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Abstract

Predicting the potential range of invasive species is essential for risk assessment, monitoring, and management, and it can
also inform us about a species’ overall potential invasiveness. However, modeling the distribution of invasive species that
have not reached their equilibrium distribution can be problematic for many predictive approaches. We apply the modeling
approach of maximum entropy (MaxEnt) that is effective with incomplete, presence-only datasets to predict the distribution
of the invasive island apple snail, Pomacea insularum. This freshwater snail is native to South America and has been
spreading in the USA over the last decade from its initial introductions in Texas and Florida. It has now been documented
throughout eight southeastern states. The snail’s extensive consumption of aquatic vegetation and ability to accumulate
and transmit algal toxins through the food web heighten concerns about its spread. Our model shows that under current
climate conditions the snail should remain mostly confined to the coastal plain of the southeastern USA where it is limited
by minimum temperature in the coldest month and precipitation in the warmest quarter. Furthermore, low pH waters (pH
,5.5) are detrimental to the snail’s survival and persistence. Of particular note are low-pH blackwater swamps, especially
Okefenokee Swamp in southern Georgia (with a pH below 4 in many areas), which are predicted to preclude the snail’s
establishment even though many of these areas are well matched climatically. Our results elucidate the factors that affect
the regional distribution of P. insularum, while simultaneously presenting a spatial basis for the prediction of its future
spread. Furthermore, the model for this species exemplifies that combining climatic and habitat variables is a powerful way
to model distributions of invasive species.
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Introduction

Invasive species can often negatively impact native species and

ecosystems, especially in cases where they spread disease or over-

consume resources [1]. Early detection and prediction are central

to the effective management of such invasive species to minimize

negative impacts [2]. Many invasive species are still expanding

their range, especially those that have recently been introduced

into novel areas. Recently there has been a rise in the application

of ecological niche modeling to predict habitats vulnerable to

invasion, which then can guide early detection and rapid response

efforts against invasive species. These modern modeling technol-

ogies not only can help predict invasions, but also identify what

particular environmental factors limit a species’ distribution [3]. In

many cases, these factors may be regionally correlated, which

makes them conducive to utilizing data from large-scale sampling

programs and even remote sensing (e.g., [4–6]) to model and

predict sites that are vulnerable to invasion.

The Pomacea genus of freshwater snails is known to be quite

invasive and can pose risks to agricultural crops and human and

wildlife health [7,8]. The best studied Pomacea species is the

channeled apple snail, P. canaliculata, which is classified as one of

the 100 ‘‘World’s Worst’’ invaders by the Global Invasive Species

Database. It has large impacts on aquatic ecosystems as

a consumer of vegetation and is among the few aquatic snail

vectors of the zoonotic nematode, rat lungworm (Angiostrongylus

cantonensis) [9]. A species endemic to Mexico, Pomacea patula

catemacensis, which is a food item for humans and wildlife, was

shown to accumulate appreciable levels of cyanotoxins [10].

Several invasive Pomacea are major agricultural pests in Asia where

rice production suffered after intentional introduction as a potential

food source for local consumption and export [11,12].

The island apple snail, Pomacea insularum, is originally native to

South America and was introduced to the United States most

likely in the early 1990’s, but possibly as late as 2002 [7] (Figure 1).

Since then, it has rapidly spread from its initial introduced

populations in Texas and Florida, and has been documented

throughout eight southeastern states in the USA [7,13,14]. The

limited ecological data on P. insularum in the USA show that the

species has considerable impacts, especially on native aquatic
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vegetation and snail species [15–17]. In Florida, in particular, P.

insularum is much larger and more fecund than the native P.

paludosa (e.g., P. insularum egg clutches contain 2000 eggs as

opposed to its native counterpart which produces 20–30 eggs) [18–

20]. The invasion of P. insularum has possibly affected the

endangered snail kite, a specialist predator on the native P.

paludosa, which seemingly experienced decreased foraging success

and juvenile survival following invasion of P. insularum [21]. Thus,

predicting habitats that are vulnerable to further invasion by P.

insularum is of particular conservation interest from the perspective

of preventing species replacement and larger ecosystem impacts.

Our objectives were to build a predictive model of P. insularum

distribution in the southeastern USA and identify which environ-

mental variables best predict its distribution using Maximum

Entropy modeling (MaxEnt). MaxEnt models use geo-referenced

species occurrence records and data on environmental variables to

generate a predictive continuous probability distribution of habitat

suitability over a spatial domain. MaxEnt is effective with

incomplete, presence-only datasets and is a useful approach when

modeling a species not at equilibrium, or one that has detection

issues [22]. MaxEnt has been shown to consistently outperform

more established methods of estimating species’ distributions from

occurrence data (e.g., Genetic Algorithm for Rule Set Production-

GARP, BIOCLIM models) and has been increasingly applied to

predicting the distribution of invasive species in both terrestrial

and aquatic systems [23–25]). MaxEnt models have been in-

creasingly utilized, especially with advances in the collection of

large scale environmental data (e.g., [26,27]).

Our MaxEnt model uses bioclimatic data to predict the

distribution of P. insularum in the southeastern USA. Although

the large scale climate modeling provides an excellent initial

estimate of the snail’s abiotic tolerances, we also discuss known

tolerances of the snail to habitat and non-climate related

environmental factors that can provide further guidance for

refining which water bodies within the proper climate zone may be

inhospitable to invasion. In particular, we focus on pH as

a secondarily influential variable and layer this variable onto the

model to refine the snail’s predicted conceivable distribution.

Methods

Model Areas of Current and Predicted Climatic Suitability
for P. insularum in the USA
We collected P. insularum distribution data from the USGS Non-

indigenous Aquatic Species database [14]. In spring and summer

of 2011 and 2012 we surveyed and spot-checked many of these

sites, especially in Georgia (including two newly reported sites), to

verify the presence of P. insularum (Table S1). Because these sites

are on the advancing edge of the species’ distribution, their

inclusion heavily influences the model. Also, since habitat at the

edges of the snail’s distribution may have been colonized more

recently or may not be as suitable, we needed to ascertain if the

populations showed evidence of persistence.

P. insularum individuals can be difficult to differentiate morpho-

logically from P. canaliculata. We relied on the findings of Rawlings

et al. (2007) whose genetic work indicated that P. canaliculata was

mostly restricted to Arizona and California locations, while all

Pomacea populations in Georgia were P. insularum. Furthermore, the

field surveyors (R. Haynie and S. Robertson) were familiar with

the appearance of P. insularum egg masses, which are strikingly

different to a trained observer, than those of P. canaliculata.

Nonetheless, we tested the robustness of our model by performing

a sensitivity analysis (Materials S1), and found our model was

extremely robust to the potential of misidentified populations.

Because P. insularum is an invertebrate and none were collected, no

specific permits were required for the described field studies. We

accessed most sites through public boat landings or publicly owned

right-of-ways. However, three of the sites required permission to

Figure 1. Pomacea insularum adult (6.1 cm) and an egg mass (7.662.5 cm). P. insularum has a channeled suture and often exceeds 10 cm in
height and lays conspicuous large pink egg masses. Photo credits: (left)–Freshwater Gastropods of North America website; (right)–J. Morgan.
doi:10.1371/journal.pone.0056812.g001
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access; one at Alma, Georgia by a private landowner (Charles

Douglas) and two at St. Marys by the city (Chris Cox, St. Marys

Dept of Public Works).

We gathered environmental data for climate variables from

WorldClim to use as predictive variables in the MaxEnt modeling

of P. insularum’s distribution. In particular, we began by using 19

bioclimatic variables (i.e. BioClim variables), which were derived

from monthly temperature and rainfall values (Table 1). Co-

linearity of predictor variables in MaxEnt models can lead to

spurious results [28–30], and BioClim variables are often collinear.

Thus, we calculated the Pearson’s correlation coefficient of all

combinations of the 19 BioClim variables for known point

locations of P. insularum. Variables were then selected a priori for

their biological importance in affecting apple snail populations and

to minimize the number of correlation coefficients above 0.6.

Using these criteria, two temperature variables [maximum

temperature of the warmest month (Bio5) and minimum

temperature in the coldest month (Bio6)] and three precipitation

variables [annual precipitation (Bio12), precipitation of the driest

quarter (Bio17), and precipitation of the warmest quarter (Bio18)]

were selected as predictor variables. These variables were chosen

over others with which they correlated strongly because P.

insularum is known to experience mortality at low temperatures

[31], and fluctuations in water levels can have impacts on snail

reproduction and juvenile survival [32]. A smoothing function (a

regularization multiplier of ten) was used to smooth response

curves of variables to prevent overfitting of the response curve for

each variable.

Because P. insularum records and sampling efforts are focused on

the Gulf Coast and Southeastern regions of the USA, we limited

the scope of our model to the southeastern USA (Florida, Georgia,

Alabama, Mississippi, Louisiana, Texas, South Carolina, North

Carolina, and Virginia). To avoid sampling bias (overweighing the

model) from closely located points in heavily studied areas, point

locations were converted into a presence/absence grid with the

same scale (161 km) as the predictor BioClim variables, and then

converted back to a single point from the center of each grid where

P. insularum was present. The final list of presence points for P.

insularum used in our model are presented in Table S2.

MaxEnt generates a continuous probability surface of habitat

suitability by comparing values of environmental variables (e.g.,

climate) at known species’ locations to values at other locations

(e.g., background points) throughout the area of inference. We

limited the distribution of background points to the southeastern

states listed above. Background points were created by randomly

placing 10,000 points across our focal area.

We then used MaxEnt version 3.3.3e to generate a model of P.

insularum distribution using the five climatic predictor variables

[33]. A total of ten runs of the model were completed, with

a random 10% of the 68 known locations sampled without

replacement and set aside for model validation for each model run.

If any of the five predictor variables did not contribute significantly

to the model, as measured by an overall importance score of 5% or

less, they were removed from the model and the more

parsimonious model was re-run. We determined the relative

importance of variables remaining in the model with permutation

of importance. Permutation of importance is a measure of the

contribution of each variable quantified by the resulting decrease

in training AUC when randomly permuting a variable. The values

total to 100% across all variables and larger decreases mean the

model depends more heavily on that variable.

An important step in evaluating the model is to verify that the

data used to train and test the model performed significantly better

than random. A typical approach is to look at the area under the

curve (AUC) score associated with the models. An AUC score of

0.5 indicates a model is no better than random while 1.0 indicates

the model distinguishes perfectly between presence and absence of

a species. However, there are criticisms of reporting an AUC score

by itself, particularly for a species that is not at equilibrium

[34,35]. To address this, we also report a graph of the receiver

operating curve (ROC). The logistic output from MaxEnt, is

scaled between 0–1; however, interpretation is made easier in most

cases by defining thresholds of habitat suitability. To establish

which areas are climatically suitable for P. insularum, we used two

different commonly used thresholds based on the average model

outputs. One, the ‘‘correctly classify all points’’ threshold, uses

looser criteria so that it would correctly classify all known P.

insularum points. By correctly classifying all known P. insularum

points, a larger area will be designated as suitable habitat

compared to other thresholds. A second, stricter, threshold uses

tighter criteria that allows up to 10% of known P. insularum points

to be misclassified. This has the effect of conservatively identifying

a region of highest fit that does not allow outlying points of P.

insularum presence to expand the predicted area of occupancy

beyond a core region.

Table 1. List of environmental variables from the BIOCLIM dataset used in the MaxEnt model.

BIOCLIM predictor variables

1. annual mean temperature 10. mean temperature of warmest quarter

2. mean diurnal range temperature 11. mean temperature of coldest quarter

3. isothermality 12. annual precipitation

4. temperature seasonality 13. precipitation of wettest month

5. maximum temperature of warmest month 14. precipitation of driest month

6. minimum temperature of coldest month{ 15. precipitation seasonality

7. temperature annual range 16. precipitation of wettest quarter

8. mean temperature of wettest quarter 17. precipitation of driest quarter

9. mean temperature of driest quarter 18. precipitation of warmest quarter{

19. precipitation of coldest quarter

Bold font indicates variables considered in initial model run;
{superscript indicates the two variables included in final model.
doi:10.1371/journal.pone.0056812.t001
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Enhancing Predictions of Apple Snail Distribution with
Non-climatic Variables
To identify the tolerance range of P. insularum to different abiotic

variables and thus refine the predictions of the snail’s distribution

based solely on climate variables, we conducted a literature review

of both published and unpublished studies (e.g. reports, websites)

focusing on known influential water properties: salinity, pH, and

temperature, as well as emersion and desiccation tolerances [31]

(Table 2). We chose to focus on pH, since pH and hardness may

be limiting factors for growth (especially shell maintenance) and

hatchling success in nonindigenous Pomacea sp. [31,36]. Also, low

pH in general is known to preclude shell construction in many

molluscs, including apple snails [37–40]. Furthermore, pH is

a tracked variable with a large amount of variability throughout

the southeastern USA.

To examine how pH might affect snail distribution, we

downloaded pH measurements from the EPA STORET database,

which contains surface water quality data for the entire USA [41].

In the case of Florida, only the last five years of data were used due

to the large number of records in the state, and limits on the

maximum number of records in a STORET search. For sites with

multiple measurements, the lowest recorded measurement was

used, because low pH can lead to mortality in P. insularum in fewer

than 10 days [31]. We investigated further any locations with a pH

below 2 since such a value is suspiciously low for a natural water

body. If other measurements at that location showed substantially

higher pH, we used the second lowest pH recorded for the

location. These points were then used to create a continuous map

of pH distributions in the southeastern United States using

Kriging, a spatial analysis approach used to interpolate between

points. A similar approach has been used for demonstrating

regional patterns in the pH of lakes [42], including one study

examining the potential for zebra mussel expansion [43]. In total,

the pH data layer was generated from point measurements of pH

at 35,000 different locations in the southeast.

On top of the MaxEnt map predicting the influence of climate

variables, we plotted areas representing two different pH thresh-

olds. One threshold was a pH,4 as determined by Ramakrishnan

[31] to be lethal for P. insularum (Table 2). A second, less extreme

threshold was a pH=5.5, which was determined by Bernatis

(unpublished data) to be lethal to P. insularum hatchlings (median

lethal dose over 3 days, or LD50/3). Although these pH layers

could have been formally included in the maximum entropy

modeling, due to the high amount of spatial variability in pH

measurements, we felt more comfortable viewing the interpolated

pH layer as a rough guide to pH values in an area. Specifically, the

pH layer is good at reflecting large scale regional processes that

drive low pH, such as underlying soil and bedrock composition

and organic matter inputs. However, it is not as good at reflecting

small scale variation that is unlikely to be driven by regionally

correlated processes. For example, because of its size and position

within the landscape, a roadside mud puddle would probably not

be affected by the larger scale drivers of low pH like a big swamp

in a region would.

Results

Maximum Entropy Modeling
Three point locations were discarded from the USGS invasive

species database due to our verification process. First, we were

unable to verify the Savannah River (Cowden, SC) population

during two separate field surveys. The initial report, of numerous

shells (but no live snails or eggs) was made by a U.S. Fish and

Wildlife Service malacologist and therefore had been considered

highly reliable (L. Zimmerman, pers comm). We did document

both live and dead Japanese mystery snails, Bellamya japonica, (or

possibly Chinese mystery snails, B. chinensis), at this site during our

April 2012 survey. Second, the point location in Fort Worth,

Texas was removed from the dataset because the population had

apparently been extirpated [13,44,45]. In both these cases the

initial sightings seem highly reliable and we presume that cold

winter temperatures may not have allowed the populations to

persist. A third point in Arizona was eliminated because a recent

genetic study identified that population of apple snails as a different

Pomacea species [7].

Only two of our initial five climatic variables were selected as

significant contributors to the distribution model of P. insularum:

minimum temperature in the coldest month (Bio6) and pre-

cipitation in the warmest quarter (Bio18). Minimum temperature

in the coldest month was the more important variable of the two,

with a 60.6% permutation of importance. More precipitation in

the warmest quarter and higher minimum temperatures were

associated with an increased likelihood of the climate being

suitable for P. insularum. From the ten model runs, the average

AUC was 0.94, with little variation in AUC between runs. The

averaged output from these ten model runs is shown in Figure 2.

The good fit of the model is furthered evidenced by the average

receiver operating curve (Figure 3). All of Florida, as well as coastal

Louisiana, Alabama, Mississippi, Georgia, South Carolina, and

portions of coastal Texas and North Carolina were reflected to

have the highest climatic compatibility as determined by using an

inclusion threshold that correctly classifies all sites above the

minimum 10% training omission threshold. Coastal regions in

pink represent areas determined to be suitable by using the less

stringent threshold calculated by correctly classifying all known P.

insularum points above the minimum training presence. Areas

farther inland in the previously mentioned states, were classified as

Table 2. Experimentally determined incipient physiological tolerance limits under laboratory conditions for adult and juvenile
Pomacea insularum collected in Texas (from Ramakrishnan [31]).

Physiological parameter Lower limit Upper limit

Salinity 0.0% 6.8–10.2%

pH 3.5–4.0 10–10.5

Temperature 15.23uC 36.6uC

Emersion 70 days at 30uC, ,5% relative humidity .308 days at 20–25uC, .75% relative humidity

For salinity and pH the ranges of values bracket the median lethal values at 28 days exposure (LD50/28). Temperature limits were statistically calculated from
experimental data to yield the temperatures at which 99% mortality occurred in 28 days (LTp99). Emersion values are the maximum observed survival time of the snail
out of water at the stated temperature and humidity.
doi:10.1371/journal.pone.0056812.t002
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suitable using this less restrictive inclusion threshold that correctly

classifies all known P. insularum points.

pH as an Additional Factor
Areas with inappropriate pH for apple snails are fairly abundant

throughout a large swath of otherwise likely areas of establishment

for P. insularum (Figure 4). Of areas predicted to be in highly

favorable climatic zones, the Okefenokee Swamp in southern

Georgia appears to have a low enough pH to strongly prohibit P.

insularum from invading (Figure 4, Table 2). The majority of the

coastal plain of North Carolina appears inhospitable due to the

combination of large areas with low pH coupled with a limited

area of favorable climate.

Discussion

Pomacea insularum has spread rapidly in the southeastern USA

only during the last decade. Our maximum entropy model

indicates that the coastal plain from Texas to South Carolina is at

high risk for P. insularum invasion based on climate suitability. The

coastal plain of North Carolina appears less at risk because of both

borderline climate conditions and widespread low pH (Figure 4).

Knowledge of the necessary physical environmental attributes for

invasion aids greatly in understanding issues regarding P.

insularum’s regional and microscale distribution, as well as the

efficacy of possible control measures via alteration of physical

variables. Identifying the regions where climatic conditions are

suitable for P. insularum informs managers of the risks and directs

regional efforts to monitor water bodies for early signs of an

invasion. Because P. insularum can be easily identified through its

bright pink egg masses laid above the waterline, early detection is

possible.

Our results indicate that the minimum temperature in the

coldest months and maximum amount of precipitation in the

warmest months are the best predictors of the nineteen variables

included in the BioClim database. For shallow or smaller water

bodies, these climatic variables equate to warmer overwintering

temperatures and more permanent aquatic habitat (i.e. reduced

chance of desiccation). These abiotic variables should directly

reflect the likelihood of surviving freezing and desiccation.

However, they may interact with important biological variables,

like predation, which should also affect invasion success. Fecundity

and survival of P. insularum has been found to be negatively

associated with habitat permanence because of increased abun-

dance and diversity of predators in more permanent water bodies

[46]. This may suggest that the habitats most vulnerable to high

impacts (e.g. via high densities of apple snails) are those with an

intermediate level of habitat permanence (which might explain the

important, but less influential role of precipitation of the two

significant climate variables).

Known locations with P. insularum exhibit average minimum

monthly temperatures as low as 6uC (Charleston, SC), and

Figure 2. Present populations of the island apple snail, Pomacea insularum, and its occupiable area. Map shows the southeastern United
States. As predicted by the maximum entropy model, red represents areas with the highest climatic compatibility for the snail as determined by using
an inclusion threshold that correctly classifies all sites above the minimum 10% training omission threshold. Pink represents areas determined to be
suitable by using the less stringent threshold calculated by correctly classifying all known P. insularum points above the minimum training presence.
doi:10.1371/journal.pone.0056812.g002
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uninvaded areas modeled as suitable have minimum monthly

temperatures as low as 2uC (Wilmington, NC). These values nicely

bracket the average minimum monthly temperatures of 4–6uC
observed in Buenos Aires near the colder extreme of the snail’s

native range [7,12]. Ramakrishnan [31] had demonstrated a lethal

minimum temperature of 15uC in the laboratory (Table 2),

however in those trials the temperature was held low for 28

consecutive days. Differences in minimum monthly temperatures

between studies might be a consequence of the duration of

exposure to low temperatures. For example, the thresholds for low

temperature tolerance over a month-long period may be sub-

stantially higher than tolerance of low temperature events of

shorter duration. It is also possible that the snails have behavioral

mechanisms to tolerate low temperatures, such as burrowing,

which could not be exhibited in laboratory experiments [8].

The BioClim temperature variables themselves stem from air

temperatures. These values have been used in successful models of

aquatic species [25,47–49] because the values typically correlate

well with water temperatures. However, in some cases the tight

correlation between air and water temperatures may break down,

particularly in fast moving water or deep water bodies. Given that

P. insularum commonly colonizes small water bodies, such as

roadside ditches and littoral edges of larger water bodies, the air

temperatures should correlate well with temperatures of its favored

aquatic environments.

Although the climate model predicts that southern Georgia is

a highly suitable area for P. insularum, low pH values may exclude

the snail from many areas such as the Okefenokee Swamp and

other black water swamps of the southeastern coastal plain. The

acidic waters appear to limit the snail’s spread in an otherwise

hospitable climate. There are several important caveats to our

approach. It is important to recognize that the Kriging used to

create the predicted pH layer smoothes out the extreme points and

only provides a general guideline for the expected pH values for

water bodies in the region. There can be significant departures

from the predicted pH for individual water bodies, particularly for

smaller water bodies and ones that are man-made. In fact, P.

insularum can thrive in very small water bodies such as roadside

ditches [13,50]. Any bodies of water that depart from the expected

pH within the appropriate climate zone may be vulnerable to

invasion, and a local assessment of pH in an area would greatly

benefit any management plan and monitoring. As a case in point,

two populations of island apple snails are found in southern

Georgia within the area that has a minimum predicted pH of

below 5.5 based on STORET measurements. One of these water

bodies was an isolated pond in the flood plain of the Alabaha

River and the other was in the main stem of the river. However, in

the sites where these populations were found, a quarter of

STORET pH values were.5.5 and our own measurements at the

time of snail surveys had a pH .7. As with any measurement

where temporal variation is involved, care should be taken in

interpretation, especially in areas where the minimum predicted

pH is near the tolerance threshold. Thus, while low pH may make

an overall region on average more resistant to P. insularum

establishment, in localized areas, P. insularum may still be able to

establish.

The spread of P. insularum is concerning because of at least two

particularly worrisome ecological impacts. First, P. insularum

voraciously consumes aquatic vegetation. Together with invasions

of the closely related congener, P. canaliculata, their high

consumption of vegetation has led to a regime shift from aquatic

plants to a system dominated by algae, and often cyanobacteria

Figure 3. The average receiver operating curve from the ten model runs showing relative specificity and sensitivity. One standard
deviation above and below the average curve is shown in blue. Area Under the Curve (AUC) is calculated from this curve.
doi:10.1371/journal.pone.0056812.g003
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[51]. Many natural wetlands surveyed in Thailand showed a strong

association of high densities of the snail with almost complete

absence of aquatic plants. Second, Pomacea sp. can bioaccumulate

algal toxins, which poses a threat to a variety of organisms that

feed on both the native and invasive snails [10]. Recent laboratory

studies have demonstrated that P. insularum can transfer the

neurotoxin linked to Avian Vacuolar Myelinopathy (AVM) to its

avian predators [52]. This often lethal neurologic disease affects

waterbirds and their avian predators in the Southern United States

and has been linked to a novel cyanobacterium that grows as an

epiphyte on submerged aquatic vegetation [53,54] including the

invasive Hydrilla verticillata, a preferred food source for P. insularum

[17]. The presence of the invasive apple snails may substantially

increase the risk of AVM for local bird populations, particularly

the molluscivorous, federally-listed endangered Everglade snail

kite (Rostrhamus sociabilis plumbeus) [52]. There is a further, but

largely unexplored risk that P. insularum harbors rat lungworm

parasite (Angiostrongylus cantonensis), a nematode that causes eosin-

ophilic meningitis in humans and has been reported in invasive

populations of P. canaliculata in Asia [9].

Our results provide insight into the factors that affect the

distribution of P. insularum and present a spatial basis for the

prediction of its future spread. Many niche models are based

purely on climate variables because these data are readily

available, covering large spatial scales. When possible, adding in

other data layers can greatly enhance predictions (e.g., [48,55,56]).

An additional advantage of the maximum entropy approach is

that it is effective with incomplete, presence-only datasets [22].

The thoroughness of sampling is always an issue to consider with

any species distribution modeling effort, but especially for an

invasive species whose distribution is not likely yet at equilibrium.

Furthermore, the habitat suitability map that results from

modeling with this approach can be an essential visualization tool

to galvanize action by resource managers on potentially harmful

species [57]. Predicting the spread and potential range of non-

native species helps prioritize areas for vigilance and management,

while also informing a species’ overall potential invasiveness.

Supporting Information

Table S1 Descriptions and locations of field sites surveyed in

2011.

(DOCX)

Table S2 List of all Pomacea insularum presence sites used in

MaxEnt model.

(DOCX)

Materials S1 Information and test supporting robust-
ness of MaxEnt model predictions.

(DOCX)

Figure 4. Map of predicted P. insularum distribution also showing areas with low pH values. Acidic waters may inhibit the invasion of P.
insularum. Black represents areas with a predicted pH ,4, the mortality threshold determined by Ramakrishnan [31] and gray areas have a predicted
pH of 4–5.5, below the hatchling mortality threshold determined by Bernatis (unpublished data). The large black area in southern Georgia is
Okefenokee Swamp discussed in the text.
doi:10.1371/journal.pone.0056812.g004
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