
Global Pyrogeography: the Current and Future
Distribution of Wildfire
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Abstract

Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a
variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still
largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification
of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship
between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse
spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to
project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future
climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the
availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the
world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in
more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due
to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion
and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems
since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species
dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate
change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on
global vegetation-climate change dynamics and conservation planning.
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Introduction

Wildfire is an ecological disturbance process that has a

heterogeneous global distribution controlled by the coincidence

of three basic requirements: vegetative resources to burn,

environmental conditions that promote combustion, and ignitions.

While the physical process of combustion is theoretically simple,

understanding the relative influence of biotic and abiotic controls

on observed, modern fire regimes is an ongoing focus in ecological

research, nuanced by the role of humans who are changing

landscapes to be more or less flammable, as well as lighting and

extinguishing fires [1–3]. Interest in fire research has become

global and interdisciplinary due to influences, interactions, and

feedbacks among fire, terrestrial, and atmospheric systems in the

context of human health [4], climate dynamics [5], and policy

adaptation [6].

Recent work has begun to synthesize common trends in

environmental influence on fire across broadly different locations

[7,8], but our comprehension of overarching biophysical controls

on global fire activity is still limited. The collection of fire data by

remote sensing provides an archive from which to examine global

patterns of wildfire, such as differences between areas of the planet

where fire occurs and those where it does not. The first cohort of

global fire studies focused on validation and translation of remotely

sensed fire products to area burned [9,10], global carbon emissions

from fire [5], and how seasonal variation in fire relates to ocean-

atmosphere cycles [11–13]. An initial characterization of the

global fire environment by Dwyer et al. [14] consisted of a short-

term assessment of 21 months of data to evaluate simple

relationships between fire activity and climate variables, as well

as fire and vegetation type. The refinement of global fire databases

and accumulation of longer-term records has further enabled such

statistically-based analyses of empirical data, including relation-

ships of global fire activity to anthropogenic explanatory variables

[2] and circum-tropical fires to moisture and energy metrics [8].

However, a thorough multivariate statistical assessment that

captures the complexity of broad global fire-environment

relationships has yet to be undertaken. Furthermore, once

macro-scale fire-environment relationships have been established,

the information provided by statistical parameter estimates can be

used to consider crucial questions about how climate change may

alter the distribution of fire across the globe.

As an alternative to statistical models, simulations using

dynamic global vegetation models (DGVMs) have been used as
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a complementary method to study the global distribution and

effect of fire [15–18]. Although novel ideas about the role of fire in

shaping global vegetation patterns [19] and how fire frequency

might change in the future [15] have been explored with DGVMs,

the simplified approach to simulating fire in many DGVMs has, as

yet, limited their utility in understanding current patterns of fire

around the world. As such, current DGVMs are not capable of

explicitly simulating the extent to which future climate change

may alter fire dynamics [20,21], though refinements to DGVM

fire modules and simulation experiments are promising.

The concept of global pyrogeography — the study of the spatial

distribution of fire across the planet — borrows heavily from

ecology, where three general factors are used to explain the

distribution and abundance of organisms: resource availability,

physiologically appropriate environmental conditions, and dis-

persal ability [22]. In the context of fire, flammable vegetation is

the consumable resource, fire-conducive weather patterns and

their long-term representation (i.e., climate) form the environ-

mental conditions axis, and ignitions are analogous to dispersal

[23]. Admittedly, these dominant constraints on the distribution of

fire are intertwined and complex. Climate is a superordinate

control over both the resources and conditions for fire [7], because

it has a direct, short-term effect on fire weather conditions and an

indirect, longer-term effect in determining the distribution and

quantity of flammable vegetation to burn. In turn, weather and

vegetation conditions affect ignitions, in conjunction with

topographic effects on patterns of lightning strikes [24] and

anthropogenic control over ignition.

Global studies examining how the distribution of fire might

change in the future are necessary to establish the potential impacts

of climate change on vegetation and ecosystems. Local and regional

studies have projected both increases and decreases in future fire

activity, [25–27] however we lack the quantitative estimates needed

to understand what the net effect might be across a warmer planet.

For these reasons, our first goal in this global pyrogeography was to

characterize the observed global fire occurrence pattern (Figure 1)

with an ensemble of multivariate statistical generalized additive

models (GAMs) combining existing fire occurrence, climate, net

primary productivity (NPP), and ignition data. Since many parts of

the globe are fire-free because they have little or no vegetation to

burn, it is informative to distinguish between areas that do not burn

due to limiting consumable resources versus limiting environmental

conditions. To address this issue, we included global vegetation

distribution as an explicit metric for resource availability in one

ensemble of models (FIRENPP), allowing climate to describe

additional variability in fire-conducive conditions. We contrasted

this approach to another ensemble of models (FIREnoNPP) where

climate variables alone were used to describe both resources and

conditions needed for fire. Our results provide a novel multivariate

framework to describe where we currently see wildfire across the

planet. We then apply these models to future climate scenarios,

providing a first estimate of potential changes in the global

distribution of fire. The climate change projections presented here

are based on simulations from the Geophysical Fluid Dynamics

Laboratory Climate Model 2.1 (GFDL CM2.1). Our intent is to

demonstrate the scope of changes that could occur given anticipated

climates under mid-high (A2), and lower (B1) emissions scenarios

proposed by the IPCC Special Report on Emission Scenarios [28].

Materials and Methods

Data
Overview. We constructed statistical GAMs for two

regression model scenarios to characterize current fire patterns,

FIRENPP (explicitly including biomass to burn) and FIREnoNPP

(allowing climate to explain both biomass and environmental

conditions), based on ten random sub-samples of fire [29], climate

[30,31], NPP [32], and ignition [33,34] data. We refer to these

models as each forming a ‘sub-model ensemble’. The ensemble

GAMs were then used with simulated future climate data to

project the potential distribution of fire in the 21st century. We

used global data at a spatial resolution of 100-km (10 000 km2) on

a Behrmann Cylindrical Equal Area projection, resulting in

12 098 pixels over the terrestrial extent of the planet. The

Antarctic continent and small islands were excluded as were

some coastal regions, because of an a priori cutoff rule of at least 1/

3 land fraction in the gridded 2-degree climate data.

Fire. Mapped global vegetation fire locations came from the

European Space Agency’s Advanced and Along Track Scanning

Radiometer (ATSR) World Fire Atlas (algorithm 2) for 1996 to

2006 [29]. The ATSR fire data were registered to our study

domain, where pixels containing at least one fire over the decade

of record were categorized as ‘fire-prone’ and those that did not as

‘fire-free’ (Figure 1A and 1B); alternative classifications will be

explored in future work. Using this criterion, we identified 8399

(69%) pixels as fire-prone over the 10-year period. The ATSR

satellite data include both human- and lightning-caused fires,

which are currently indistinguishable.

There are numerous satellite sensors that can be used to record

wildfire data, and these have been shown to vary somewhat in

their estimates of activity and distribution of fire [35]. We selected

the ATSR data because it provides the longest temporal data set

(10 years) of all fine-resolution global fire products, and post-

processing by Mota et al. [29] provided detailed screening of non-

vegetation fires. Mota et al. [29] used volcanic activity, night-light,

and land cover data as screening tools to remove non-vegetation

fires from this ATSR database alongside statistical techniques that

detected anomalous data clusters. The ATSR senses active night-

time fires at a three day interval to a minimum burning area of

0.01 to 0.1 ha. Night-time acquisition minimizes false positives due

to sun-glint, reflection, and bright soil surfaces, but it potentially

misses short-duration daytime events and summer fires at high

latitudes [10]. For example, Kasischke et al. [10] demonstrated

that many fires may go undetected by the ATSR in the boreal

forest.

The macro-scaled resolution of our study is one way to address

limitations of the fire data, namely omission errors due to detection

difficulties, and a relatively short temporal extent. We tested the

assumption that ATSR fire data were representative of other

global fire products and not biased due to detection difficulties by

comparing the distribution of ATSR fire data to those produced

by the newly available MODIS Collection 5 active fire data [36],

and found the distribution to be very similar (Text S1, Figure S1).

We also tested whether the decade of ATSR fire data were

representative and spatially similar to long-term fire patterns by

comparing ATSR data to a map of large forest fires recorded in

Canada between 1959 to 2002 [37] (Text S2, Figure S2). We

found a strong accord between our macro-scaled ATSR product

and the Canadian fire database, even in the northern boreal

forests where detection of fire can be compromised in finer-scaled

studies [10].

Climate. Our statistical GAMs were built from 17 climate

variables (Table 1) representing potential environmental

conditions controlling fire. These so-called ‘bioclimatic variables’

were calculated climate averages of temperature and precipitation

[30], providing biologically meaningful approximations of recent

historical energy and water balances, as well as environmental

extremes. We used variables calculated for climate data from

Global Pyrogeography
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GFDL CM2.1 [31] General Circulation Model (GCM) historical

simulations (1961 to 1990) and from observed climate normals

(1950 to 2000) provided by WorldClim to generate statistical

estimates from GAMs (see Regression modeling, below and Text S3,

Figure S3). The GFDL CM2.1 is a global coupled climate model

developed at NOAA’s Geophysical Fluid Dynamics Laboratory

and was designed to simulate oceanic and atmospheric climate and

variability over a multi-century temporal extent, at a diurnal

resolution [31]. WorldClim is a dataset of interpolated climate

surfaces generated using thin-plate smoothing splines from

weather station data recorded around the world [30]. The

GFDL CM2.1 and WorldClim-based models had very similar

Figure 1. The observed and modeled distribution of fire under current conditions. (A) Cumulative counts of fire activity detected by the
Along Track Scanning Radiometer (ATSR) around the world at a resolution of 100 km over 10 years. (B) The same fire data classified to represent fire-
prone (orange) and fire-free (yellow) parts of the world; note that areas of white within terrestrial boundaries were clipped from the analyses to match
climate data. (C) Mean of normalized relative probability of fire (nPc) for ten FIRENPP sub-models of fire-prone parts of the world under current
conditions. (D) Mean of normalized relative probability of fire (nPc) for ten FIREnoNPP sub-models of fire-prone parts of the world under current
conditions.
doi:10.1371/journal.pone.0005102.g001
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shapes and effect sizes, so given this consistency, we built our

wildfire occurrence models from the GFDL CM2.1 historical

simulation data, from which future fire could then be projected

seamlessly using global 30-year climate averages of variables

simulated for time periods 2010–2039, 2040–2069, and 2070–

2099. The three time periods of simulated future data used in our

study represent future climate conditions corresponding to

increasing concentrations of CO2.

The GFDL CM2.1 simulations for historical and future climate

conditions were generated with a resolution of 2 degrees [31] and

re-gridded to a 100-km resolution across the globe in order to

provide a standardized format compatible with the resolution of

this study (i.e., no statistical downscaling was performed).

Historical model simulations (pre-2000) corresponded to the

Coupled Model Inter-comparison Project ‘‘Twentieth Century

Climate in Coupled Models’’ or 20C3M scenarios [38] which

represent the best efforts to reproduce observed climate over the

past century. Future GFDL CM2.1 simulations (2010–2100) used

here for fire-climate change projections were forced by the IPCC

Special Report on Emission Scenarios (SRES, [28]) mid-high (A2)

emission scenario, in which CO2 concentrations reach 830 ppm

by 2100. A lower emissions scenario, B1, which can be viewed as a

proxy for stabilizing atmospheric CO2 concentrations at or above

550 ppm by 2100, was also examined for comparison. Because of

the known variability in and among GCM outcomes, we also

compared the GFDL CM2.1 future projections of the most

significant climate variables identified in the regression models

with simulations from 15 other atmosphere-ocean general

circulation models (AOGCMs) archived by the IPCC Fourth

Assessment Report Working Group 1 Program for Climate Model

Diagnostics and Intercomparison (PCMDI) database as a simple

assessment of uncertainty in the GFDL-based fire projections.

Vegetation. We quantified the broad-scaled distribution of

flammable vegetation using NPP (Figure S4). Measures of NPP

represent the amount of solar energy converted to plant organic

matter through photosynthesis quantified as elemental units of

carbon per unit time and area, whereas vegetation to burn is

ostensibly the standing stock of biomass represented as units of

carbon per area. The approximately linear relationship between

NPP and biomass [39] invites the use of NPP as a metric of

flammable vegetation, since detailed spatially-gridded, globally

extensive measures of biomass are not readily available [39].

Mapped global NPP was provided by the Carnegie-Ames-

Stanford Approach (CASA) terrestrial carbon model [40] at a

resolution of 0.25 degrees. Estimates of NPP can vary according to

the data and method used; here we used estimates created by

Imhoff and Bounoua [32] using climatology, land cover, solar

radiation, soil texture and vegetation data (AVHRR from 1982–

1998) described therein. We aggregated the raw values to our 100-

km sampling grid using the maximum NPP value recorded from

each pixel. Areas of persistent snow cover (136 pixels) for which no

NPP data were available were given a value of zero.

Ignitions. We examined the potential for human ignition to

limit fire distribution using the Human Footprint (HF) dataset

from the Last of the Wild Project [33] as a proxy for ignition

potential. The HF describes human population pressure, land use

and infrastructure, and access. Lightning, the other major cause of

ignitions, was assessed using the NASA Global Hydrology and

Table 1. Environmental variables used in regression analyses.

Variable Description and Units

Climate Derived from monthly temperature and rainfall values

Annual mean temperature uC

Mean diurnal range mean of monthly (max temp2min temp), uC

Isothermality mean diurnal range/temperature annual range (6100)

Temperature seasonality standard deviation of temperature (6100)

Maximum temperature of warmest month uC

Minimum temperature of coldest month uC

Temperature annual range maximum temperature of warmest month – minimum temperature of coldest month, uC

Mean temperature of wettest month uC

Mean temperature of driest month uC

Mean temperature of warmest month uC

Mean temperature of coldest month uC

Annual precipitation mm/year

Precipitation of wettest month mm/day

Precipitation of driest month mm/day

Precipitation seasonality coefficient of variation

Precipitation of warmest month mm/day

Precipitation of coldest month mm/day

Vegetation

Net primary productivity (NPP) amount of solar energy converted to plant organic matter through photosynthesis (g C per
0.25 decimal degree cell/year).

Ignitions

Lightning flash density flashes/km2/day

Human footprint normalized gradient of human influence (0 to 100)

doi:10.1371/journal.pone.0005102.t001
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Climate Centre Lightning Team’s high resolution annual lightning

climatology which reports annual flash rates per km2 from data

collected between 1995 and 2005 [34]. The results of a

supplemental analysis indicated that there were few areas of the

planet where ignition may be a limiting factor for the 10-year 100-

km resolution of our study (Text S4). Of note, the ignition indices

we used did not distinguish specific lightning characteristics or

human behaviors required for fire ignition. Although ignition

potential was almost never limiting, we still included ignition

agents in the regression models to test whether they reflected any

variation in the likelihood of fire occurring.

Regression modeling
To estimate environmental controls of fire occurrence, we chose

a used-versus-available sampling design analogous to resource

selection functions used in studies of wildlife distribution [41]. This

design allowed us to quantify the particular resources and

conditions conducive to fire by contrasting pixels where fires

occurred against a random sample of pixels using statistical models

that estimate a relative probability of occurrence. We did not

follow a used-versus-unused design because our comparison

between ATSR fire data and the Canadian large fire database

(Text S2, Figure S2) demonstrated that despite the overall

similarity between the databases, fires detected by ATSR during

the 1996–2006 time period do not represent all pixels that are fire-

prone. We used GAMs [42] for statistical modeling in R [43] to

provide flexibility in describing nonlinear relationships between

fire occurrence and environmental variables.

For the FIRENPP (explicitly including biomass to burn) and

FIREnoNPP (allowing climate to explain both biomass and

environmental conditions) scenarios, our sub-model ensemble

approach limited spatial structure in the data, included among-

sample variability, and allowed model cross-validation. Addressing

spatial dependence was particularly important since spatial data

require careful consideration in statistics due to the effect of

autocorrelation on variable [44,45] and model [46] selection. Data

for each sub-model were selected by taking a 15% random sample

(n = 1 260) with replacement from the ‘used’ data (pixels where

fire was detected) and the equivalent number of samples from the

‘available’ data (all pixels). We chose the 15% sample fraction

since variograms of response (fire) and predictor (climate and NPP)

variables indicated the beginnings of a sill in semivariance at a

distance of 15 to 22 pixels (<2 000 km).

We used the GAMs to identify simple and interpretable forms of

candidate variables that described the distribution of fire-prone

parts of the world. Our goal was to develop models that explained

strong patterns of variation in fire distribution while not over-

fitting the observed data. In keeping with this goal, we used the

Akaike Information Criterion (AIC) as a model selection tool

because it is based on the principle of parsimony [47].

Multiple phases were required for model selection and

development. In the FIRENPP models, we first estimated the

relationship between fire occurrence and NPP (Figure S4) to

account for variation in resources to burn, and held this

relationship constant for subsequent model development by using

an offset term. In each of the ten sub-models, the AIC indicated

that the most parsimonious form of the NPP offset term was

estimated with three degrees of freedom, a measure of complexity

in the shape of the relationship. After the inclusion of the NPP

offset, model development proceeded identically for variable

selection in FIRENPP and FIREnoNPP scenarios. Each sub-model

of the ensemble was developed using a forward selection

procedure. Variables were included in an order decided a priori

by rank according to the AIC estimated on independent

relationships between fire occurrence and each environmental

variable. The most parsimonious form of the variable was

subsequently selected using AIC and visual assessment of plots

showing the main effect, standard error estimates, distribution of

the data, and residuals. A reduction in AIC of more than six was

required for the inclusion of the variable in a sub-model.

Explanatory variables strongly correlated to one another were

flagged a priori based on scatter plots and Pearson correlation

coefficients. Although multicollinearity does not affect the use of

the model to infer the mean response under observed conditions, it

can make interpretation of variables difficult because parameter

estimates are conditional on other variables in the model, and

valid predictions can only be made if multicollinearity patterns

hold for the new data [48]. Therefore, as additional terms were

added to each GAM, we checked for changes in the shape and

explanatory power of the existing variables. Variables that entered

the model earliest took priority; lower-ranked variables were

omitted if they were strongly collinear and altered the existing

relationships, even if they otherwise reduced AIC sufficiently.

We assessed the predictive performance of each of the FIRENPP

and FIREnoNPP sub-models using a random sub-sample cross

validation method [49]. Cross validation compares model predic-

tions of training data against a withheld set of data, and the method

proposed by Johnson et al. [49] is the most appropriate for a used-

versus-available sampling design: tests are done on the correlation

between binned estimated values of relative probability from each

model and the frequency of independent withheld values (observed)

in the same bin (here, 30 bins, each with a width of 0.1). The two

most important metrics of those proposed by Johnson et al. [49] were

the tests indicating: i) whether the model is better than random as

indicated by a slope of the regression line between the observed and

estimated values significantly different from zero; and ii) whether the

model fits the data well as indicated by the R2 value of the

relationship between these observed and estimated values.

We ranked the overall importance of explanatory variables from

the ten FIRENPP and FIREnoNPP sub-models by summarizing the

number of times they were selected in the ensemble, as well as the

mean change in AIC when each was removed from a given sub-

model. We also plotted the shape of the dependent response to

each variable to identify and interpret the dominant form of each

relationship.

To illustrate the spatial distribution of fire under current climate

conditions, we calculated a normalized index of relative probabil-

ity scaled between zero and one from parameter estimates of the

sub-model ensembles. Calculations excluded the intercept because

it is not informative in the used-versus-available study design [50].

First, the relative probability for current conditions (rPc) for each

sub-model was calculated as:

rPc~exp b1x1z . . . zbpxp

� �
ð1Þ

where bp are the parameter estimates for each environmental

variable, xp. We then normalized these relative probabilities for

each sub-model and took the mean of the ensemble. The

normalized relative probability for current conditions (nPc) for

each sub-model was calculated as:

nPc~ rPc{min rPcð Þð Þ= max rPcð Þ{min rPcð Þð Þ ð2Þ

Projection of global fire distribution under future climate
conditions

Parameter estimates from the GAMs were applied to future

climate simulations to generate projections of future fire

Global Pyrogeography
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distribution. Future climate conditions were estimated for the time

periods 2010–2039, 2040–2069, and 2070–2099 using the SRES

A2 and B1 emissions scenarios. Several methods are available to

generate climate change projections from AOGCM data [51], for

example, by using output directly generated by AOGCMs or by

adding an anomaly or delta value, calculated as the difference

between future and present conditions as simulated by an

AOGCM, to observations. We examined these two approaches

and found that, because of the consistency between fire-climate

relationships estimated for observed and simulated current climate

conditions (Text S3, Figure S3), the first of these approaches would

provide equivalent information to the second, while retaining the

spatial correlation inherent to the physical model that generated

the simulations.

The two GAM ensembles present different ways to think about

the future of fire. The FIRENPP model depicts what the change in

fire distribution might be if the future global pattern of NPP

remained constant; we did not generate climate change projections

from the CASA productivity models, so NPP was essentially held

constant in our FIRENPP model projections. This scenario is

obviously unrealistic over the longer term because of the strong

links between climate and vegetation, but for near-future

projections such as 2010–2039, it may be reasonable to presume

a relatively constant NPP, given that climate induced changes in

fire are expected to occur more quickly than substantial changes in

vegetation via range shifts [52,53]. In contrast, the FIREnoNPP

models predict what the future distribution of fire might be under

the assumption that the climate variables in the regression models

jointly describe vegetation patterns (productivity and structural

form) as well as fire weather conditions. These predictions may

provide an overly liberal view of the near future, because they

essentially remove the dispersal constraints of vegetation change.

However, projections from these FIREnoNPP ensembles could be

more representative of what might be expected later in the

century, such as 2070–2099.

We used a delta index (PD) to assess the differences in current

and future fire distributions. For the PD index, we first calculated

the normalized relative probability of fire for the future (nPf) using

Equation 1, but based on future climate conditions. We then

quantified the changes between future and current relative

probability of fire for each sub-model as:

PD~exp Lf{Lcð Þ ð3Þ

where Lf = ln(rPf) and Lc = ln(rPc) and Lf and Lc are relative

probabilities of the current and future models, respectively. A PD

of less than one indicates a reduction in fire, whereas a value

greater than one indicates an increase. We calculated three delta

indices, PD1039, PD4069, and PD7099, for time periods 2010–2039,

2040–2069, and 2070–2099, restricting the ranges of climate

values for future projections to those of the training models to

avoid spurious prediction. Since analogues existed for virtually all

future climate values, this restriction did not overly constrain

projections. We also removed the terms estimating the relationship

between fire occurrence and lightning flashes from the sub-models

where it was selected, as no information was available to estimate

future lightning patterns from AOGCM simulations.

Lastly, we identified potential ‘‘hotspots of change’’ where fire

was projected to i) invade, by increasing in locations where current

probabilities of fire were low; and ii) retreat, by decreasing in

locations where current probabilities of fire were high. To

highlight the spatial extent and specific locations with the most

potential for near-term shifts, we mapped the distributions of fire

invasion and retreat for scenario A2 at time period 2010–2039

from the FIRENPP ensembles (i.e., PD1039), masking out regions of

the globe with NPP currently less than 96 gC/m2/year (e.g.,

Arctic, Sahara, Greenland). Although this excludes ,21% of

terrestrial lands that now lack biomass to burn, it also

underestimates the amount of future fire invasion into areas

where vegetation could begin to establish in the next few decades.

Selection of the nPc threshold values to isolate areas with relatively

low (for invasion) and high (for retreat) current probabilities of fire

was based on the distribution in values of modeled fire

probabilities around the median value of the current FIRENPP

ensemble.

Results

Statistical modeling of present-day influences on fire
distribution

Statistical modeling using the GAMs indicates that both

resources and conditions contribute to discriminating fire-prone

parts of the world, with similar relationships in both FIRENPP and

FIREnoNPP model ensembles (Table 2, Text S3, Figure S3).

Vegetation NPP had the strongest single relationship of any

predictor variable to the distribution of fire (Table 2, Figure S4),

and eleven additional predictors were selected in both FIRENPP

(after accounting for NPP) and FIREnoNPP ensembles (Table 2).

The maximum number of predictors included in a single sub-

model was seven, and this occurred only once; the mode was five.

Estimated degrees of freedom for the majority of variables ranged

between one and five, generally resulting in simple response

curves. There were limited differences between the predictors

selected in the FIRENPP and FIREnoNPP ensembles (Table 2) and

between the spatial distributions of expected fire probabilities

(Figures 1C and 1D). For example, temperature seasonality was

only selected in FIRENPP models but a closely allied variable,

temperature annual range, was selected in both FIRENPP and

Table 2. The ranked importance of variables selected in
FIRENPP and FIREnoNPP sub-models based on the number of
times the explanatory variable was selected (SEL) and the
mean change in AIC value, which was used to measure the
relative amount of variation explained.

Variable FIRENPP FIREnoNPP

SEL* AIC* SEL AIC

Net primary productivity 10 125 na na

Mean temperature of warmest month 9 16 10 30

Annual precipitation 7 14 10 79

Mean temperature of wettest month 5 13 4 10

Temperature seasonality/temperature annual
range

3/2# 14/25 0/3 na/12

Mean diurnal range 3 10 4 15

Precipitation of driest month 3 7 3 12

Lightning flash density 2 13 5 10

Mean temperature of driest month 2 7 3 12

Precipitation of coldest month 1 13 0 na

Human footprint (HF) 1 10 6 12

*Explanatory variables separated by ‘/’ are highly correlated and were never
selected together in a model, but represented similar environmental trends in
current conditions.

doi:10.1371/journal.pone.0005102.t002
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FIREnoNPP models (Table 2). The human footprint (HF) metric

and lightning flash density explained some variability in fire

occurrence, but only when NPP was not included in the model

(Table 2).

Model cross-validation indicated good discrimination of fire-

prone parts of the world, with tests showing sub-models of both

the FIRENPP and FIREnoNPP ensembles to be significantly better

than random. This diagnostic was demonstrated by slopes of the

correlations between estimated and observed values of relative

probability that were all significantly different from zero, and R2

values between estimated and observed data ranging between

0.96 to 0.98 for the FIRENPP model ensemble and 0.94 to 0.98

for FIREnoNPP ensembles. Visually, the FIRENPP model

ensemble provided finer discrimination of fire-prone parts of

the world (Figures 1C and 1D), especially in regions where

resource levels are high such as the tropics, illustrating areas

where climate variables (FIREnoNPP) were less able than NPP

(FIRENPP) to capture variation in fire occurrence. For example,

the FIREnoNPP ensemble predicted little variation in the

probability of fire across the Amazon and Congo regions of

South America and Africa (Figure 1D) despite containing large

contiguous patches of fire-free areas at the centre of these regions

in the observed data (Figure 1B).

Projection of global fire distribution under future climate
conditions

Given the success of the statistical models in reproducing

present-day fire distributions, we then applied the models to

estimate the change in future fire probabilities (PD) resulting from

the A2 (mid-high emissions) and B1 (lower emissions) climate

projections generated by the GFDL CM2.1 AOGCM. Projected

decreases in fire were indicated by values less than 1.0 and

increases by values greater than 1.0 (Figure 2 and Figures S5, S6).

For the A2 scenario, projected changes in fire over all time periods

ranged from 0.5 to 2.8, depending on the statistical sub-model

used and the geographic location; corresponding results for B1

ranged from 0.7 to 1.9 (Figure 2 and Figures S5, S6). Despite

changes in fire probabilities that deviated progressively more from

current conditions over time and with a higher emissions scenario,

Figure S6 illustrates roughly equivalent increases and decreases in

fire probability over the globe. The coarse spatio-temporal scale

used for this study allowed projections of change without including

finer scaled details known to affect local fire activity such as time

since last fire, since the likelihood of a fire burning through all

biomass available in each 10 000 km2 pixel is relatively unlikely.

It is important to note that the projections shown here are based

on simulations from one AOGCM only. This was a deliberate

Figure 2. Changes in the global distribution of fire-prone pixels under the A2 (mid-high) emissions scenario. An increase from current
conditions (red) is indicated by a PD greater than unity, little or no change (yellow) is indicated by a PD around unit, and a decrease (green) is
indicated by a PD less than unity. Panels show the mean PD for the ensemble of ten FIRENPP (A–C) and FIREnoNPP (D–F) sub-models. Climate projections
include 2010–2039 (A, D), 2040–2069 (B, E) and 2070–2099 (C, F).
doi:10.1371/journal.pone.0005102.g002
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choice, as our primary purpose was to describe the development of

the statistical modeling technique and explore its potential

application to future projections of wildfire. Some measure of

the robustness of these projections can nonetheless be obtained

through comparison of GFDL CM2.1 projections with the average

of those projected by simulations of 15 other AOGCMs archived

in the PCMDI database for the three most significant climate

predictors identified by the statistical analysis: mean temperature

of the warmest month, annual precipitation, and mean temper-

ature of the wettest month (Table 2). This comparison, shown in

Figures S7, S8, S9, suggests that our results may in fact be

indicative of the general magnitude and direction of projected

changes expected from a larger number of AOGCMs. Specifically,

the projections used here appear relatively conservative, close to,

or below the AOGCM ensemble average for the two temperature-

related variables. For precipitation, GFDL CM2.1 projections

tended to lie in the lower half of the distribution, suggesting a slight

tendency towards drier conditions.

Less change in PD values occurred in FIRENPP than FIREnoNPP

sub-model ensembles, largely as a function of including constant

vegetation patterns in the FIRENPP scenario. Both scenarios

showed increasingly higher variability through 2010–2039, 2040–

2069, and 2070–2099 conditions (Figure S6), which translated to

fire distributions that were increasingly dissimilar to those under

current conditions. In terms of geographic location, vast portions

of the continental land area, particularly across North America

and Eurasia, are projected to experience relatively large changes in

fire probabilities (Figure 2 and Figure S5). There were obvious

differences in PD values predicted by FIRENPP and FIREnoNPP

models in northern regions of North America and Eurasia

(Figure 2 and Figure S5), which can be attributed to the absence

of the static NPP variable in the FIREnoNPP model. The remaining

parts of the world had relatively similar changes predicted by the

FIRENPP and FIREnoNPP models.

Areas of projected fire invasion and fire retreat for the near-

term (2010–2039) given A2 emissions using the FIRENPP ensemble

are shown in Figure 3. As described earlier, invasions are defined

by increasing probability of fire in locations with relatively low

current probabilities, and retreat by decreasing probability of fire

in locations with relatively high current probabilities. Current fire

probabilities (Figure 1C) exhibited a median of 0.42, and values

0.08 above and below the median were selected as cutoffs for

current low and high probabilities, respectively. Of the terrestrial

biosphere, 79% of lands met our conservative minimum NPP

criteria, 21% were classified as currently low probability areas

susceptible to fire invasion, and 38% as high probability areas

susceptible to fire retreat. Although other criteria are worth

considering, it appears likely that a substantial fraction of all

terrestrial lands on the planet (one quarter, or 34 M km2 based on

the climate projections used here), may be classified with invasion

(,9% of lands) or retreat (,19% of lands) of fire (Figure 3).

Discussion

Global pyrogeography under current conditions
Wildfire-prone parts of the world span ecological systems

ranging from tropical savannas to boreal forests, characterized by

the interplay of key variables that represent resources and

conditions required for fire activity. As one would expect, we

found that biomass to burn is necessary for wildfires to occur: low

levels of vegetative resources to burn, here represented by low

NPP, resulted in a low probability of fire in areas such as desert

and tundra. In our statistical models, the likelihood of fire

increased with vegetation productivity. This trend has a limit,

however, as other environmental factors become constraints on

fire activity. For example, although some of the most biomass-rich

forests of the planet, such as in peripheral Amazonia and

Indonesia, can be fire-prone, the majority of closed tropical

evergreen forests of the central Amazon and the Congo are

relatively fire-free. These fire-free areas with high NPP rarely

experience environmental conditions that promote biomass

burning — seasonality, episodic wind events, low moisture levels,

or ignitions — given that burnable resources are readily available.

Even during anomalously dry periods, the closed canopy structure

of these biomass-rich rainforests maintains a relatively high

humidity that inhibits burning [54,55]. Our analyses identified

three dominant climate conditions that represent these constraints

at a macro-scale: mean temperature of the warmest month, annual

precipitation, and mean temperature of the wettest month.

The spatial variability in fire occurrence observed across

tropical forests emphasizes the inextricable relationship between

Figure 3. Potential invasion and retreat of fire. The invasion (orange) and retreat (blue) of fire projected by 2010–2039 under the A2 (mid-high)
emissions scenario and based on the FIRENPP ensembles. Invasion was constrained to places with existing vegetation.
doi:10.1371/journal.pone.0005102.g003

Global Pyrogeography

PLoS ONE | www.plosone.org 8 April 2009 | Volume 4 | Issue 4 | e5102



humans and fire, in that fire is dispersed by humans into areas

where resources and conditions would not typically support it

[1,55]. Humans have introduced fire to biomass-rich areas either

by igniting fires within fire-conducive windows of time [56] or by

altering the virtually ‘‘fire-proof’’ vegetation structure [54], often

in association with drought [57]. Although some tropical areas

have been relatively fire-prone for centuries [58,59], many areas of

wet tropical rainforest which only rarely experienced fire in the

past now burn due to accelerating anthropogenic pressure [60].

We found that the overall heterogeneity of fire occurrence in

biomass-rich areas resulted in an asymptotic, yet somewhat

decreasing, probability of burning at the highest NPP levels. The

accompanying variation among our sub-models demonstrates

localized differences in fire activity reflecting very high-NPP areas

as ‘fire frontiers’, or areas undergoing rapid changes in human and

fire activity. Both wet and wet-dry tropical forests are now at the

frontier of anthropogenic development, an ever-advancing zone

that has long been equated with elevated biomass burning due to

land clearing by humans [61].

If the influence of humans essentially means that all areas of the

world supporting sufficient biomass are potentially burnable and

few are ignition-limited, how do we interpret the influence of

environmental conditions on wildfire activity? Clearly, human

activity has been breaking down pyrogeographic barriers [3,60,61]

that regulate lightning-caused fire since the first use of fire by

humans, but our findings indicate that environmental resources

and conditions still play strong roles in determining the global

distribution of vegetation wildfire. Though the spatial patterns of

people, lightning, and biomass are related to some extent,

resources and climate-based variables were stronger constraints

on fire occurrence than ignition-related variables at the coarse

resolution we used. This being said, additional change in the

dynamics of fire management and/or human land use will almost

certainly contribute to altering the future global distribution of fire

alongside climate, presenting a wildcard in future fire-proneness.

Our finding that simple temperature and precipitation gradients

consistently surface as major controls of fire supports an analogy

between the broad distributions of fire-prone areas and Whit-

taker’s [62] seminal categorization of global biomes based on these

two environmental gradients. However, our study also emphasizes

the potential use of synthetic variables to describe the coincident

interactions of energy and water balances. Though some climate

variables considered in our analysis combined elements of

precipitation and temperature such as mean temperature of the

wettest month, none explicitly calculated effective levels of

moisture. For instance, water balance metrics [63,64] have been

shown to provide good discrimination of the occurrence,

abundance, and diversity of some biota at macro-ecological scales

[64]. Dwyer et al. [14] showed that at a global scale the number of

months per year exhibiting a water deficit was strongly associated

with observed fires. The development of global versions of existing

fire-weather/climate metrics such as the Canadian Fire Weather

Index [65], Nesterov Index, or novel metrics such as fire-driven

deforestation potential [8], would also inform syntheses of fire

patterns at broad scales.

Global climate change and fire
Our study demonstrates a new method of examining the future

of global fire activity using AOGCM-based climate projections to

drive statistical models of fire activity. Initial application to

simulations by the GFDL CM2.1 model under mid-high and

lower anthropogenic emissions provides some striking future

outcomes that encourage further development and application of

this framework to more fire metrics and a broader set of AOGCM

simulations. Under the future climate conditions we examined, a

major redistribution of fire-prone areas occurs, with larger changes

observed under scenarios of higher emissions and further into the

future. Yet the net outcome implies that while parts of the world

may experience regional increases in fire activity, others

experience roughly equivalent decreases. Although recent per-

ceived increases in fire through many parts of western North

America are causing ecological, economic, and social concern

[6,66], our results suggest a challenge to any simplistic view that

climate change will lead to more fire in all locations. Rather, we

find that the interplay of changing temperature and precipitation

might result in a rearrangement of global fire probabilities overall,

even as global temperature increases. This does not however,

imply that ecological or social impacts will be minor. Since

projected changes were highly regional and our simulations

suggest the potential for differences that increase across 2010–

2039, 2040–2069, and 2070–2099, fire activity at a given location

may become progressively altered from current conditions be it

through an increase or a decrease in the likelihood of its

occurrence.

Although our study illustrates the magnitude and types of

changes in fire that could be expected in the near future, the

quantitative findings should be interpreted with a suite of caveats.

As already mentioned, additional projections based explicitly on

output from multiple AOGCMs are clearly necessary. Our

statistical models do not incorporate fire-climate-vegetation

feedbacks that could have a further warming effect on global

climate (e.g., through fire-related emissions); in this sense our

projections should be seen as conservative in the amount of

potential change that will occur. In addition, changes in climate

will affect other natural disturbances such as insect outbreaks that

kill or defoliate trees [67], and the result of interactions between

these phenomena and fire activity will be very difficult to predict.

Fire occurrence is only one parameter of a fire regime, and

additional studies are necessary to examine potential changes in

other components such as area burned, fire intensity or

seasonality. Furthermore, the evolution of fire management

through suppression techniques, public awareness, and policy

changes is also likely to change fire activity in the future.

Projections of fire occurrence were carried out using a pair of

modeling ensembles, with one scenario holding biomass structure

constant at current levels (FIRENPP), and one scenario where

vegetation essentially tracks climate changes (FIREnoNPP). In the

latter, larger changes were observed in fire probabilities, generated

by the compensatory, larger overall effect sizes estimated for

climate variables in the FIREnoNPP models, including annual

precipitation and mean temperature of the warmest month.

Emergent differences between projections from FIRENPP and

FIREnoNPP ensembles were most apparent in the far north of

North America and Eurasia suggesting that some environmental

conditions conducive to combustion and fire spread are likely to

increase there over the next decades, yet the limited availability of

biomass to burn, as demonstrated by models where NPP was held

constant, could buffer dramatic near-future increases in fire

activity. The remainder of the world showed similar changes in the

future distribution of fire for both model ensembles. We contended

earlier that since the FIREnoNPP ensembles for 2070–2099

represented a scenario that notionally included a shift in biomass

patterns, it was more appropriate for longer-term projections due

to the inevitable but slow range shifts in vegetation expected with

climate change [52].

We classified areas projected to transition from low to high

probabilities of fire in the near future (2010–2039) as at risk of fire

invasion and areas projected to transition from high to low as at
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risk of fire retreat. An ecosystem that has experienced little or no

fire which then incurs a higher probability or frequency of fire,

such as a desert or rainforest, may be fire-sensitive and particularly

susceptible to changes in community structure or ecosystem state

due to increases in fire activity [60,68,69]. At the other end of the

spectrum, decreases in fire may also affect species or communities

that have adaptations that enable them to thrive in fire-prone

ecosystems and may depend on narrow ranges of fire intervals for

persistence. In nature, species are not simply adapted to fire, but to

a given set of parameters that represent a fire regime. Our fire

invasion and retreat metrics thus identify potential ‘hotspots of

change’ where altered fire-proneness may catalyze relatively rapid

changes in ecosystem structure, acting alongside the more gradual

effect of climate on individual species tolerances. In these hotspots

of change, it would be particularly valuable to quantify changes in

additional fire regime parameters, for example fire intensity, a

measure that includes not only changes in the conditions for fire,

but also the resources available to burn under those conditions.

The rate at which fire activity may change in the future relative

to rates of climate-induced changes in vegetation ranges is highly

uncertain. Rapid vegetation changes are possible, such as when

non-native grasses rapidly invade desert systems under suitable

environmental conditions [70,71]. However, the potential for

relatively rapid and large changes in fire probabilities seen in our

FIRENPP ensembles for 2010–2039 illustrate that in the near term,

fire activity could change faster than many terrestrial species may

be able to accommodate. For models projecting the future of

species distributions, especially that of plants [72], such rapid

change underlines the importance of developing methods to

explicitly integrate how fire activity affects vegetation, in addition

to species range changes based on plant-climate relationships

alone.

Our models provide global, quantitative projections of wildfire

that can be compared to existing studies of climate change to

gauge not only their agreement in scope and location, but also

disparities that can direct refinements in subsequent studies. For

example, using a relatively simple parameterization of fire in a

DGVM driven by input from multiple AOGCMs, Scholze et al.

[15] describe global changes in wildfire frequency that align with

our estimates in many areas, also generally supporting the concept

of a net global balance between increases and decreases in future

fire. In fact, such consilience between two very different modeling

frameworks raises the possibility of new hypotheses about

energetically-regulated limits that amount to a global ‘‘carrying

capacity’’ for fire. We are unaware of other global studies

estimating climate-induced changes in wildfire, so our statistical

framework provides a new, much-needed and complementary

approach to predicting future global pyrogeography.

Studies of climate-induced changes in fire have been imple-

mented at regional scales, and these can also be used to interpret

our results. For example, a DGVM and output from a GCM was

used to simulate future fire regimes in Alaska, predicting a relative

decrease in future area burned in central Alaska and increases in

future area burned along the southern and western coasts [73],

which match projections from our models. Using a regression

approach similar to ours, anticipated changes in fire return

interval were shown across boreal regions of North America by the

end this century [26] that correspond most closely with our models

where biomass was unconstrained. High-resolution regional

climate simulations were used to suggest increased future fire risk

across northern and eastern Australia [27], which aligns with

outcomes from our models with biomass constrained, though our

projections suggest more of a long-term decrease in fire in our

unconstrained models. Finally, projected changes in fire weather

indices for North America and Europe using simulated data from

the Canadian GCM [74] are in accord with our projections in

central and eastern France, but not in Fennoscandia.

Conclusion
In this study, we first developed a statistical modeling

framework capable of reproducing current-day global fire patterns

and describing the influence of underlying environmental controls

on those patterns. We then examined the global scope of, and

potential regions likely to be affected by, severely altered

probabilities of fire using statistical models and an illustrative set

of climate projections. Our global pyrogeography provides a new,

multivariate quantification of the current distribution of vegetation

fires across the planet that is both coherent with our knowledge of

global fire patterns and capable of projecting potential changes in

wildfire for the future.

The original impetus for this work was to complement the

subjective, expert-driven assessment of global fire regimes devised

in the Global Fire Assessment, spearheaded by The Nature

Conservancy [75]. Our hope is that this approach to global

pyrogeography will continue to develop as a framework for

providing robust estimates of potential perturbations in global fire

patterns and future ecosystem changes, which could then

complement and inform global DGVM simulations. Our proposed

framework would also benefit from the inclusion of more

advanced assessment of fire-human dynamics, the use of additional

fire metrics (e.g., area burned, intensity, seasonality), updates in

global fire products (e.g., MODIS), and the quantification of

AOGCM-related uncertainty [76], as this information becomes

available. Given the dearth of information on global fire in the

context of climate change [77], the utility and importance of

coarse spatiotemporal studies can only increase, providing

informative and synthetic insights about global wildfire and the

extent of changes that could be expected in the future.

Supporting Information

Figure S1 The distribution of fire detected by MODIS. Data are

displayed as the occurrence of fire at a spatial resolution of

100 km, between November 2000 and December 2006. Note that

areas of white within terrestrial boundaries were clipped to match

the fire-climate analyses.

Found at: doi:10.1371/journal.pone.0005102.s001 (0.40 MB TIF)

Figure S2 Spatial comparison between a decade of ATSR fire

data and fires recorded in the Canadian Large Fire Database

(LFDB). Grey represents areas where no fire was detected, red

shows areas where fire was detected in both the ATSR and LFDB,

orange shows areas where fires were only detected by ATSR, and

yellow shows areas where fires were only documented in the

LFDB.

Found at: doi:10.1371/journal.pone.0005102.s002 (0.09 MB TIF)

Figure S3 The modeled response, f(x), for the five most highly

ranked climate variables of the FIRENPP ensemble. Response

curves were estimated from fire occurrence and simulated GFDL

CM2.1 data (A), and observed WorldClim data (B). Grey lines are

estimates from each of the sub-models in the ensemble and black

lines are the mean of these estimates. Descriptions of climate

variables are found in Table 1 of the main text. Note that plotting

axes vary among the variables; the x-axis for ‘‘Annual precipita-

tion’’ is presented on a log10 scale.

Found at: doi:10.1371/journal.pone.0005102.s003 (0.13 MB TIF)

Figure S4 The global distribution of NPP, and the relationship

between fire occurrence and NPP estimated with the ten FIRENPP
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sub-models. Values on x-axis are presented as approximate g C/

m2/year, by dividing data (g C/0.25 decimal degree cell) by

7.76108. The values for NPP are clipped to the extent of the

GFDL CM2.1 climate data used in the regression models, such

that areas of white along some coast-lines indicate areas not

included in the study.

Found at: doi:10.1371/journal.pone.0005102.s004 (1.09 MB TIF)

Figure S5 Changes in the global distribution of fire-prone pixels

under the B1 (low) emissions scenario. An increase from current

conditions (red) is indicated by PD greater than unity, little or no

change (yellow) is indicated by PD around unity, and a decrease

(green) is indicated by PD less than unity. Panels show the mean PD

for the ensemble of ten FIRENPP (A–C) and FIREnoNPP (D–F) sub-

models. Climate projections include 2010–2039 (A, D), 2040–

2069 (B, E) and 2070–2099 (C, F).

Found at: doi:10.1371/journal.pone.0005102.s005 (1.38 MB TIF)

Figure S6 Distribution in values of change in the relative

probability of fire (PD) under future conditions.

Found at: doi:10.1371/journal.pone.0005102.s006 (0.55 MB TIF)

Figure S7 A comparison of mean temperature of the warmest

month from 15 AOGCMs. Periods of comparison include: 2010–

2039 (A), 2040–2069 (B) and 2070–2099 (C), under the SRES A2

(mid-high) emissions scenario. The GFDL CM2.1 projections

(outlined) fall in the mid-range of all models - half of the models

show warmer temperatures and half show cooler.

Found at: doi:10.1371/journal.pone.0005102.s007 (3.39 MB TIF)

Figure S8 Comparison of annual precipitation from 15

AOGCMs. Periods of comparison include: 2010–2039 (A),

2040–2069 (B) and 2070–2099 (C), under the SRES A2 (mid-

high) emissions scenario. The GFDL CM2.1 projections (outlined)

are in the lower half of the 15 models. Although there are several

models that project significantly drier conditions than GFDL

CM2.1, in general by end-of-century its projections show smaller

precipitation increases (across northern Europe, along the west

coasts of the Americas, and in mid-Africa) than the majority of

models.

Found at: doi:10.1371/journal.pone.0005102.s008 (3.87 MB TIF)

Figure S9 Comparison of mean temperature of the wettest

month from 15 AOGCMs. Periods of comparison include: 2010–

2039 (A), 2040–2069 (B) and 2070–2099 (C) under the SRES A2

(mid-high) emissions scenario. The GFDL CM2.1 projections

(outlined) are relatively conservative - by the end of the century,

projections are in the lower third of the 15 models.

Found at: doi:10.1371/journal.pone.0005102.s009 (3.46 MB TIF)

Text S1 A comparison between ATSR fire data from 1996 to

2006 and MODIS Collection 5 active fire data from 2000 to 2006.

Found at: doi:10.1371/journal.pone.0005102.s010 (0.02 MB

DOC)

Text S2 A comparison between a decade of ATSR fire data and

fires recorded in the Canadian Large Fire Database.

Found at: doi:10.1371/journal.pone.0005102.s011 (0.02 MB

DOC)

Text S3 Relationships estimated between historical fire occur-

rence and climate variables using observed (WorldClim) and

simulated (GFDL CM2.1) data.

Found at: doi:10.1371/journal.pone.0005102.s012 (0.02 MB

DOC)

Text S4 Assessment to determine if ignition might limit patterns

of fire occurrence, based on the Human Footprint and lightning

data.

Found at: doi:10.1371/journal.pone.0005102.s013 (0.02 MB

DOC)
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