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Abstract

Researchers working in the field of global connectivity analysis using diffusion magnetic resonance imaging (MRI) can count
on a wide selection of software packages for processing their data, with methods ranging from the reconstruction of the
local intra-voxel axonal structure to the estimation of the trajectories of the underlying fibre tracts. However, each package
is generally task-specific and uses its own conventions and file formats. In this article we present the Connectome Mapper, a
software pipeline aimed at helping researchers through the tedious process of organising, processing and analysing
diffusion MRI data to perform global brain connectivity analyses. Our pipeline is written in Python and is freely available as
open-source at www.cmtk.org.
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Introduction

Since its advent, magnetic resonance imaging (MRI) has

revolutionised the research in fundamental neuroscience. MRI is

a non-irradiating and non-invasive imaging technique offering

several modalities for studying the human brain from different

angles, opening new perspectives previously unconceivable for

studying the brain. Diffusion (dMRI) and functional (fMRI)

magnetic resonance imaging are two well-established modalities

providing powerful and complementary ways to investigate how

different areas of the brain are interconnected and interact. In

particular, dMRI exploits the thermal random motion of water

molecules in biological tissues for mapping the local axonal

structure at each imaging voxel [1,2]. By using this information,

fibre-tracking algorithms (also known as tractography) estimate

trajectories capturing coherent orientations of maximal diffusion

that are likely to represent real white matter fibre tracts linking

together distinct grey matter areas of the brain [3,4]. A

comprehensive map of neural connections of the brain is called

‘‘connectome’’ [5,6]. The connectome can be studied and described

at different scales. At the macroscopic scale, the connectome can

be seen as a network, where each vertex represents a well-defined

cortical or sub-cortical structures and the edges quantify the

structural white matter connectivity as measured with tractogra-

phy. A connectome is usually represented by means of the adjacency

matrix of the corresponding graph, also known as connectivity matrix,

which is a square matrix summarising the connectivity for each

pair of vertices. In the case when this matrix is estimated from

dMRI data we speak about structural connectivity. On the other hand,

the term functional connectivity is adopted if fMRI data is used instead

[7,8]. In this paper, we focus on structural connectivity and

present a novel software for mapping connectomes.

Schematically, three steps are necessary to compute a con-

nectome from diffusion MRI data, as illustrated in figure 1. First, a

morphological high-resolution T1-weighted image is used to

segment the brain and identify different grey matter structures,

such as the deep grey nuclei and cortical gyri, for obtaining the

nodes of the network. Then, the macroscopic pathways of the

underlying neuronal fibres (i.e. tractograms) need to be estimated

from the diffusion data by means of tractography. Finally, the

connectivity matrix is obtained by registering the two image spaces

(i.e. morphological and diffusion) and then intersecting the

estimated fibre trajectories with each pair of segmented cortical

and sub-cortical regions.

At the practical level, however, each stage consists of several

operations. There exist a vast choice of freely available software

packages to solve each individual task, with tools for reconstructing

the diffusion information in each voxel, performing fibre-tracking,

segmenting the grey matter, registering images etc. However, most

of these packages focus on a very specific task and use their own

conventions, file formats and programming languages. Usually,

researchers have to write custom scripts to combine these packages

together to account for data format conversion and fulfil the

requirements of each specific tool. This task can be rather

daunting and, more importantly, does not favour data sharing. All

these problems raised the need for standardisation and our

software aims at addressing several of these issues.

To our knowledge, only very few frameworks exist for

combining all these dedicated tools together in a sort of user-
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friendly processing pipeline. NIPYPE [9] and the LONI PIPELINE [10]

are two interesting frameworks developed for building custom

processing workflows with little effort by selecting and combining

modules from a wide range of well known neuroimaging software

packages such as FSL (www.fmrib.ox.ac.uk/fsl), FREESURFER

(surfer.nmr.mgh.harvard.edu), DIFFUSION TOOLKIT (www.trackvis.

org/dtk) etc. However, the primary goal of these tools is to quickly

create custom processing workflows fulfilling specific needs, but

they do not specifically address the creation of connectomes in a

common and standardised way, thus favouring data sharing.

Recently, Gray et al. [11] released a software pipeline based on

JAVA IMAGE SCIENCE TOOLKIT (JIST) which is very close to our tool.

The main drawback of their approach is that it considers only

Diffusion Tensor Imaging (DTI) data and other diffusion

modalities such as Q-Ball Imaging (QBI) or Diffusion Spectrum

Imaging (DSI) are not taken into consideration (see [12] for a good

review on these modalities).

In this article we present the Connectome Mapper (CMP), a

novel software tool whose main goal is to guide and help

researchers through all the steps needed to compute connectomes.

CMP simplifies the organisation, processing and statistical analysis

of the data. It works transparently with some of the most used

acquisition schemes (DTI, QBI and DSI) and its modular structure

makes it easy to customise it for specific needs. Our software is

developed in Python and it is designed to be fully compatible with

many state-of-the-art software packages in this field.

The manuscript is organised as follows. In the next section we

introduce the architecture of the Connectome Mapper and

describe its main processing stages. Advantages and drawbacks

of CMP are highlighted and discussed in the ‘‘Results and

Discussion’’ section, where we also report clinical studies in which

our software was successfully employed. We conclude this paper

with some possible future directions we envision for the

Connectome Mapper.

Methods

The Connectome Mapper implements a full processing pipeline

for creating multi-variate and multi-resolution connectomes with

dMRI data. The CMP has a modular structure composed of

processing stages, each implementing a specific task of the workflow,

and a graphical user interface (GUI) which supports the control and

proper execution of these stages (figure 2A) and helps the user in

the configuration of all the parameters required at each step

(figure 2B). Metadata associated with the data being processed can

also be entered (e.g. project, subject name etc), and all the files are

organised accordingly in a hierarchical structure (figure 2C). All

the necessary conversions among file formats are done under-the-

hood completely transparent to the user. Where possible, CMP

makes use of the native file format conversion tools bundled with

every package, which is most often the case. Ad-hoc converters

have been explicitly developed and included in CMP for any other

proprietary file format.

After each step, the GUI offers the possibility to inspect the

outputs generated and to repeat a specific step if the results are

found to be flawed or not satisfactory. The user can tune any

control parameter provided by the processing step, directly modify

the intermediate data (e.g. manually correcting a mask) and then

resume the processing at any time. In general, the outputs are

inspected using native viewers bundled with each software package

included in the workflow as the final user might be already very

familiar with these tools. For instance, all MRI volume data can be

inspected with the FSLVIEW viewer shipped with FSL, whereas

TRACKVIS is used to visualize the fibre bundles estimated with

tractography. In addition, an internal viewer is included in CMP

which provides additional features and complementary ways to

inspect the outputs. This viewer (figure 3) allows to visualize in the

same 3D space: (i) the diffusion data, in terms of glyphs

representing the diffusion profiles in each voxel and identified

maxima, (ii) additional MRI volume datasets, (iii) 3D surface

models, like for instance the white-gray matter boundary extracted

with FREESURFER and (iv) the final structural network estimated

with CMP itself. Most of the figures presented in this manuscript

have been produced using this viewer.

Implementation
The Connectome Mapper is part of the CONNECTOME MAPPING

TOOLKIT (CMTK), a complete software suite to map, visualise and

Figure 1. Basic workflow to create a connectome. Morphological and diffusion MRI images are processed as separate streams. Several
possibilities are available in each stage. The final connectome is obtained by registering and merging the data coming from the two streams.
doi:10.1371/journal.pone.0048121.g001

Connectome Mapper
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analyse connectomes. It is implemented with the Python programming

language and is released as open-source under BSD license.

Documentation and source code are available at the following

URL: www.cmtk.org. We chose Python since it is a free, open-

source and cross-platform programming language which is rapidly

becoming the language of choice for scientific computing [13]. In

particular, CMP heavily relies on the ENTHOUGHT TOOL SUITE

(www.enthought.com), which is a comprehensive collection of

open-source Python components providing all the necessary

graphics and scientific libraries needed to develop the backbone

and the graphical user interface of CMP.

We used NIBABEL from the Neuroimaging in Python project

(www.nipy.org) for I/O of neuroimaging file formats. For the GUI

we used the GOOGLE PROTOCOL BUFFERS and their Python

bindings to define the interfaces of the processing stages; this

ensures that the input files to each stage exist and that each stage

produces all the required output files. CMP can also be scripted,

that is, a configuration file can be created from the GUI in order

to subsequently run the pipeline on a collection of datasets without

the need to use the GUI. This is very important in order to

guarantee a consistent and homogeneous processing across

subjects when dealing with a large amount of data. Moreover, to

reduce the total computation time, a group of subjects might be

processed in parallel on several workstations or even on a

computer cluster as separate jobs. However, CMP does not

natively support any cluster management or job scheduling

strategy and this operation is left to user.

Main processing stages
Every processing stage uses a mixture of state-of-the-art

neuroimaging tools, such as FSL, FREESURFER and DIFFUSION

TOOLKIT, and in-house developed scripts. Thanks to the modular

nature of CMP, each stage can be easily customised to suit specific

needs and new processing stages can be added with relatively little

effort to account for additional algorithms. In the following, the

main processing stages of CMP are described in detail.

Input data. The minimum pre-requisites to start the

processing workflow are: (i) one diffusion acquisition and, (ii) one

high-resolution morphological T1-weighted volume. Both DI-

COM (including mosaic images) and NIFTI image formats are

supported; for convenience, all the processed data are internally

converted to NIFTI. Regarding the diffusion images, the

Connectome Mapper currently accepts a wide range of different

acquisition schemes and provides a common way to seamlessly

create connectomes independently of the acquisition scheme

adopted. Project- and subject-related information can also be

entered (figure 2). A tree folder structure is then created to

hierarchically organise the input raw data and all the outputs

generated at each processing stage.

The Connectome Mapper has been mainly tested with

SIEMENS and GE data without encountering any particular

problem. However, one of the most annoying practical issues

when processing dMRI data is the presence, from time to time, of

arbitrary flipping/swapping of some components of the diffusion

gradient directions, as shown at the top of figure 3. They originate

from incorrect information stored in the header of the images and

result in wrong reconstructions normally difficult to debug. To

address this issue, CMP offers the possibility to the user to

manually specify the appropriate acquisition scheme as a text file

(perhaps provided by the vendor). Moreover, an ad-hoc inspector

window is provided for helping the user to figure out what went

wrong and fix the problem (figure 3,bottom).

Whole brain tissue segmentation. The first processing step

is the segmentation of the brain in white matter, grey matter

(cortical and sub-cortical structures) and CSF starting from the

high-resolution T1-weighted image. The extracted labels will serve

later on as nodes of the connectome. By default CMP uses

FREESURFER for this task, but additional or custom atlases can be

easily added without breaking the workflow. FREESURFER recon-

structs the folding structure of the cortex (sulci and gyri) very

accurately, and provides an automatic labelling of the cortical and

sub-cortical structures based on two different anatomical atlases

(Desikan-Killiany and Destrieux).

Starting from the Desikan-Killiany anatomical atlas and

following the procedure described in [14], the cortical surface is

further subdivided into parcels through a two-phase partitioning

heuristic to create a multi-scale parcellation of the cerebral cortex. A

total of five different subject-specific atlases were obtained by

successive grouping of neighbouring regions at the next higher

resolution (figure 4). At the smallest scale, the cortical parcels have

approximately equal surface of 1.5 cm2. At the end of the process,

Figure 2. Graphical user interface (GUI) of the Connectome Mapper. The GUI controls the proper execution of the whole processing
workflow (A) and helps the user in setting all the parameters required at each step (B). Metadata associated with the files being processed can also be
entered, and CMP organises the data accordingly in a hierarchical structure (C) in order to simplify the management of big amount of data.
doi:10.1371/journal.pone.0048121.g002
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each of the five atlases comprises, respectively, a total of 1015, 463,

234, 129 and 83 labels. The labels account for all the cortical

structures, as well as the deep-grey nuclei and the brainstem. To

our knowledge, the implementation included in our software

represents the only freely-available approach to estimate multi-

scales connectomes.

With such a parcellation it is then possible to generate whole

brain normalised connectivity matrices at several scales (figure 4)

and thus study the human connectome at different levels. In fact,

the number of nodes has been shown to be an important feature

for increasing the sensitivity in connectivity-based group studies on

both structural and functional brain networks [15,16].

Registration to diffusion space. In the Connectome

Mapper we use the diffusion acquisition as the reference space.

Thus, the tissue masks created during the segmentation step have

to be registered to the (eventually resampled, see next section) b0

volume, i.e. the volume acquired in absence of diffusion sensitising

gradients, as shown in figure 5A.

Currently, three different registration options are available in

the CMP. The simplest approach consists in linearly registering

the T1-weighted image to the b0 volume. The affine transforma-

tion is estimated with the intensity-based linear registration tool

available in FSL, i.e. FLIRT, which is fast and optimised to give

good results in most cases. If needed, the GUI offers the possibility

Figure 3. Data inspector. Sometimes a flipping/swapping can be present in the data due to incorrect information stored in the image’s header
(top). CMP allows to interactively explore the data and easily fix the problem (bottom).
doi:10.1371/journal.pone.0048121.g003
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to tune all the parameters of the algorithm to adapt to the specific

case, e.g. degrees of freedom, similarity function etc, and to check

the quality of the registration after each run (figures 5B and 5C).

The second option is only available if FREESURFER has been used

for the brain segmentation. In this case the registration can be

improved using the boundary-based registration approach included in

FREESURFER called BBREGISTER. This method exploits the high-

resolution geometric models of the cortex previously estimated and

maximises the intensity gradient across different tissue boundaries.

Although BBREGISTER is based on linear transformations, it usually

results in more robust registrations than the intensity-based

method.

However, as diffusion images are normally affected by

geometric distortions due to the EPI read-out [17], all the linear

registration approaches are known to be sub-optimal. In fact, to

correct for these non-linear distortions an additional scan, called

field-maps, is required. CMP has a basic support for these field-

maps, including a pre-processing step which relies on the FUGUE

tool of FSL. In case the field-maps were not acquired, however, the

linear registration can still be improved if a T2-weighted non-EPI

acquisition is available (this is the case for most clinical protocols).

In fact, such T2-weighted non-EPI images have much less

distortions than the b0 volume and, importantly, share the same

contrast with it. This property can be exploited to implicitly

compensate for the geometric distortions by using the non-linear

registration-based correction approach described in [18]. First, the

T1-weighted volume is initially aligned with the T2-weighted non-

EPI image with FLIRT using 6 degrees of freedom. Subsequently,

the T2-weighted volume is non-linearly registered to the b0

volume using FNIRT, the non-linear registration tool available in

FSL. FNIRT models the displacement field as sum of cubic splines

and thus allows for more complex and accurate deformations

between the images, in this way accounting also for the non-linear

distortions. Finally, the two transformations are concatenated and

used to register the T1-weighted volume as well as the previously

estimated tissue masks to the diffusion space.

Intra-voxel reconstruction of diffusion information. CMP

relies on DIFFUSION TOOLKIT to reconstruct the intra-voxel

configuration of fibre compartments, and thus it natively supports

the most popular acquisition schemes, ranging from the standard

Diffusion Tensor Imaging (DTI) to more complex modalities like

Q-Ball (QBI) and Diffusion Spectrum (DSI) Imaging. However,

as already mentioned, the modular structure of CMP makes it

straightforward to account for additional acquisition schemes by

incorporating the corresponding reconstruction methods into the

workflow. At the time of writing, additional reconstruction

packages such as MRTRIX (www.brain.org.au/software/mrtrix)

and CAMINO (cmic.cs.ucl.ac.uk/camino) are in the process of

being included.

Raw diffusion MRI images can be up-sampled to any given

resolution before reconstruction. By default, data is resampled to

2 mm isotropic voxel size using trilinear interpolation, but the user

has the freedom to specify the desired resolution or to leave the

data unchanged.

Depending on the scheme adopted, several quantities char-

acterising the local diffusion process can be computed, such as the

Apparent Diffusion Coefficient (ADC) and the Fractional Anisot-

ropy (FA) of the diffusion tensor [2,19], the Orientation

Figure 4. Multi-scale connectomes. The five multi-scale atlases derived from the Desikan-Killiany’s anatomical atlas implemented in FREESURFER,
and the corresponding connectivity matrices.
doi:10.1371/journal.pone.0048121.g004

Figure 5. Registration between morphological and diffusion
images. The reference space in CMP is the one of the diffusion images.
The tissue masks extracted during the segmentation step, then, have to
be registered to the diffusion space (A). The quality of the registrations
can be inspected by overlaying on the b0 either the T1-weighted
volume (B) or the geometric models of the cortex estimated with
FREESURFER (C).
doi:10.1371/journal.pone.0048121.g005
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Distribution Function (ODF) and its associated shape descriptors

(Generalised Fractional Anisotropy, Skewness and Kurtosis [20]),

or the full diffusion Ensemble Average Propagator (EAP) and its

Zero-displacement Probability measure [21]. Later on, these

quantities can be used for calculating the edges of the final brain

network and creating a weighted connectome, as shown in figure 6.

Fibre-tracking. By default, whole-brain tractography is

performed by means of a deterministic streamline algorithm as

described in [22,23], which accounts for eventual multiple

diffusion directions in a voxel. Random seed points are chosen

within each voxel, and streamlines are propagated in two opposite

directions coherently with the local diffusion directions and using a

fixed step size. The propagation is constrained within the white

matter by means of a high-resolution binary mask derived from the

previous brain segmentation, and it is halted when a stopping

criteria is met: (i) reaching the white-grey matter interface, and/or

(ii) incoherence between diffusion directions in neighbouring

voxels (curvature constraint). The reconstructed streamlines can be

further processed, either by filtering on the basis of their length or

by smoothing their trajectories with spline basis functions.

Streamline-based algorithms are the most used in practice since

they are very fast and conceptually simple, and they have been

shown to consistently recover the major fibre bundles of the brain

[23]. However, this approach is known to be very sensitive to noise

and prone to cumulative propagation errors which considerably

affect the results. Alternative approaches such as probabilistic

[24,25] or global [26] tractography have been proposed to overcome

these limitations. At the time of writing, the aforementioned

methods are in the process of being included in the pipeline.

Figure 7 presents two example reconstructions performed with two

different tractography algorithms.

Concerning the seeding approach used for tracking, it is worth

noting that each method adopts its own strategy and thus the

seeding is very package-specific. For instance, using the default

streamline tractography implemented in CMP, N seed points per

maxima are randomly chosen in each voxel, while if using

MRTRIX implementation then N seed points per seed mask are

used instead. If probabilistic tractography is adopted, then,

tracking is done starting the fibres from a specific ROI and hence

N seed points per region are randomly selected. Interestingly, in

global tractography [26] no seeding strategy is used in practice, as

the fibres are iteratively reconstructed all together with a

minimization procedure. However, where possible, CMP offers

the possibility to modify the parameters controlling the seeding

procedure.

Connectome creation. Finally, a connectome, C, is estimat-

ed by combining whole-brain tractography with the cortico-sub-

cortical segmentation result. Each reconstructed fibre trajectory

which intersects the white-grey matter interface can be assigned to

a specific anatomical connection between a pair of regions Ri and

Rj . This trajectory will contribute to the cell Ci,j of the

connectivity matrix. Since diffusion is a symmetric process, the

matrix C is symmetric, too. To create a connectome CMP uses the

NETWORKX library (networkx.lanl.gov), which is a powerful

Python package for creating and manipulating complex networks.

Although ROI to ROI tracking is not natively supported in

CMP at the moment, it is worthy to note that a user interested in

studying specific ROI to ROI connectivity can easily filter a

posteriori the tracts of interest and manually perform all the

desired analyses, as all the necessary information, i.e. whole brain

tractography and ROI information, has been computed and is

stored in the CMP folder structure.

The number of fibres connecting two regions is a first and

simplistic measure of connectivity, but other quantities can be used

to characterise more adequately the connectivity strength among

every pair of regions. For instance, one can use the average value

along the fibre tracts of any diffusion-derived scalar map (e.g. FA,

ADC etc) and build a weighted connectivity matrix accordingly, as

illustrated in figure 6, opening the way to perform multi-variate

analyses of the brain connectivity. CMP natively offers this

possibility by using all the scalar maps previously computed, but

additional means for quantifying the connectivity can be easily

incorporated.

Execution time and accuracy of the estimated

connectomes. The Connectome Mapper offers different op-

tions to compute connectomes. The choice of which processing

steps to execute is dependent on the acquisition modality adopted

(DTI, QBI, DSI etc) and represents a trade-off between the power

and the sensitivity of the selected methods and the computational

Figure 6. Multi-variate connectomes. Example of weighted
connectomes computed using different measures for quantifying the
connectivity strength between each pair of regions. In (A) the weight of
each edge is proportional to the number of connecting fibres
(logarithmic scale), while in (B) the average GFA along the bundles was
used instead. The inter-hemispheric connections are highlighted here in
white: although they do not differ much in number from the rest of the
brain, they clearly manifest a higher GFA as they pass through the
Corpus Callosum.
doi:10.1371/journal.pone.0048121.g006

Figure 7. Whole-brain tractography. Example tractograms esti-
mated with (A) the standard deterministic streamline and (B) the global
tractography approach [26].
doi:10.1371/journal.pone.0048121.g007
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burden required. For instance, the execution time needed to estimate

a connectome is highly dependent on the individual algorithms

selected at each stage. As a rule of thumb, a full processing usually

requires between 12 and 72 hours of computation per subject on a

normal workstation. In fact, the whole-brain segmentation

computed with FREESURFER normally takes 12–24 hours and

fiber-tracking can require up to 48 hours if probabilistic tracto-

graphy is performed with default parameters. As reference,

deterministic streamline would require 1–3 minutes for the same

input data.

The quantitative comparison of all these possible approaches

(reconstruction, tractography etc) with respect to the estimation

of connectomes is still quite an open question in the diffusion MRI

community but recent convergent efforts are pointing in this

direction [27,28]. These studies compared the performances of

several reconstruction methods and tractography algorithms on a

realistic phantom dataset for which the ground-truth was known.

However, to our knowledge, no comprehensive studies have been

conducted to compare all these methods included in the CMP on

real brain data. The final choice of the processing stages is left to

the user.

Export and analysis
Connectomes generated with CMP are internally stored as

graph objects in Python pickle format and can be directly analysed

using NETWORKX and the MATPLOTLIB library (matplotlib.source-

forge.net). NETWORKX offers many general purpose algorithms to

explore graphs, e.g. Shortest Path and Max Flow, as well as tools

to compute local and global network properties, e.g. degree,

clustering coefficient etc. In order to favour data sharing and

perform more sophisticated analyses with specialised tools,

exporters to the most common file formats are available.

By default connectomes are saved in CFF format, which is a file

format specifically designed to store and share multi-modal

connectome datasets [29]. Data stored in this format can be

visualised with the CONNECTOME VIEWER (www.

connectomeviewer.org), which also offers basic tools to analyse

and compare connectomes, such as the Network Based Statistics

test [15] and the multi-scale adaptive strategy described in [30].

Connectivity matrices can be exported to MATLAB as MAT-files

and fed to the BRAIN CONNECTIVITY TOOLBOX (www.brain-

connectivity-toolbox.net), which is a powerful toolbox containing

a large selection of network measures for the characterisation of

brain connectivity datasets. Finally, CMP can interface also with a

lot of general purpose software packages for the analysis of graphs,

e.g. CYTOSCAPE (www.cytoscape.org) or GEPHI (www.gephi.org),

since data can be saved in generic file formats such as GraphML,

GML and DOT.

Results and Discussion

Applications to clinical studies
The Connectome Mapper was successfully employed in [31] to

investigate the structural plasticity of the contra-lesional motor

network after an ischemic stroke event. DSI acquisitions and

clinical examinations were performed in 12 patients in the acute

phase, at 1 and 6 months after the stroke onset. Structural

reorganisation of the brain connectivity was assessed analysing the

longitudinal time evolution of the motor sub-network and using

the GFA as a mean to quantify the strength of the connections.

The GFA measured in the acute phase together with age and

routine motor scores (National Institute of Health Stroke Score,

Functional Independence Measure and modified Rankin Scores)

were found to be a strong predictor of the motor outcome at six

months after stroke (r2~0:96, p~0:0002). This predictive model

of the post-stroke functional recovery was estimated with linear

regression (GLM) of the diffusion MRI data and the clinical

evaluations collected at the time of the stroke onset. This study

represented a ‘‘proof of principle’’ that connectome-like analysis

may provide reliable information for personalised rehabilitation

planning after an ischemic motor stroke event.

In [30] DTI was used for comparing the structural connectivity

in two groups of subjects affected by the 22q11.2 deletion

syndrome, distinguished by their IQ scores. Two different

approaches were used to quantify the connectivity strength and

creating distinct weighted connectivity matrices: (i) using the mean

FA along the trajectories connecting a pair of regions and (ii) the so

called ‘‘connection density’’ defined as Ci,j~
P 1

length(f )
, com-

puted over all the fibre tracts f connecting two regions Ri and Rj .

It was shown that there was a specific alteration of the connectivity

in the striatal structure (composed of the caudate and the

putamen) affecting the cortico-striatonigral-thalamocortical circuit

and this alteration might be the cause of the cognitive impairment

in the 22q11.2 subjects with the low IQ.

Strengths and weaknesses
The Connectome Mapper presents some important character-

istics from which the neuroimaging community might benefit. The

CMP integrates the most popular state-of-the-art processing and

analysis tools, while keeping a highly modular structure which

makes the integration of additional/custom functionalities possi-

ble. Each module can be independently executed with the help of

a user-friendly GUI and the output can be visually inspected after

each step, allowing the user to always keep an eye on the processed

data and quickly identify the source of problems. If something

went wrong, the GUI helps the user in tuning the parameters and

re-run those steps which eventually produced unsatisfactory

results. Moreover, the Connectome Mapper has an active support

community of users helping each other in solving issues,

exchanging feedbacks and suggesting ideas for improving the

software. The forum is available at the address groups.google.-

com/group/cmtk-users.

As highlighted in figure 1, using CMP the creation of

connectomes is completely independent from the acquisition

scheme adopted (DTI, DSI etc) and several processing alternatives

are available during the workflow. For instance diffusion data can

be reconstructed with several techniques, a collection of anatom-

ical atlases can be used and whole brain tractography can be

performed choosing from different algorithms. Our software

guides the user through all these possible choices and provides a

smooth processing regardless of the choices undertaken. From this

point of view CMP is remarkably flexible and powerful at the same

time, offering a comprehensive framework to perform multi-variate,

multi-scale and multi-modality (see below) connectome investigations.

The integration of the atlas described in [14] allows to map

connectomes at multiple scales. Furthermore, multi-variate

connectivity matrices can be created by using different measures

for quantifying the connectivity strength of the edges in the brain

network (e.g. number of connecting pathways, average FA along

them etc).

The Connectome Mapper simplifies the creation of connec-

tomes and makes it a straightforward process even for users not

familiar with pipelining languages, for clinician and for researchers

working in different domains. At the same time, however, it fulfils

the needs of advanced users in charge of analysing huge amount of

data, offering them the possibility to save all the parameters in

script files and create a batch job to automatically process all the

Connectome Mapper
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data. A detailed documentation is available at www.cmtk.org/

connectomemapper, including a step-by-step guide for installation

together with some sample datasets to start testing the pipeline.

Each processing step is described in detail and some intermediate

results as shown as well. In case of problems, a forum is also

available for support. Connectomes can be exported to many file

formats, and so CMP is natively compatible with the most popular

software packages used in this field. On one side this guarantees

the possibility to perform complex network analyses with

specialised software packages, and on the other side it might

facilitate the sharing of the results between groups in the diffusion

community.

Our software pipeline is developed in Python and is released as

open-source. The processing steps and the implementation details

are then completely transparent to the user and this might

facilitate contributions, fixing of bugs and improvements from

external developers. However, most of the tools on which it relies

(e.g. FSL and FREESURFER) natively run only on Linux-based

systems and, for this reason, CMP is not multi-platform and has

been tested so far only on Linux distributions such as Ubuntu for

32bit and 64bit. Some successful attempts to run CMP on different

platforms have been reported by some users on the forum.

Anyway, as nowadays virtual machine technologies are quite

efficient, CMP can be easily run on virtually any system and this

does not constitute then a real limitation.

Availability and future directions
The Connectome Mapper is already available for download and

use at www.cmtk.org, and many users already employed it in their

studies. The method has been validated in the work of [14] and

the code was internally tested applying CMP in many possible

scenarios. However, an online forum is available for submitting

bugs, comments or feedbacks, for requesting new features, or for

simply asking for help. We directly offer support for correcting

bugs and for fixing any possible incompatibility which might arise

in future due to new releases of the software used in the CMP, e.g.

FSL, FREESURFER etc.

At the time of writing, some modules are still in the beta phase

since not fully tested, but are scheduled to be released in short

time. It is the case for instance of the reconstruction of the intra-

voxel diffusion structure with advanced techniques implemented in

CAMINO and MRTRIX, but also of probabilistic and global

tractography.

We believe that the Connectome Mapper will represent in the

future a solid framework for multi-modal connectome investiga-

tions, integrating and merging several imaging modalities, e.g.

functional MRI, electroencephalography (EEG), electrocorticog-

raphy (ECoG) etc, for studying the brain connectivity from

different points of view at the same time. CMP already includes a

basic module for the pre-processing of fMRI data, typically

acquired during resting-state experiments. Initially the fMRI

volumes are motion-corrected and averaged. Then, similarly to

the registration module described before, the T1-weighted image

is registered to the mean fMRI volume and the transformation

applied to tissue masks derived from the chosen anatomical atlas.

Once the fMRI time points have been realigned, and the cortical

parcellation registered to the functional space, an average

functional time series can be computed from each cortical region.

These average time series are organised into N|T matrices, with

N number of cortical and subcortical regions and T number of

time points, and then can be directly fed to the CONNECTIVITY

DECODING TOOLKIT (miplab.epfl.ch/richiardi/software.php) de-

veloped by [8] to create robust multi-resolution functional

connectivity matrices corresponding to different wavelet sub-

bands. It is worth noting that in CMP the very same anatomical

atlas is used for creating both structural and functional networks,

and so the Connectome Mapper might become a very powerful

tool for multi-modal brain connectivity analyses.

Conclusion

In this paper we presented a comprehensive software pipeline

specifically designed for easily mapping connectomes from

diffusion MRI data using state-of-the-art tools developed in the

field. The workflow natively supports the most popular diffusion

acquisition schemes (e.g DTI, QBI, DSI) and several processing

alternatives are available at each step (e.g. deterministic vs

probabilistic tractography). The processing runs smoothly regard-

less of the methods chosen and a user-friendly GUI helps the user

in configuring all the parameters required at each step and visually

inspecting all the processed results. The modular structure of our

software is highly flexible, and custom or additional algorithms can

be incorporated. We believe that our software might play an

important role in the field of brain connectivity analyses, for that

applied researchers will not have to spend time in developing their

own processing pipelines, but they can simply focus all their

energies in the results of the analyses.
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