. Under hypoxic conditions, SIAHs promote

degradation of PHD1 and PHD3 [15,16], leading to an increased

accumulation of HIF-1a, whereas under normoxic conditions

PHDs are stable and hydroxylate HIF-1a to target it for

degradation [9,10].

Another oxygen-dependent mechanism of HIF-1a regulation

involves the Factor Inhibiting HIF (FIH), an asparginyl hydrox-

ylase that targets the Asn803 residue in the C-TAD domain for

hydroxylation. This post-translational modification prevents C-

TAD binding to the transcriptional activator p300/CBP, thereby

repressing HIF-1a transcriptional activity [17,18]. Like PHDs,

FIH has also been characterized as an oxygen sensor since its

enzymatic activity is directly regulated by O2 concentration [19].

A number of in vitro and in vivo studies have highlighted the

importance of HIF-1 in placental development and function

[20,21,22,23], and, more recently, the regulation of HIF-1a
activity and degradation [24]. We and others have reported that

HIF-1a levels are increased in preeclamptic placentae [25,26], but

the precise underlying mechanism for this increase in HIF-1a
expression remains unknown. Herein, we examined whether

dysregulation of the oxygen sensing mechanism and consequently,

HIF-1a stability, may be responsible for the increased HIF-1a
levels in preeclampsia. In particular, we investigated the expression

of oxygen-dependent PHDs, SIAHs and FIH in preeclamptic

tissues to determine whether or not the preeclamptic placenta is

able to properly sense oxygen tension variations thereby regulating

HIF-1a stability and activity.

Materials and Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The study was approved by the

Institutional Review Board of Mount Sinai Hospital. All patients

provided written informed consent for the collection of samples

and subsequent analysis.

Tissue Collection
First and second trimester human placental tissues (6–15 weeks’

gestation, n = 18) were obtained from elective terminations of

pregnancies. Seventy six placentae were collected from pregnancies

complicated by preeclampsia (PE). The diagnosis of PE was made

according to the following criteria: presence of pregnancy-induced

hypertension (systolic $140 mmHg, diastolic $90 mmHg) and

proteinuria ($300 mg/24 h) after the 20th weeks of gestation in

normotensive women [2]. Differential diagnosis of early-severe

preeclampsia and late-onset preeclampsia was made according to

the ACOG criteria [2]. Fifty-eight age-matched control placentae

were obtained from normal pregnancies that did not show any signs

of preeclampsia or other placental disease. Patients with diabetes,

infections and kidney disease were excluded. Clinical data are

summarized in Table 1. Maternal age, gestational age and parity

were comparable between E-PE vs preterm controls (PTC) and L-

PE vs term controls (TC) groups. Ethnical origins were similar

among the four study groups. Only 19.6% of the babies from early-

onset preeclamptic pregnancies were growth restricted. Samples

were collected randomly from central and peripheral placental

Table 1. Clinical Parameters of Control and Preeclamptic Participants.

Pre-Term Controls Early Onset Preeclampsia Term Controls Late Onset Preeclampsia

(n = 53) (n = 58) (n = 16) (n = 18)

Mean Maternal Age (yr) 33.464.8 29.965.2 2964.6 2864.2

G.A. at delivery[wk (range)] 2963.3 (25–35) 28.662.86 (24–35) 39.660.6 (39–41) 3861.5 (36–41)

Parity 0.660.7 0.6361.1 0.260.4 0.3360.57

Blood Pressure (mmHg) Systolic: 11267.5 Systolic: 175.5616 Systolic: 110.666.5 Systolic: 155611

Diastolic: 68.765.7 Diastolic: 108614.4 Diastolic: 67.366.9 Diastolic: 9664.2

Proteinuria (g/24 h) Absent 3.0 61 Absent 3.061

Fetal Weight (g) A.G.A. (n = 53): 1488.26668.2 A.G.A. (n = 48): 12506387 A.G.A. (n = 16): 36036329 A.G.A. (n = 18): 3556.66588

IUGR (n = 10): 816.56394

Fetal Sex Males: 45% Males: 66% Males: 33% Males: 83%

Female: 55% Females: 34% Females: 67% Females: 17%

Mode of delivery CS: 41% CS: 90% CS: 33% CS: 71%

VD: 59% VD: 10% VD: 67% VD: 29%

- Data are represented as mean 6 standard deviation.
- G.A.: Gestational Age.
- A.G.A.: Appropriate for Gestational Age.
- IUGR: Intra-Uterine Growth Restriction (,5%).
- VD: Vaginal Delivery.
- CS: Caesarean Section delivery.
doi:10.1371/journal.pone.0013288.t001

Oxygen Sensing in Preeclampsia

PLoS ONE | www.plosone.org 2 October 2010 | Volume 5 | Issue 10 | e13288



areas and snap frozen immediately after delivery. Calcified, necrotic

and visually ischemic areas were excluded from collection. Analysis

for mRNA and protein were performed in the same samples.

Human Villous Explant Culture
Early (n = 12) and late-onset (n = 3) preeclamptic and age-

matched control (n = 8) villous explant cultures were established as

previously described [27]. Villous explants were cultured for 4

days under standard tissue culture conditions of 5% CO2 in 95%

air (20% O2 environment) or maintained in an atmosphere of

either 3% O2/92% N2/5% CO2. Twenty and 3% O2 concen-

trations were chosen since they represent the standard culturing

condition and the physiological placental O2 environment before

10 weeks of gestation respectively. Hence, when using third

trimester tissue that is physiologically at 5–8% O2, oxygen

concentration of 3% can be efficiently used to mimic hypoxia.

For each treatment, tissue samples from the same placenta were

used and in each experiment, explant cultures were set up in

triplicate.

In-situ Hybridization
Antisense and sense digoxigenin-labeled HIF-1a riboprobes

were generated according to manufacturer’s protocol (Boehringer

Mannheim, Montreal, QC, Canada). In situ hybridization to

preeclamptic (n = 5) and normal age-matched control (n = 3)

placental tissue sections was performed as previously described

[27]. Endogenous alkaline phosphatase was blocked by the

addition of 2 mM levamisole. Sections were counter-stained with

methyl green.

FIH silencing
JEG-3 choriocarcinoma cells (ATCC, Manassas, VA, USA)

were plated at a density of 26105 cells/well in 6 well plates and

cultured in Eagle’s minimal essential medium (EMEM) (ATCC,

Manassas, VA, USA) at standard conditions (5% CO2 in 95% air).

When cells reached 50–70% confluency they were transfected with

30 nM of SilencerH siRNA directed against the human FIH gene

(Ambion, Inc., Austin, TX, USA) using LipofectamineTM 2000

(Invitrogen, Carlsbad, CA, USA) following manufacturer’s proto-

col. SilencerH Negative Control siRNA (Ambion, Inc., Austin, TX,

USA), which does not target any gene product was used as a

control.

RNA isolation and Real Time PCR
Total RNA, extracted from placental tissues and FIH siRNA-

treated JEG-3 cells using TRIZOL (Invitrogen Canada Inc,

Burlington, ON, Canada), was treated with DNAse I to remove

genomic DNA contamination. One mg of total RNA was reverse

transcribed using random hexamers (Applied Biosystems (ABI),

Foster City, CA, USA). The resulting templates (30 ng of cDNA for

our target genes and 1.5 ng for 18S) were quantified by real-time

PCR (DNA Engine Opticon2 R system, MJ Research, Waltham,

MA). TaqMan probes for PHD1, PHD2, and PHD3 were

purchased from ABI. Primers were obtained from the oligosynthesis

service at the Hospital for Sick Children (Toronto, Canada).

SIAH1, SIAH2, FIH and ribosomal 18S probes and primers were

purchased from ABI as Assays-on-DemandTM for human genes.

For each probe a dilution series determined the efficiency of

amplification of each primer/probe set and the relative quantifica-

tion method was employed [28]. For the relative quantitation, PCR

signals were compared among groups after normalization using 18S

as internal reference. Relative expression and fold change was

calculated according to Livak and Schmittgen [28].

Semi- quantitative RT-PCR for SIAH-1b isoform
One mg of total RNA was reverse transcribed using random

hexamers (Applied Biosystems). Semi-quantitative PCR was per-

formed using primer sets specific for SIAH-1b (NM 001006610; gi:

55749556): forward primer, 59-ATGACGGGAAAGGCTAC-

TCCA-39; reverse primer, 59-AGTTGCGAATGGATCCCAAA-

39 (predicted amplicon of 346 bp). Human b-Actin (forward primer:

59-CGAGAAGATGACCCA GATCATGT-39; reverse primer: 59-

CCACAGGACTCCATGCCCAGGAA-39) was used as house-

keeping gene to normalize the data. DNA contamination was

excluded by performing PCR on each sample without first

transcribing mRNA with reverse transcriptase.

Preparation of HIF mutants
The human full-length HIF-1a cDNA construct (generous gift

of Dr. Semenza, Johns Hopkins University) was used as template

to generate single (HIF-1aP402R, HIF-1aP564R) and double (HIF-

1aP402R,P564R,P) HIF-1a mutants using the QuickChange kit

(Stratagene, Montreal, QE, Canada). All mutations were con-

firmed by DNA sequencing.

Antibodies
Mouse monoclonal antibodies (anti-HIF-1aP402

OH or anti-HIF-

1aP564
OH) were raised against either hydroxylated proline residue

402 or 564 containing peptides of the HIF-1aODD region

(Monoclonal Antibody Facility, Hospital for Sick Children).

Western Blot analysis
Western blot analyses were performed as previously described

[25]. Primary antibodies were mouse monoclonal anti-human

HIF-1a (1:250: Affinity Bioreagents Inc., Golden, CO, USA)

rabbit polyclonal anti-human PHD1, PHD2 and PHD3 (1:1000;

Novus Biologicals, Littleton, CO, USA), goat polyclonal anti-

human SIAH1 and SIAH2 (1:200 dilution for SIAH1 and 1:100

dilution for SIAH2; Santa Cruz Biotechnology, Santa Cruz, CA,

USA), and FIH (1:500, Abcam Inc, Cambridge, MA, USA).

Horseradish peroxidase–conjugated secondary antibodies were

goat anti-mouse for HIF-1a (1:5000), donkey anti-rabbit for PHDs

and FIH (1:10000) and donkey anti-goat for SIAHs (1:5000).

Specificity of SIAHs antibodies was determined using Siah-1 and

Siah-2 blocking-peptides (Santa Cruz Biotechnology). HISM and

IL4-treated Ramos cell lysates (Santa Cruz Biotechnology) were

used as positive controls for SIAH-1 and SIAH-2, respectively.

Statistical analysis
All data are represented as mean 6 SEM. For comparison of

data between multiple groups we used Kruskal-Wallis test and for

comparison between two groups we used Mann-Whitney U test.

Statistical test were carried out using Prism statistical software and

significance was accepted at P,0.05.

Results

Oxygen sensing in normal and preeclamptic placentae
We have recently reported striking similarities in global patterns

of gene expression between preeclamptic and high altitude

placental tissue as well as low oxygen-treated first trimester

placental explants [29]. HIF-1a exhibited greater expression in all

three low oxygen conditions relative to control [29]. Whether

hypoxia or altered oxygen-dependent regulatory mechanisms are

responsible for the up-regulated HIF-1a expression in PE

placentae is unknown. Therefore, villous explants from early

onset (E-PE) and late onset (L-PE) preeclamptic placentae and
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from age-matched control tissues (pre-term: PTC; term control:

TC) were maintained in either 3% or 20% O2. The expression

and localization of HIF-1a mRNA and protein was determined. In

situ hybridization (ISH) revealed HIF-1a transcripts in tropho-

blasts and stroma of PTC control explants cultured at 3% O2

(Figure 1A, upper left panel). As anticipated, HIF-1a mRNA was

abundant in E-PE explants maintained at 3% O2, but in contrast

to PTC control explants, HIF-1a transcript levels remained high

in E-PE explants cultured at 20% O2 (Figure 1A, bottom left

panel). No specific staining was observed in control sections

hybridized with sense HIF-1a probes (data not shown). Real-time

PCR confirmed the ISH data (Figure 1A, right panel).

Immunohistochemical (IHC) analysis showed strong positive

immunoreactivity for HIF-1a protein in villous trophoblasts of

both E-PE and PTC explants maintained at 3% O2 (Figure 1B).

Low/absent immunoreactivity for HIF-1a was noted in PTC

explants cultured at 20% O2, while E-PE trophoblasts exhibited

strong positive HIF-1a immunoreactivity even when maintained

in 20% O2. Western blot analysis verified the IHC findings (PTC

explants: 3% vs. 20% 1.3-fold increase, p = 0.04; E-PE explants:

3% vs. 20% 1.14-fold increase, ns) (Figure 1C, left panel). These

data suggest that E-PE placentae have lost their ability to properly

respond to variations in oxygen tension. HIF-1a expression was

next examined in placentae from late-onset preeclampsia. As

expected, term control explants showed increased HIF-1a protein

expression at 3% O2 (2.05-fold increase, p,0.01), which was

markedly down regulated when the explants were maintained at

20% O2 (Figure 1C, right panel). In contrast to E-PE placentae, L-

PE explants showed a similar O2 response, namely elevated HIF-

1a protein at 3% O2 (1.92-fld increase, p,0.01) and reduced

levels at 20% O2.

Expression of Prolyl Hydroxylases 1, 2 and 3 in normal
and preeclamptic placentae

PHDs hydroxylate HIF-1a, thereby targeting it for degradation

[11]. In addition, as they utilize molecular oxygen to elicit their

function, they have been shown to function as oxygen sensors in a

variety of systems [13,14], including the human placenta [24].

Since E-PE explants showed a lack of oxygen sensing with respect

to HIF-1a expression, we next investigated the expression of

PHD1, PHD2 and PHD3 in early (E-PE) and late (L-PE) onset

preeclamptic placentae. Real-time PCR analysis showed that

PHD1 and PHD2, mRNA expressions were decreased in

placentae from early preeclamptic pregnancies compared to pre-

term controls (Figure 2A). Similar to the mRNA findings, PHD1

(1.7-fold decrease, p = 0.001) and PHD2 (1.69-fold decrease,

p = 0.028) protein content was significantly reduced in E-PE

placentae compared to PTC controls (Figure 2C). Notably, both

PHD3 mRNA and protein expression levels were significantly

increased in E-PE placentae relative to controls (Figure 2A, and

2C). Neither mRNA nor protein expression of any PHDs was

altered in placentae from pregnancies complicated by late-onset

preeclampsia (L-PE) compared to term-control (TC) placentae

(Figure 2B and 2C). Because of the high percentage of caesarean

section deliveries (CS) in the early- and late-onset preeclamptic

population, the expression of PHDs was also examined in normal

placentae from CS and spontaneous vaginal deliveries. No

differences in PHDs mRNA and protein expression were found

between the 2 (control) groups, indicating that changes in PHDs

expression do not reflect the mode of delivery (data not shown).

Next, we investigated whether the reduction in PHD1 and

PHD2 expression in early onset PE was due to a lack of proper

oxygen sensing. E-PE and PTC villous explants were cultured at

3% and 20% O2 and PHD expression was assessed. Low oxygen

(3% O2) induced a significant increase in PHD1, PHD2 and

PHD3 mRNA expression in normal PTC explants when

compared to 20% O2 (Figure 3A). The highest induction was

observed for PHD2 and 3. No significant oxygen-dependent

changes in PHDs mRNA expression were observed in E-PE

explants (Figure 3A), suggesting that E-PE placentae fail to sense

changes in oxygenation. At the protein level, control explants

responded to variations in O2 tension by increasing PHD2 (2.17-

fold increase, p,0.01) and, to a lesser extent, PHD3 (1.5-fold

increase, p,0.05) at 3% pO2. E-PE explants showed a modest

increase in PHD2 and PHD3 protein expression at 3% pO2, while

the overall protein levels of PHD2 and 3 were decreased in E-PE

when compared to PTC explants. These data confirm the lack of

oxygen sensing observed in vivo. No changes in response to varying

oxygen concentrations were found for PHD1 in both PTC and E-

PE explants (Figure 3B).

HIF-1a hydroxylation during human placental
development and in preeclampsia

To establish PHD activities we examined HIF-1a hydroxylation

using specific mouse monoclonal antibodies raised against either

hydroxylated proline 402 or 564 containing peptides of the HIF-

1aODD region. To validate the various clones we generated

specific HIF-1a expression constructs including full-length HIF-

1a, HIF-1aP402R, HIF-1aP564R and HIF-1aP402R,P564R. In the

latter contructs proline residues 402 or 564 alone or together were

mutated to alanine, thereby preventing hydroxylation at those

sites. Following transfection with the various HIF-1a constructs,

JEG-3 choriocarcinoma cells were cultured for 24 h with

proteosomal inhibitor MG-132 to prevent HIF degradation.

Subsequent Western blot analysis revealed specificity of clones

6H4 and 1H1, respectively, for HIF-1a hydroxylated at P402

while clone 6A9 was specific for hydroxylated HIF-1a at P564

(Figure 4A). Immunoblotting of placental lysates from first

trimester gestation (6–14 weeks of gestation, n = 18) showed

increased HIF-1a hydroxylation at P402 at 9–12 weeks of

gestation (7.39-fold increase, p,0.01) and a peak of hydroxylation

at P564 at 11–13 (2.83-fold increase, p,0.01) (Figure 4B). In E-PE

we found that HIF-1a hydroxylation at proline residue 402 was

markedly decreased relative to preterm controls (Figure 4C and

4D) (E-PE vs. PTC, 1H1: 1.40-fold decrease; 6H4: 1.44-fold

decrease; *p,0.01). A similar decrease was noted for HIF-1a
hydroxylation at proline residue 564 (E-PE vs. PTC, 6A9: 1.72-

fold decrease). (Figure 4D).

Figure 1. Expression of HIF-1a in preeclamptic and control placental explants. (A) Left panel: In situ hybridization of HIF-1a mRNA in early
preeclamptic (E-PE; n = 5) and preterm control (PTC; n = 3) explants exposed at 3% and 20% O2. Blue staining represents positive immunoreactivity for
HIF-1a mRNA using a digoxigenin-labeled riboprobe. Right panel: HIF-1a mRNA expression in E-PE (n = 4, black bars) and PTC (n = 3, open bars)
explants exposed at 3% and 20% O2 as determined by real-time PCR analysis (values are mean 6 SEM, *p,0.05). (B) Immunohistochemical analysis of
HIF-1a protein on sections of E-PE (n = 5) and PTC (n = 3) explants exposed at 3% and 20% O2. Brownish staining represents positive immunoreactivity
for HIF-1a protein. (C) Left panel: Representative HIF-1a immunoblot of E-PE (n = 3) vs PTC (n = 3) (upper panel) and densitometric analysis of HIF-1a
protein expression in E-PE (n = 4, black bars) and PTC (n = 3, open bars) explants exposed at 3% and 20% O2 (lower panel). (C) Right panel:
Representative HIF-1a immunoblot of late preeclamptic (L-PE; n = 3) vs term controls (TC; n = 3,) villous explants cultured at both 3% (open bars) and
20% O2 (open bars). b-actin was used as loading control. Data are mean 6 SEM, *p,0.05).
doi:10.1371/journal.pone.0013288.g001
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Figure 2. PHDs expression in early preeclamptic (E-PE), late preeclamptic (L-PE), preterm control (PTC) and term control (TC)
placentae. (A) Expression of PHD1-3 mRNA in E-PE (n = 18) and PTC (n = 15) placentae as assessed by real-time PCR analysis (values are mean 6 SEM,
*p,0.05). (B) Expression of PHD1-3 mRNA in L-PE (n = 12) and TC (n = 10) placentae. (C) Left panel: Representative immunoblots for PHDs of E-PE
(n = 25), L-PE (n = 11), PTC (n = 19) and TC (n = 8) placental tissues. b-actin was used as loading control. Right panel: Densitometric analysis for PHDs
protein levels of E-PE and PTC placentae. Data are mean 6 SEM, *p,0.05.
doi:10.1371/journal.pone.0013288.g002
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Figure 3. Expression of PHDs in early preeclamptic(E-PE) and preterm Control (PTC) placental explants. (A) Expression of PHDs mRNA
in E-PE (black bars, n = 4) and PTC (open bars, n = 3) explants exposed at 3% and 20% O2 as assessed by real-time PCR analysis (values are mean 6
SEM, *p,0.05). (B) Left panel: Rrepresentative immunoblots for PHDs of E-PE (n = 4) and PTC (n = 3) villous explants cultured at either 3% or 20%
oxygen. b-actin was used as loading control. Right panel: Densitometric analysis for PHDs protein levels of E-PE and PTC explants. Data are mean 6
SEM, *p,0.05.
doi:10.1371/journal.pone.0013288.g003
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Expression of Seven in Absentia Homologues 1 and 2 in
normal and preeclamptic placentae

The ubiquitin E3 ligases SIAH-1 and SIAH-2 are also oxygen

sensors as they are induced by hypoxia [16]. Therefore, we

evaluated their expression in placentae from pregnancies compli-

cated by early- and late-onset preeclampsia. Compared to PTC

placentae, E-PE placentae showed a significant decrease in both

SIAH-1 and SIAH-2 message levels (Figure 5A). Western blot

analysis of placental tissues using SIAH-1 antibody revealed the

presence of two bands with Mr of 32 and 34 kDa (Figure 5B top

panel). The SIAH-1 gene is located on chromosome 16q12 and

encodes two different isoforms, called SIAH-1a and SIAH-1b, with

predicted molecular weights of 32 kDa and 34 kDa, respectively.

To demonstrate that the two protein bands represented the two

SIAH1 isoforms, we incubated the antibody with competing SIAH-

1 peptide prior to Western blotting. Both bands disappeared in

positive control and placental tissues, confirming that the antibody

recognizes both SIAH-1 isoforms (data not shown). Western blot

analysis showed differential changes in SIAH-1a and SIAH-1b

protein content between E-PE and PTC tissues (Figure 5B). SIAH-

1a protein content was significantly decreased in E-PE placentae

relative to preterm controls (1.89-fold decrease, p = 0.004), while

SIAH-1b protein showed a significant increase in E-PE vs. PTC

controls (1.52-fold increase p,0.05). No differences were found in

SIAH-2 protein (36 kDa) content between the two groups (Figure 5B

bottom panel). In contrast to early-onset PE, late-onset PE did not

exhibit an altered protein expression of either SIAH-1 or SIAH-2

(Figure 5C). To determine whether the changes in SIAH-1a and

SIAH-1b protein expression between E-PE and PTC placentae

were due to altered mRNA expression, we performed semi-

quantitative RT-PCR analysis using specific primers for SIAH-1b.

Transcript levels of SIAH-1b increased in E-PE placentae in

comparison to PTC controls, reflecting the protein pattern

(Figure 5D). Hence, the observed reduction in total SIAH-1 mRNA

expression (Figure 5A) is likely due to a decrease in SIAH-1a

expression.

As for PHDs, we then investigated if the overall reduction of

SIAHs was due to a lack of proper oxygen sensing in early-onset

preeclamptic placentae. As described earlier, we used E-PE and

PTC villous explants which were cultured at 3% and 20% O2 and

quantified SIAH-1 and -2 mRNA expression levels by real-time

PCR. Low oxygen increased SIAH-1 mRNA expression in control

explants (Figure 5E). A non-significant increase in SIAH-2

message was noted (data not shown). In contrast, mRNA

expression of SIAH-1 (Figure 5E) and SIAH-2 (data not shown)

was decreased in E-PE explants cultured at 3% O2 compared to

explants maintained at 20% O2, confirming the in vivo findings.

Expression of Factor Inhibiting Hif-1 in normal and
preeclamptic placentae

The asparginyl hydroxylase FIH regulates HIF-1a by repressing

its transcriptional activity [17,18]. FIH enzymatic activity is

directly influenced by oxygen concentration within the cell,

making FIH an oxygen sensing molecule [19]. Herein, we

observed that FIH gene expression was significantly decreased

(2.9-fold decrease, p = 0.0005) in E-PE placentae relative to

preterm controls (Figure 5A left panel), while, as observed before

for PHDs and SIAHs, FIH mRNA expression in L-PE placentae

was not different from controls (Figure 6A right panel). These

results were confirmed at the protein level. FIH protein levels were

markedly reduced in E-PE placental tissues relative to preterm

controls (Figure 6B), while no changes were observed in L-PE

placentae vs. term controls (Figure 6B).

FIH Regulation of PHD3 expression in JEG-3
Choriocarcinoma cells

In order to determine the functional significance of FIH in

regulating PHD3 expression in the placenta, we examined the

consequences of inhibiting FIH on PHD3 expression by

employing siRNA technology. As FIH has been shown to regulate

PHD3 in an oxygen-dependent manner [30], siRNA experiments

were conducted at 20%, 8%, and 3% O2 to assess the effect of FIH

along an oxygen gradient. Real-time PCR (qRT-PCR) and

Western blot analyses demonstrated that FIH expression was

significantly silenced at all oxygen tensions tested, at the level of

both mRNA (20% O2: 0.2060.05-fold, p,0.05; 8% O2:

0.1260.04-fold, p,0.05; 3% O2: 0.2160.01-fold, p,0.05) and

protein (20% O2: 0.2060.05-fold, p,0.05; 8% O2: 0.1760.08-

fold, p,0.05; 3% O2: 0.3260.11, p,0.05), relative to their

respective scramble sequence controls (SS) (Figure 6C upper

panels). Decreased FIH levels were associated with a statistical

significant increase in PHD3 mRNA and protein (although not

significant) expression at 20% O2 (1.6360.13-fold, p,0.05), but

not at 8 and 3% O2 (Figure 6C, bottom panels). To confirm that

FIH selectively regulates PHD3 in JEG-3 cells, we further

examined the expression of PHD2, also a HIF-1 target

hydroxylase. As anticipated, PHD2 expression was not affected

by FIH silencing, providing further support that PHD3 is

selectively subjected to FIH-mediated HIF-1 inactivation in

JEG-3 cells (Figure 6C).

Discussion

In the present study we report a disruption of oxygen sensing in

early-onset, but not late-onset, preeclamptic placentae. In E-PE

placentae we found decreased expression of PHD1, PHD2, SIAHs

and FIH, molecules that are known to be up-regulated in response

to low oxygen tensions and to be key regulators of HIF-1a, the

major player in the cellular response to hypoxia. The diminished

expression and function of these oxygen-sensing molecules

contributes to decreased HIF-1a hydroxylation and breakdown,

leading to its accumulation in early-onset preeclamptic placenta,

thereby affecting the expression of molecules that orchestrate

proper trophoblast cell differentiation/invasion [25,26,31,32].

Figure 4. HIF-1a hydroxylation during normal placentation and in preeclampsia. (A) Validation of monoclonal antibodies against
hydroxylated proline 402 or 564 containing peptides of the HIF-1aODD region. Clones 6H4 and 1H1 recognized specifically HIF-1a hydroxylated at
proline 402 as demonstrated by Western blotting of lysates of JEG-3 cells transfected with a HIF-1a single or double mutated construct at P402 and/
or P564, while clone 6A9 was specific for hydroxylated proline 564. (B) Upper panel: Representative immunoblots for HIF-1a hydroxylated at either
proline 402 or 564 during early placental development (6-14 weeks, n = 18), Ponceau staining demonstrated equal protein loading. Lower panel:
Densitometric analysis; data are mean 6 SEM, *p,0.05.(C) HIF-1a immunoprecipitation followed by immunoblotting with monoclonals either
recognizing total HIF-1a (7E3) or HIF-1a hydroxylated at proline 402 (6H4). (D) Upper panel: Representative immunoblots showing reduced HIF-1a
hydroxylation at P402 (1H1) and P564 (6A9) in preeclamptic placentae (E-PE, n = 12) relative to preterm controls (PTC n = 12). Ponceau staining
demonstrated equal protein loading. Lower panel: Densitometric analysis of clones recognizing HIF-1a hydroxylation at either P402 (1H1) or P564
(6A9) in preeclamptic placentae vs preterm controls; data are mean 6 SEM, *p,0.05.
doi:10.1371/journal.pone.0013288.g004

Oxygen Sensing in Preeclampsia

PLoS ONE | www.plosone.org 9 October 2010 | Volume 5 | Issue 10 | e13288



Oxygen Sensing in Preeclampsia

PLoS ONE | www.plosone.org 10 October 2010 | Volume 5 | Issue 10 | e13288



Other classical oxygen sensors such as NADPH oxidase and

Heme-oxygenase (HO) have also been found to be disrupted in

placentae from pregnancies complicated by preeclampsia. Nox1, a

gene encoding a novel NADPH oxidase isoform, is expressed in a

variety of placental cells [33] and its protein expression has been

reported to be increased in placental syncytium and villous

endothelial cells from preeclamptic patients [33]. The expression

of the HO-2, one of the three isoenzymes that compose HO, has

been found to be reduced in the villous endothelial cells of PE

placentae, while no differences were found in trophoblast cells

[34]. Together these data suggest that impaired oxygen sensing is

an important feature of preeclampsia.

PHDs are key regulators of HIF-1a stability [9,11]. PHDs are

also oxygen-sensing molecules as they respond to low pO2 by up-

regulating their transcript levels, as demonstrated in several

systems, including the human placenta [11,24]. In HeLa cells,

both PHD2 and 3, but not PHD1, transcripts are induced by

hypoxia [11]. In the human placenta, we reported that exposure of

first trimester placental explants to low pO2 resulted in an increase

in PHD2 and PHD3 transcripts [24]. Our finding of decreased

PHD2 mRNA expression suggests that in E-PE placenta PHD2 is

not sensing the low oxygenated environment.

It has been reported that in normoxic conditions only PHD2

controls HIF-1a stability, while PHD1 and 3 do not contribute to

HIF-1a hydroxylation [14]. Thus, the decreased PHD2 protein

levels in E-PE placentae likely leads to the reported increase in

HIF-1a [25,26]. Supporting this concept are recent findings

obtained with PHD knockout mice [35]. Disruption of the PHD2,

but not PHD1 and 3, gene led to embryonic lethality and caused

placental HIF1-a over-expression that was associated with

placental defects such as diminished villous branching [35]. HIF-

1a was not up-regulated in the embryonic heart of PHD2 mutant

mouse [35], suggesting a specific role for PHD2 as a regulator of

HIF-1a stability in murine placenta. Since early placental

development occurs in a hypoxic environment [36,37], the

PHD2 knockout results imply an active role of PHD2 during

early development, although it has been thought that PHD2 is not

functional during hypoxia [38]. Interestingly, the PHD22\2

mouse placenta exhibited significantly decreased levels of

GCM1, a molecule implicated in placental branching morpho-

genesis [39]. GCM1 has been found to be decreased in placenta

from pregnancies complicated by preeclampsia [40]. The

influence of PHD2 on GCM1 expression further emphasises the

importance of this HIF specific prolyl hydroxylase in human

placental development and disease.

PHD3 also controls the stability of the HIF alpha subunit

[11,12], although it is more specific for HIF-2a than HIF-1a [41].

Moreover, while PHD2 is the primary enzyme that affects HIF-1a
hydroxylation in normoxia, PHD3 seems to be partially active

even in conditions of low pO2, thereby controlling HIF-1a levels

during hypoxia [16]. In the present study, we observed increased

PHD3 expression levels in E-PE placentae relative to controls.

This finding together with the increased HIF-1a expression in E-

PE suggests that this prolyl hydroxylase does not compensate for

the reduction in PHD2 expression and further underscores the low

affinity of PHD3 for HIF-1a [41].

Reduced PHD expression is generally indicative of reduced

activity, but so far no direct or indirect examination of PHDs

function in placenta has been reported. Using specific monoclonal

antibodies against HIF-1a hydroxylated at residue P402 or P564,

we show for the first time that during placental development HIF-

1a hydroxylation is maximal at 9-12 weeks of gestation. These

data agree with our previously published observation of increased

PHDs and decreased HIF1a expression at this specific window of

gestation when trophoblast cells experience a rapid increased in

oxygenation. Of clinical significance, we found that HIF-1a
hydroxylation is markedly reduced in preeclampsia. Since PHD2

appears to be the primary regulator of HIF-1a stability by

hydroxylating P402 and 564, it is plausible that the decreased

amount of PHD2 protein and activity in E-PE is the main cause of

aberrant HIF-1a expression.

Since PHD2 and 3 are induced by low O2 via HIF-1 [42], it was

surprising that in E-PE placentae the hypoxic environment [29]

together with its elevated HIF-1a expression [25,26,31,32] was

associated with high levels of PHD3 and not PHD2. However,

studies using either pVHL-deficient cells, which have high HIF-1a
levels due to fact that HIF-1a is not degraded, or cell lines over-

expressing HIF-1a, have shown increases in expression of PHD3

but not PHD2 [43]. Hence, increases in HIF-1a alone are not

sufficient to induce PHD2 expression in E-PE placentae. A recent

study reports that TGFb1 negatively regulates PHD2 gene

expression [44]. In preliminary experiments, we found that

exposure of human villous explants to both TGFb1 and TGFb3

results in decreased PHD2 mRNA expression. Moreover, TGFb3

[22] levels are increased in severe preeclamptic placentae and this

may explain the reduced PHD2 levels found in this pathology.

While PHD2 and PHD3 are induced by hypoxia via a

mechanism that involves HIF-1a PHD1 appears not to be an

HIF-1 target gene [11,41] and may even be inhibited by hypoxia

[45]. Other studies have reported that PHD1 expression is

regulated by estrogen [41,45] and it is plausible that the decreased

PHD1 expression in preeclampsia is due to an alteration in the

hormonal milieu. In rats with hypoxia-induced hypertension

PHD1 expression negatively correlated with HIF-3a, but not HIF-

1a, expression, suggesting that PHD1 has a greater specificity for

HIF-3a [46]. Thus, the low expression of PHD1 in E-PE placentae

does likely not contribute to the increase in HIF-1a levels in E-PE.

SIAHs have recently been characterized as novel oxygen-

sensing molecules as hypoxia stimulates their transcription and

accumulation albeit in a HIF-independent manner [16]. Here, we

show for the first time the expression of both SIAH-1 and SIAH-2

in the human placenta. In particular, we found decreased SIAH-1

and SIAH-2 mRNA levels in early-onset, but not late-onset,

preeclamptic placentae, further emphasising the lack of placental

oxygen sensing in the most severe form of preeclampsia. Recently,

a novel splicing variant of SIAH-1, called SIAH-1L, has been

reported [47]. This variant corresponds to the placental SIAH-1b

isoform that we found in the present study. SIAH-1L has been

Figure 5. Expression of SIAH-1 and SIAH-2 in early preeclamptic (E-PE), late preeclamptic (L-PE), preterm control (PTC) and term
control (TC) placentae. (A) Expression of SIAH-1 and SIAH-2 mRNA in E-PE (n = 18, black bars) and PTC (n = 15, open bars) placental tissues as
assessed by real-time PCR analysis s (values are mean 6 SEM, *p,0.05). (B) Upper panel: Representative immunoblots for SIAHs in E-PE (n = 25) and
PTC (n = 19) placentae. Ponceau staining demonstrated equal protein loading. Lower panel: Densitometric analysis of SIAHs protein levels in PTC and
E-PE placental lysates (data are mean 6 SEM, *p,0.05). (C) Representative immunoblots for SIAHs in L-PE (n = 12) and TC (n = 10) placentae. Ponceau
staining demonstrated equal protein loading. Lower panel: Densitometric analysis of SIAHs protein levels in TC and L-PE placental lysates (data are
mean 6 SEM, *p,0.05). (D) SIAH-1b transcript levels as assessed by semi-quantitative RT-PCR in E-PE (n = 18) vs PTC (n = 15) placentae. Human b-
Actin was used as housekeeping gene to normalize the data (lower panel) (E) SIAH-1 transcript levels in preeclamptic (n = 4) vs term control placental
explants (n = 3) exposed at 3% (gray bars) and 20% (open bars) O2; *p,0.05.
doi:10.1371/journal.pone.0013288.g005

Oxygen Sensing in Preeclampsia

PLoS ONE | www.plosone.org 11 October 2010 | Volume 5 | Issue 10 | e13288



Oxygen Sensing in Preeclampsia

PLoS ONE | www.plosone.org 12 October 2010 | Volume 5 | Issue 10 | e13288



demonstrated to be induced by p53 and to enhance the

degradation of b-catenin, thereby promoting cell apoptosis [47].

Thus, the observed increase in SIAH-1b protein in E-PE placentae

may contribute to the increased placental apoptosis seen in

preeclampsia [48]. Both SIAH-1 and SIAH-2 mRNA levels were

decreased in E-PE, supporting abnormal oxygen sensing, but only

SIAH-1a protein was reduced while no changes in SIAH-2 were

found in E-PE compared to control placentae. It has been

reported that both SIAH-1 and SIAH-2 decrease the abundance

of PHD1 and PHD3 [16] and that SIAH-2 is more efficient in

degrading PHD3 than PHD1 [49] implicating other proteolytic

pathways in regulating PHD1 stability [50].

In conditions of hypoxia PHD3 forms hetero-complexes with

PHD2, thereby reducing PHD2 ability to hydroxylate HIF-1a and

enhancing its degradation by SIAH-1 and 2 [49]. In preliminary

experiments, we found that PHD3 dimerizes with PHD2 in both

normal and pathological placental tissues (data not shown). Thus,

the normal SIAH-2 and high PHD3 protein levels found in E-PE

placentae likely contribute to the reduced PHD2 levels and

increased amount of HIF-1a.

Another important level of HIF-1a regulation involves FIH

[17,18,19]. Like PHDs, FIH is an oxygen-dependent molecule as

its enzymatic activity is directly influenced by pO2 within the cell

[19,51]. It has been reported that PHDs and FIH have different

Km for oxygen [51]. Since these O2-dependent molecules act on

different HIF-1a domains, an interesting O2 regulatory model for

HIF-1a activity has been proposed [30]. Along a decreasing

gradient of O2 tension PHDs are the first sensors to be inactivated,

leading to stabilization of HIF-1a and activation of HIF-1a N-

TAD transcriptional activity, followed by inhibition of FIH at

severe hypoxia, which will lead to the activation of HIF-1a C-

TAD transcriptional activity [30]. FIH controls the expression of a

variety of genes via its action on C-TAD domain [30] that can be

divided in FIH-inhibited and non-FIH-inhibited genes. Vascular

endothelial growth factor (VEGF), which expression has been

reported to be increased preeclamptic placentae [29,52,53,54,55]

belongs to the FIH-inhibited genes [30]. PHD3 is also inhibited by

FIH [30]. In the present study, we observed a dramatic decrease of

FIH expression in E-PE placentae, which could explain the

increased PHD3 levels found in this pathology. In support of our in

vivo data we found that FIH silencing in trophoblastic JEG-3 cells

increased PHD3, but not PHD2, expression at 20%, but not 3%,

O2. This discrepancy with the hypoxic E-PE is likely due to the

complex in vivo placental model versus the simpler JEG-3 system.

Recently, we demonstrated that FIH expression is increased in

high altitude placentae, a unique physiological model of

adaptation to chronic hypoxia [56]. Thus, the low FIH mRNA

levels in E-PE placentae accentuate the inability of these placentae

to properly sense O2. Reduced amounts of FIH protein in

combination with increased HIF-1a levels in E-PE placentae

probably contributes to the increased VEGF levels previously

reported in preeclamptic placentae [29].

Interestingly, we observed normal gene and protein expression

of PHDs, SIAHs and FIH in late-onset preeclamptic placentae

relative to controls. In stark contrast with E-PE explants, L-PE

placentae showed a normal regulation of HIF-1a levels, with

higher expression at 3% O2 and down-regulation at 20% O2.

Redman et al. [57] theorized on the basis of clinical features that

there are two main categories of preeclampsia, placental (early PE)

and maternal (late PE). Our data provide the first molecular

evidence for this theory. In preeclampsia of placental origin (E-

PE), we demonstrated that PHDs, SIAHs and FIH are unable to

properly sense and respond to hypoxia. The consequence is

aberrant HIF-1a over-expression typical of E-PE. These features

contribute to the morphological, molecular and functional

alterations of preeclamptic trophoblasts that characterize early

onset preeclampsia as pathology of placental origin. Maternal

preeclampsia arises from the interaction between a normal

placenta and a maternal constitution that is susceptible to, or

suffers from, microvascular disease [57] and as such the late-onset

preeclamptic placenta is a system that is able to properly sense and

respond to oxygen tension variations.

Our previous findings of placental hypoxia in preeclampsia [27]

together with the present data on disruption of oxygen sensing

mechanisms explain the elevated HIF-1a levels found in

preeclamptic placenta. [25,26,31,32] and the high expression of

known HIF-1 targets such as VEGF [29,52,53,54,55] and sFlt-1

[58,59,60,61]. However, it is possible that the defect in oxygen

sensing in the E-PE placenta is an effect and not the cause of the

preeclamptic disease and that the HIF-1a response is triggered by

other mechanisms [62,63]. The notion of placental hypoxia as

leading cause of placental pathologies is disputed. Others have

suggested hypoxia/reoxygenation [64,65] or hyperoxia as etiolog-

ical factors in preeclampsia.[66,67,68]. Both conditions lead to the

generation of reactive oxygen species (ROS) [64,65] and

mitochondrial ROS have been shown to increase HIF-1a levels

[69,70,71] and to alter expression of PHDs [72] although the

findings are controversial as the ROS effect appears to vary

between different biological systems. ROS generation is also high

during hypoxia and thus may contribute to HIF-1a stabilization

under low-oxygen conditions [69,70,71,73,74].

In conclusion, our molecular data emphasize the existence of

two preeclamptic subtypes, early and late onset, respectively, and

further highlight the key role of PHD2 in human placental

physiology and pathology. Importantly disruption of the oxygen-

sensing machinery may be of diagnostic value. Since HIF-1a is

crucial for proper placental development, early detection of

aberrant HIF-1a regulatory mechanisms could impact on the

differential diagnosis between high risk and low risk pregnancies.

This may impact on the disease management during pregnancy

and may ultimately be translated into novel therapeutic targets. In

fact, in cancer research a variety of therapeutic tools aimed at

targeting the HIF pathway are currently being developed, hence

increasing HIF hydroxylation in order to prevent its accumulation

may reduce its detrimental consequences in placental pathologies.
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