
Multifaceted Intervention by the Hsp90 Inhibitor
Ganetespib (STA-9090) in Cancer Cells with Activated
JAK/STAT Signaling
David A. Proia*, Kevin P. Foley, Tim Korbut, Jim Sang, Don Smith, Richard C. Bates, Yuan Liu, Alex F.

Rosenberg, Dan Zhou, Keizo Koya, James Barsoum, Ronald K. Blackman

Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America

Abstract

There is accumulating evidence that dysregulated JAK signaling occurs in a wide variety of cancer types. In particular,
mutations in JAK2 can result in the constitutive activation of STAT transcription factors and lead to oncogenic growth. JAK
kinases are established Hsp90 client proteins and here we show that the novel small molecule Hsp90 inhibitor ganetespib
(formerly STA-9090) exhibits potent in vitro and in vivo activity in a range of solid and hematological tumor cells that are
dependent on JAK2 activity for growth and survival. Of note, ganetespib treatment results in sustained depletion of JAK2,
including the constitutively active JAK2V617F mutant, with subsequent loss of STAT activity and reduced STAT-target gene
expression. In contrast, treatment with the pan-JAK inhibitor P6 results in only transient effects on these processes. Further
differentiating these modes of intervention, RNA and protein expression studies show that ganetespib additionally
modulates cell cycle regulatory proteins, while P6 does not. The concomitant impact of ganetespib on both cell growth and
cell division signaling translates to potent antitumor efficacy in mouse models of xenografts and disseminated JAK/STAT-
driven leukemia. Overall, our findings support Hsp90 inhibition as a novel therapeutic approach for combating diseases
dependent on JAK/STAT signaling, with the multimodal action of ganetespib demonstrating advantages over JAK-specific
inhibitors.
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Introduction

JAK2 is a ubiquitously expressed member of the Janus-

associated kinase (JAK) family of non-receptor tyrosine kinases

which function to mediate signaling downstream of cytokine and

growth factor receptors [1]. Inappropriate activation of JAK

signaling underlies cell proliferation and survival in a variety of

solid tumors [2,3] and hematological neoplasms [4]. In particular,

an activating point mutation in JAK2 (JAK2V617F) has been

described with high frequency in chronic myeloproliferative

disorders (MPD) [5,6,7,8,9,10] and constitutive JAK2 activation

caused by chromosomal translocations has been reported in

various types of leukemia [11,12,13].

Activated cytokine-JAK complexes recruit and phosphorylate

effector molecules including Signal Transducers and Activators of

Transcription (STAT) proteins [14]. STAT proteins mediate a

wide range of biological processes, including cell growth,

differentiation, apoptosis, inflammation and immune response

[15]. Two STATs in particular, STAT3 and STAT5, represent

the major substrates for JAK2 that govern myelopoeisis [16,17]

and can contribute to cellular transformation [18,19]. Their

persistent activation has been linked to increased tumor cell

proliferation, survival, metastasis and tumor-promoting inflam-

mation in both solid and hematological tumors [20]. Accordingly,

inhibiting this signaling axis by the use of specific small molecule

inhibitors of JAK2 has recently been investigated as a point of

therapeutic intervention in multiple human tumor indications

[3,21,22,23,24].

Heat shock protein 90 (Hsp90) is a molecular chaperone

required for the post-translational stability of its protein substrates

or ‘‘client proteins’’. Cancer cells contain elevated levels of active

Hsp90 [25] and, because many client proteins play critical

oncogenic roles, cancer cells are particularly sensitive to Hsp90

inhibition. Moreover, a unique characteristic of targeting Hsp90 is

that inhibition results in the simultaneous blockade of multiple

oncogenic signaling cascades, overcoming potential pathway

redundancies, and sensitizing cancer cells to chemotherapeutic

agents [26,27,28,29]. Thus, Hsp90 represents an attractive

molecular target for the development of novel cancer therapeutics

[28,30,31]. Of relevance here, JAK kinases are established Hsp90

clients suggesting that Hsp90 inhibition may be effective in

treating JAK-directed neoplastic disorders [32,33].

To test this hypothesis, we have employed the synthetic small

molecule inhibitor ganetespib (STA-9090), a resorcinol-containing

compound unrelated to geldanamycin, that binds in the ATP-

binding domain of Hsp90. In preclinical studies, the drug has

shown low nanomolar activity in vitro against a variety of human

cancer cell lines and potent antitumor efficacy against human
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xenograft models [34,35]. Ganetespib is currently in clinical trials

for both solid tumor and hematological malignancies. Here we

show that ganetespib potently induces apoptosis in a variety of

tumor lines dependent on persistent JAK/STAT signaling for

growth and survival. We further demonstrate that the drug also

alters many elements of cell cycle regulation in cancer cells, an

activity absent from a JAK-specific inhibitor. In vivo, ganetespib’s

coordinate impact on both cell growth and cell division results in

potent antitumor activity in JAK/STAT-driven models of human

leukemia. Thus, inhibition of Hsp90 activity represents a

promising approach for combating diseases dependent on

constitutive JAK/STAT signaling, with ganetespib demonstrating

potential therapeutic advantages over JAK-specific inhibitors.

Results

Ganetespib inhibits JAK2-mediated signal transduction
and proliferation in hematological cancers

With low nanomolar potency, ganetespib reduced cellular

viability in a group of human hematological and solid tumor cell

lines selected for their dependence on JAK/STAT signaling and

varying cancer type (Fig. 1A). In each of the lines tested,

ganetespib was more potent than the ansamycin Hsp90 inhibitor

17-AAG. Of note, ganetespib was greater than 100 fold more

potent than 17-AAG in the SET-2 and HEL92.1.7 leukemia cells,

cell lines harboring constitutively active JAK2V617F mutations that

act as their oncogenic drivers.

Using the HEL92.1.7 cells, we compared the JAK/STAT

inhibitory activity of ganetespib to the compound Pyridone-6 (P6)

[36], a reversible, ATP-competitive pan inhibitor of the JAKs (Fig. 1B).

Ganetespib and P6 each blocked JAK2 dependent signaling, as

evidenced by the loss of phospho-STAT3 and phospho-STAT5, and

ERK signaling. However, ganetespib was at least four fold more potent

and suppressed STAT signaling longer compared to P6. Ganetespib

treatment alone led to the targeted, proteasome-dependent (data not

shown) loss of JAK2 and phospho-AKT protein levels (Fig. 1B), both

Hsp90 client proteins. Thus, ganetespib treatment results in sustained

inhibition of multiple oncogenic targets in these cellular models of

JAK2-driven malignancy. Similar effects on JAK/STAT signaling

were seen with SET-2 cells, where 50 nM ganetespib was able to

destabilize JAK2 sufficiently to result in loss of activated (i.e.,

phosphorylated) STAT3 and STAT5 expression (Fig. 1C). 17-AAG

showed comparable effects as ganetespib but was 200 fold less potent,

in line with the viability data described above. Taken together, these

data demonstrate that ganetespib possesses superior JAK/STAT

inhibitory activity to both P6 and 17-AAG in terms of potency or

duration of response.

Ganetespib abrogates JAK/STAT signaling in solid tumors
In addition to its incidence in hematologic malignancies,

oncogenic STAT activation is also prevalent in a range of solid

tumors. For example, persistently activated STAT3 is found in

50% of lung adenocarcinomas and is primarily observed in tumors

harboring mutations in the epidermal growth factor receptor

(EGFR) [37,38]. The NCI-H1975 non-small cell lung cancer

(NSCLC) cell line expresses the Hsp90 client EGFRL858R/T790M, a

constitutively activated and erlotinib-resistant form of EGFR, and

ganetespib treatment resulted in a dose-dependent decrease in

EGFR expression in these cells (Fig. 2A). Moreover, ganetespib

also induced potent degradation of JAK2 and loss of phosphor-

ylated STAT3 in a dose-dependent manner. Inactivation of AKT

and GSK3b, proteins important in regulating apoptosis, was

observed with a similar dose response to that of JAK2/STAT3

signaling. Recently it was shown that JAK2 can modulate the

activity of additional apoptotic regulators such as BAD and BCL-

XL to promote cell survival [21]. Consistent with this, we detected

a concomitant reduction in the levels of phosphorylated BAD

(Fig. 2A), thus reducing the pro-apoptotic activity of this protein.

These data suggest a potential mechanism to account for the

cytotoxic response observed with ganetespib treatment (Fig. 1A).

The JAK/STAT signaling axis is a key modulator of cytokine

signaling and one proposed mechanism for aberrant STAT3

activation in lung cancer involves the upregulation of autocrine

and/or paracrine IL-6 signaling [2]. Therefore, we investigated

whether ganetespib could inhibit this signaling in NSCLC cells. In

the absence of external ligand, HCC827 cells treated with

ganetespib exhibited a dose-dependent decrease in JAK2 expres-

sion, leading to a loss of STAT3 activity and expression of the

downstream STAT target PIM2 (Fig. 2B). Biochemical inhibition

of JAK2 by P6, albeit at higher concentrations, similarly down-

regulated constitutive STAT3 activity but did not influence total

JAK2 protein levels. Similarly, both compounds blocked JAK/

STAT signaling stimulation when the pathway was activated by

exogenous IL-6 treatments (Fig. 2B).

Dysregulated IL-6/JAK2 signaling has also been implicated in

prostate cancer tumorigenesis [39,40]. The DU145 prostate cancer

cell line expresses an autocrine IL-6 signaling loop [41] and was

recently reported to be sensitive to the effects of a novel small

molecule JAK2 inhibitor in vitro and in vivo [3,41]. Ganetespib was a

potent inducer of cell death in this line (Fig. 1A). Biochemical

characterization of DU145 cells revealed similar inhibitory effects

on JAK2 signaling following ganetespib treatment (Fig. 2C). Loss of

JAK2, phospho-STAT3 and phospho-SHP2, a JAK2 interacting

phosphatase important for JAK2 signal transduction, was observed

following addition of ganetespib. Interestingly, the related JAK1

kinase expressed in this cell line was not targeted for degradation but

instead appeared to increase following ganetespib exposure

(Fig. 2D). Similar results were obtained for the PC-3 prostate

cancer cell line (data not shown). These data show that selective

degradation of JAK2 in DU145 prostate cells was sufficient to

abrogate subsequent activation of STAT3 signaling.

Hsp90 inhibition downregulates transcription of JAK/
STAT signaling targets and cell cycle genes

In HEL92.1.7 erythroleukemia cells, biochemical inhibition of

JAK2 by P6 treatment resulted in a loss of cellular viability, but

with 30 fold less potency than ganetespib (IC50 values 600 vs.

20 nM) (Fig. 3A). To compare the cellular impact of each

inhibitor, we first identified conditions under which JAK2 activity

was reduced to equivalent levels by each drug based on their

kinetic and potency differences. As illustrated in Figure 3B, the

Figure 1. Effects of ganetespib on tumor cell viability. (A) SET-2, HEL92.1.7, MV4-11, NCI-H1975 and DU145 cells were treated with ganetespib
or 17-AAG over a broad dose range (0.0001 to 1 uM) for 72 h and cell viability assessed by Alamar blue staining. (B) Ganetespib exhibits more durable
inhibition of JAK/STAT signaling compared to P6. HEL92.1.7 cells were cultured in the presence of 250 nM ganetespib or 1000 nM P6 and harvested
between 0 and 48 h. Expression levels of the indicated proteins were determined by western blot. (C) Ganetespib is significantly more potent than
17-AAG. SET-2 cells were dosed with the indicated concentrations of ganetespib or 17-AAG for 24 h and analyzed to determine JAK/STAT protein and
target levels using the antibodies indicated.
doi:10.1371/journal.pone.0018552.g001
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4 hour P6 (1000 nM) and 24 hour ganetespib (250 nM) treat-

ments were selected because of comparable effects on STAT3/5

signaling. RNA expression profiling at these time points revealed,

as expected, that many JAK/STAT target genes (such as SOCS

and PIM family members) were downregulated by both drugs (Fig.

S1, Table S1). However, additional genes were altered by

ganetespib treatment that were unaffected in the P6-treated cells

(Fig. 3 C,D). Besides leading to the expected upregulation of

numerous heat shock protein genes, ganetespib treatment also

selectively altered the expression of a large set of genes involved in

cell cycle-related activities, including DNA replication and repair

(BRCA1/2), cell cycle regulation (CDC2, CDC25), centrosome/

spindle activities (BUB1/3, CENPE/M, KIF14, FAM33A),

chromosome condensation (TOP2A, NCAPG), and replication

(RFC3/4, MCM family) (Fig. S1). Indeed, analysis of the altered

genes by hierarchical clustering and enrichment score revealed

that modulators of cell division were the most prominent processes

diminished by ganetespib treatment (Table 1).

Modulation of cell cycle protein expression by
ganetespib induces growth arrest

To extend these findings, we looked experimentally at the

effects on the cell cycle. Ganetespib induced a temporal G1 and

G2/M arrest in HEL92.1.7 cells, with concomitant loss of S phase

(Fig. 4A). In contrast, P6 treatment induced accumulation in G1

phase only, without the loss of S phase or G2/M arrest. We also

examined the targeted effects of ganetespib on critical mediators

of cell cycle division at the protein level. We observed reduced

protein levels of cyclin dependent kinase 1 (Cdk-1), a key

regulator of the G2/M checkpoint, following a 24 hour exposure

to ganetespib, an effect that persisted until at least 48 hours

(Fig. 4B). In contrast, P6 had no effect on Cdk1 expression.

Further, the level of phospho-Chk2, another integral checkpoint

kinase, was reduced by ganetespib treatment. Similar results were

found for phospho-Chk1 (data not shown). As shown in

Figure 4C, the destabilization of cyclin kinases was also associated

with a temporal accumulation of cyclins A1 and B1 in response to

drug addition. Moreover, these effects of ganetespib on both

JAK2/STAT signaling and cell cycle regulation were observed in

additional cancer types, including breast (MCF-7), gastrointesti-

nal stromal (GIST882), pancreatic (HPAF) and prostate (DU145)

tumor cell lines (Fig. 4D). Overall, these additional influences on

the cell division machinery suggest that ganetespib possesses

decided advantages over JAK-specific inhibitors for controlling

STAT-driven malignancies.

Ganetespib prolongs survival in a JAK2V617F-mutant
mouse model of human leukemia

To determine whether these dual activities of ganetespib on

JAK2/STAT signaling and cell cycle progression observed in vitro

Figure 2. Inhibition of JAK2/STAT signaling by ganetespib in solid tumors. (A) Client protein downregulation in NSCLC. NCI-H1975 cells
were dosed with the indicated concentrations of ganetespib for 24 h and their cell lysates analyzed to determine JAK/STAT and Hsp90 client protein
levels using the antibodies indicated. (B) Ganetespib blocks IL-6 induced and constitutive STAT3 activity in NSCLC cells. HCC827 lung cancer cells
were treated with increasing concentrations of ganetespib or P6 for 24 h followed by a 15 min stimulation with or without 50 ng/ml human
recombinant IL-6. The levels of JAK2, total and phospho-STAT3, and PIM2 were analyzed by western blot. GAPDH is included as a loading control. (C)
Client protein degradation in prostate cancer cells. DU145 cells were dosed with graded concentrations of ganetespib for 24 h and cell lysates subject
to western blot to determine JAK/STAT and target protein levels using the antibodies indicated. (D) Functional Hsp90 is required for JAK2, but not
JAK1, stability in DU145 cells. DU145 cells were treated with DMSO (control, C), 15 nM, 60 nM or 240 nM ganetespib for either 24 or 48 h and lysates
probed by western blot with the indicated antibodies.
doi:10.1371/journal.pone.0018552.g002
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translate into antitumor efficacy in vivo, we established an

orthotopic leukemia model using HEL92.1.7 cells. This resulted

in disseminated disease with morbidity typically resulting from

hind limb paralysis caused by spinal column metastases (data not

shown). To study the effect of ganetespib on survival, beginning

one day after tumor cell implantation, the drug was dosed

intravenously at its highest non-severely toxic dose (HNSTD) of

25 mg/kg on a 56/week schedule through day 19. As shown in

Figure 5A, ganetespib treatment more than doubled median

overall survival (76.5 days vs. 34 days, P,0.0001). The ganetespib

treatment was well tolerated, with no significant loss of body

weight found after 3 weeks of dosing (Fig. S2). The increased

survival of the treated animals correlated with dramatically

decreased tumor cell burden in their bone marrow and spinal

cord, as determined by histological analysis (Fig. 5B).

Ganetespib exhibits potent in vivo efficacy in STAT5
driven AML xenografts

MV4-11 acute myeloid leukemia cells express constitutive

STAT5 activity as a consequence of an internal tandem duplication

(ITD) mutation in the FLT3 receptor tyrosine kinase, another

Hsp90 client protein [42] and, as such, represent an alternative

model of STAT-driven oncogenesis. These cells are highly sensitive

to ganetespib in vitro (Fig. 1A) and we evaluated their dose-response

to ganetespib treatments in xenografts. Ganetespib was intrave-

nously administered to tumor-bearing SCID mice at either the daily

or weekly HNSTD of 25 mg/kg or 150 mg/kg, respectively. As

shown in Figure 6A, the weekly treatment schedule resulted in

significant and dose-dependent tumor growth inhibition, while the

daily dosing regimen (25 mg/kg 56/week, as used in the orthotopic

model above) resulted in significant tumor regression (84%). In both

dosing regimens, tumor growth was suppressed for up to a week or

more once treatment was discontinued. Beyond this period, as

evidenced by the once-per-week treatment cohort, tumor growth

could re-initiate.

To determine whether these tumor responses correlated with

target modulation in vivo, additional mice bearing MV4-11

xenografts were treated with a single dose of vehicle alone or

ganetespib at 25 or 150 mg/kg. Tumors were harvested between 6

and 144 hours later and pharmacodynamic analysis was performed

Figure 3. Ganetespib inhibits JAK/STAT target and cell cycle gene expression. (A) Comparative effects of ganetespib and P6 on HEL92.1.7
tumor cell viability. HEL92.1.7 cells were treated with ganetespib or P6 over a broad dose range (0.0001 to 10 uM) for 72 h and cell viability assessed
by Alamar blue. (B) Temporal and dose-dependent effects on JAK/STAT targets by ganetespib and P6. HEL92.1.7 cells were treated with ganetespib or
P6 for 4 and 24 h and cell lysates subject to western blot to determine JAK2/STAT and target protein levels using the indicated antibodies. (C)
Affymetrix GeneChip analysis of cells treated with ganetespib and P6. HEL92.1.7 cells treated with 250 nM ganetespib for 24 h or 1000 nM P6 for 4 h.
Gene expression levels in DMSO treated (i.e. vehicle control) cells (X-axis) are graphed against those of drug treated cells (Y-axis). (D) Venn diagram of
number of genes differentially regulated by ganetespib and P6.
doi:10.1371/journal.pone.0018552.g003
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by examining the expression levels of phospho-STAT5, Cdk1 and

Hsp70 (Fig. 6B). In accord with the in vivo tumor growth data, dose-

dependent effects on the duration of target inhibition within the

tumors were observed. A single 150 mg/kg dose of ganetespib

repressed activation of STAT5 and suppressed expression of Cdk1

for more than three days, consistent with its efficacy in once-per-

week dosing. At 25 mg/kg, potent inhibition of STAT5 activity was

achieved within 6 hours as was loss of Cdk1 at 24 hours following

ganetespib administration. Of note, STAT5 activity recovered in

these tumors by 24 hours, while Cdk1 expression remained

suppressed through at least 48 hours even with this low dose

(Fig. 6B). While the relatively quick recovery of STAT5 activation

should have allowed the tumor to restart growth, the more durable

suppression of the cell cycle regulators appears to have kept the

growth of the tumors arrested until the next drug dosing. These

findings provide strong evidence that the coordinate loss of cell

growth and cell division signals orchestrated by ganetespib account

for the potent antitumor activity of the drug in this model.

Discussion

Persistent JAK/STAT activation is oncogenic and characteristic

of many human malignancies and thereby provides an attractive

point of intervention for molecularly targeted therapeutics. In this

study, we show that ganetespib has profound antitumor activity in

an array of JAK/STAT-driven cancers and, importantly, can

abrogate aberrant signaling through multiple mechanisms.

Ganetespib effectively targets the upstream regulator JAK2,

including the constitutively active JAK2V617F mutant, for degra-

dation in a range of hematological and solid tumor types with

subsequent prolonged loss of STAT3 and STAT5 signaling. The

findings not only underscore the pathogenic role of STAT

signaling in tumorigenesis, but support the potential therapeutic

utility of ganetespib for a variety of human cancers. In this regard,

the sustained inhibition of the JAK2/STAT signaling axis

achieved by ganetespib was more effective than that seen with

the pan-JAK inhibitor P6, and ganetespib was uniformly more

potent than the ansamycin based Hsp90 inhibitor 17-AAG in our

assays.

While JAK2 mutation is a common means to stimulate

oncogenic STAT activity, perturbations in other signaling

networks, such as those mediated by EGFR, IL-6/IL-6R or

FLT3, can also contribute to activated STAT signaling in cancer

cells [2,43]. Our results show that Hsp90 inhibition effectively

disrupts these as well, with ganetespib potently degrading EGFR

and blocking both IL-6- and FLT3-mediated activation of STAT

proteins. Thus, while ganetespib directly imposes its pharmaco-

logical effects on Hsp90, the downstream consequences clearly

involve a substantial array of client proteins and biochemical

pathways. In this manner, Hsp90 inhibition by ganetespib can be

viewed as a multi-nodal modality rather than a target-specific

therapeutic approach, such as that engendered by a JAK2 or other

kinase inhibitor (Figure 7).

In further support of this, while both ganetespib and P6 alter a

common set of JAK/STAT targets, only ganetespib treatment

exerted concomitant effects on the cell cycle regulatory machinery.

In the leukemic cell data presented, exposure to ganetespib

resulted in G1 and G2/M arrest, in part through the degradation

of Cdk1 and atypical accumulation of cyclins A1 and B1. Further,

S phase was abrogated. In addition to genes associated with DNA

replication and the cell cycle, several components of the

centrosome and spindle were affected at the transcriptional level

by ganetespib, in agreement with previous findings that these

Table 1. Gene groupings negatively regulated by ganetespib treatment tabulated according to hierarchical clustering and
enrichment score analysis.

Annotation Cluster Terms Enrichment Score

cell cycle/division, mitosis cell cycle, cell cycle process, M phase, mitosis, cell/nuclear division,
organelle fission

61

DNA replication DNA replication, DNA metabolic process 45

DNA repair/response to DNA damage, stress response DNA repair, response to DNA damage stimulus, cellular response to stress 29

microtubule cytoskeletal and spindle organization spindle organization, microtubule based process, microtubule cytoskeletal
organization, cytoskeletal organization

17

RNA processing/binding RNA processing/binding 12

ribosome biogenesis, rRNA and ncRNA processing ribosome biogenesis, ncRNA processing/metabolic processing, rRNA/
metabolic processing, ribonucleoprotein complex biogenesis

11

cell cycle checkpoint and regulation cell cycle checkpoint, regulation of: cell cycle, mitosis, nuclear division,
organelle organization

11

meiosis meiotic cell cycle, meiosis, M phase of cell cycle 10

DNA damage response and checkpoint cell cycle checkpoint, DNA integrity checkpoint, DNA damage checkpoint,
DNA damage response

9

chromosome segregation and localization chromosome segregation, mitotic sister chromatic segregation, chromosome
localization, metaphase plate congression, organelle localization

9

nuclear envelope/pore, RNA transport organelle envelope, nuclear envelope, envelope translocation, nuclear
pore/complex, RNA localization, nucleic acid/RNA/mRNA transport,
endomembrane system

8

DNA replication and repair DNA replication, replication fork, mismatch repair, nucleotide excision
repair/gap filling, protein-DNA loading ATPase activity, DNA clamp loader
activity, replication factor C

8

RNA splicing and mRNA processing RNA splicing, nuclear mRNA splicing, mRNA processing/metabolic
processing, spliceosome

6

doi:10.1371/journal.pone.0018552.t001
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components are synthesized in S phase and that Hsp90 is essential

for centrosome assembly [44,45]. Importantly, this was a general

response in all cells studied, as we observed similar combinatorial

effects on JAK/STAT inhibition with loss of cyclin-dependent

kinase activity in AML, breast, gastrointestinal stromal, pancreatic

and prostate tumor types.

Ganetespib also showed potent in vivo activity. In mice with

established MV4-11 (STAT5-driven) xenografts, weekly adminis-

tration of ganetespib significantly inhibited tumor growth in a

dose-dependent manner. Moreover, a daily dosing schedule of

ganetespib was also highly effective and resulted in significant

tumor regression during drug administration. In this model, tumor

growth reappears about a week after the drug treatment was

stopped (for the high dose, 16/week cohort). Importantly, our

pharmacodynamic analysis showed that these tumor responses

correlated with the degree and duration of STAT5 and Cdk1

protein loss induced by the varying dosing regimens. The tight

linkage of STAT5 down-regulation with inhibition of tumor

growth six hours after drug administration at either dose indicates

the quick response of this signaling pathway to the drug

administration. At the 150 mg/kg dose, STAT5 signaling, but

not Cdk1 expression, returned by six days. The sustained loss of

Cdk1 and other cell cycle proteins presumably maintains the cell

cycle arrest and prevents growth from re-occurring between doses

on the weekly schedule, even in the presence of the re-emergent

STAT5 activity. Similarly, Cdk1 expression was suppressed longer

in comparison to STAT5 at the 25 mg/kg dose, and is likely to

account for the potent activity of ganetespib on the more frequent

56/week regimen. These data strongly suggest that ganetespib

administration on either schedule was sufficient to abolish both

survival and cell growth signals long enough to prevent tumor

growth. Because ganetespib presumably leads to the loss of even

more client proteins, its potent antitumor activity likely reflects its

combined impact on these additional target proteins as well.

In a system that more accurately mimics the pathology of

leukemic disease, the efficacy of ganetespib was also evaluated in a

disseminated disease model using HEL92.1.7 cells. Ganetespib

effectively increased survival in this orthotopic model, more than

doubling the median survival time of the mice. Prolonged survival

was associated with dramatically reduced tumor burden in the

bone marrow, as evidenced by significantly decreased infiltration

of human leukemic cells and reduced spinal column metastases.

Figure 4. Ganetespib modulates cell cycle protein expression and induces growth arrest. (A) HEL92.1.7 cells were treated with 250 nM
ganetespib or 1000 nM P6 (or DMSO as a control) and cell cycle distribution determined by flow cytometry at 3, 5, 9 and 24 h post-treatment. (B)
HEL92.1.7 cells were dosed with ganetespib (250 nM) or P6 (1000 nM) for 48 h. Cells were harvested at the indicated time points and the levels of
total and phospho-Cdk1, phospho-Chk2 and GAPDH analyzed by western blot. (C) Kinetics of ganetespib effects on JAK/STAT and cell cycle protein
expression. HEL92.1.7 cells were treated with 100 nM ganetespib, harvested at hourly intervals over an 11 h time course, and subject to western blot
with the indicated antibodies. (D) MCF-7, GIST882, HPAF and DU145 cells were dosed with graded concentrations of ganetespib for 24 h and
analyzed by western blot using the indicated antibodies.
doi:10.1371/journal.pone.0018552.g004
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Collectively, these data are consistent with a direct effect of

ganetespib on leukemic cell growth in vivo and demonstrate the

potential therapeutic utility of this compound for JAK2V617F-

driven malignancies.

The causal relationship between constitutive JAK2 activity and

neoplasia has resulted in the development of a variety of potent

and selective JAK2 small molecule inhibitors [46]. However,

emerging findings of the early phase trials are revealing added

complexities in targeting this kinase in patients. Selective JAK2

inhibitors have been evaluated in patients with advanced MF and

have shown considerable symptomatic benefit, including de-

creased splenomegaly and hematological improvement [23,24].

However, these clinical responses were not consistently associated

with a reduction in JAK2V617F allelic burden [47], and patients

showed benefit irrespective of the mutational status of JAK2.

These findings suggest that clonal JAK2V617F-positive disease is

not being fully targeted by these agents. A recent study [48]

provides a possible mechanistic explanation for these observations.

Their findings using a murine myeloproliferative neoplasm (MPN)

model indicate that treatment with a selective JAK2 inhibitor

attenuates the MPN phenotype by diminishing the myeloid

progenitor population. However it had nominal effects on the

JAK2V617F-positive, disease-initiating stem cells. If general, this has

important implications for targeted JAK2 inhibitors as remitting

rather than curative therapeutics due to the existence of a resistant

reservoir of MPN-initiating cells [48]. Of particular relevance, the

Figure 5. Ganetespib is highly efficacious in vivo in a leukemia survival model expressing activated JAK2V617F. (A) Kaplan-Meier
analysis of overall survival in a leukemia model established by i.v. injection of HEL92.1.7 cells into SCID mice, which resulted in the development of
disseminated disease. Beginning one day after tumor cell implantation, ganetespib was i.v. dosed at its HNSTD (25 mg/kg) on a five-times per week
schedule for 3 weeks through day 19 (n = 10/group). *P,0.0001; 2-sided log-rank test. (B) Ganetespib dramatically inhibits tumor cell burden in the
spinal cord and adjacent bone marrow. Immunohistochemistical staining (H&E) of lumbar spine cross sections from vehicle control (left panels) or
ganetespib treated (right panels) animals. Insets are enlarged in the lower panels. Original magnification: 406 in upper panels; 2006 in the lower
panels.
doi:10.1371/journal.pone.0018552.g005
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Hsp90 inhibitor PU-H71 was recently shown to reduce mutant

allelic burden in murine MPN models [49], supporting the

therapeutic rationale for Hsp90 inhibition in the treatment of

JAK-driven disease due to its multifaceted impact in both cell

populations.

In summary, ganetespib is a small molecule Hsp90 inhibitor

with potent in vitro and in vivo activity in tumor cells harboring

constitutively active JAK/STAT signaling. Due to its concomitant

effects on this oncogenic signaling axis as well as cell cycle

progression, ganetespib displays superior activity to both 17-AAG

and the pan-JAK inhibitor P6 in terms of potency, duration of

response, and pre-clinical efficacy. In light of these observations,

further evaluation of the therapeutic utility of ganetespib for JAK/

STAT-driven malignancies is warranted.

Materials and Methods

Cell culture
All cell lines were obtained from the ATCC (Rockville, MD,

USA), with the exception of SET-2 cells which were purchased

from the German Collection of Microorganisms and Cell Cultures

(DSMZ, Germany). Cells were maintained and cultured according

to standard techniques at 37uC in 5% (v/v) CO2 using culture

medium recommended by the supplier.

Reagents
Hsp90 inhibitors ganetespib and 17-AAG (both synthesized at

Synta Pharmaceuticals, Inc.) and the JAK inhibitor Pyridone 6

(Calbiochem, Darmstadt, Germany) were dissolved in dimethyl

Figure 6. Ganetespib efficacy and pharmacodynamics in an in vivo leukemia model with constitutively activated STAT5 signaling.
(A) SCID mice were subcutaneously implanted with MV4-11 acute myeloid leukemia cells. Mice bearing established MV4-11 xenografts (100–
200 mm3, n = 8 mice/group) were i.v. dosed (arrowheads) with ganetespib at either 25 or 150 mg/kg once weekly for 3 weeks, or at the HNSTD of
25 mg/kg five-times per week, as indicated. % T/C values are indicated to the right of each growth curve and the error bars are the s.e.m. (B)
ganetespib inhibits STAT-5 phosphorylation and Cdk1 expression in tumor xenografts in SCID mice. SCID mice bearing MV4-11 tumors (n = 4 mice/
group) were treated with vehicle or ganetespib at either 25 mg/kg or 150 mg/kg at the indicated time points between 6 h and 144 h (6 days).
Tumors were resected and the levels of p-STAT5, Cdk1, Hsp70 and GAPDH were determined by western blot.
doi:10.1371/journal.pone.0018552.g006
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sulfoxide (DMSO), aliquoted and stored at 220uC. All primary

antibodies were purchased from Cell Signaling Technology (CST,

Beverly, MA, USA) with the exception of JAK1 (Santa Cruz

Biotechnology, Santa Cruz, CA, USA) and STAT5 (Epitomics,

Burlingame, CA, USA).

Cell viability assays
Twenty-four hours after plating, cells were dosed with the

indicated compound or DMSO (0.3%) for 72 h. AlamarBlue

(Invitrogen, Carlsbad, CA, USA) was added (10% v/v) to the cells,

and the plates incubated for 3 h and subjected to fluorescence

detection in a SpectraMax Plus 384 microplate reader (Molecular

Devices, Sunnyvale, CA, USA). Data were normalized to percent

of control.

Western blotting
Cells were lysed with RIPA buffer (CST). Xenograft tumors

(average volume of 100–200 mm3) were excised, cut in half, and

flash frozen in liquid nitrogen. Each tumor fragment was lysed in

0.5 mL of lysis buffer using a FastPrep-24 homogenizer and

Lysing Matrix A (MP Biomedicals, Solon, OH, USA). The lysates

were clarified by centrifugation. Equal amounts of protein were

resolved by SDS–PAGE and immunoblotted with indicated

antibodies. The antigen-antibody complex was visualized and

quantitated using an Odyssey system (LI-COR, Lincoln, NE,

USA).

Affymetrix gene expression analysis
Biotinylated aRNA was generated by in vitro transcription using

the Affymetrix GeneChip Expression IVT labeling kit (Affymetrix,

Santa Clara, CA, USA). Fifteen micrograms of labeled aRNA were

fragmented and hybridized to Affymetrix GeneChip Human

Genome U133 Plus 2 arrays and scanned using a GeneChip

Scanner (Affymetrix). Array data were analyzed with the Affymetrix

Expression Console Software utilizing the MAS5 algorithm. In

order to generate a threshold for identifying probe sets that have

large differences between the treated samples [1000 nM P6 (4 h)

and 250 nM ganetespib (24 h)], and their controls, data from the

four control arrays (DMSO only; two at 4 h, and two at 24 h)

were used to create an expression level-dependent fold-difference

Figure 7. Multimodal activity of Hsp90 inhibition induced by ganetespib. Ganetespib exerts potent antitumor effects through perturbation
of multiple signaling cascades, including the JAK/STAT signaling axis and cell cycle mediators. (A) The JAK/STAT pathway is a principal signaling
mechanism for a wide array of cytokines and growth factors. Hyperactivation of this pathway, through ligand activated receptor tyrosine kinases
(EGFR or FLT3), cytokine receptor mediated activation of JAK2, or activating mutations such as JAK2V617F, is often associated with oncogenesis.
Regulation of the cell cycle involves a number of highly coordinated and essential processes, including checkpoint control and detection/repair of
genetic damage, critical for correct progression and cell division. (B) Inactivation of Hsp90 by ganetespib results in the proteasome-mediated
degradation of the upstream signaling components (indicated in grey) critical for STAT, MAPK and AKT activation, thereby resulting in growth
inhibition. In addition, concomitant downregulation of key cell-cycle regulatory genes induced by ganetespib (as shown in Table 1) results in cell
cycle arrest in the G1 and G2/M phases of the cell cycle, and subsequent loss of S phase.
doi:10.1371/journal.pone.0018552.g007
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envelope that reflects the increasing measurement variability as

expression level decreases. This envelope, used in lieu of a fixed fold-

difference criteria, was formed by identifying the xth percentile

expression-level difference (where x was large, typically 99.9%) at

each mean expression level bin. To achieve this, data were used

from the six possible comparisons from the four DMSO-only arrays.

The resulting, smoothed threshold fold-difference envelope was

then applied to the two compound-treated/control array pairs to

identify those probe-sets that have large expression level differences

between treatment and control. For hierarchical analysis, genes with

greater than two fold changes in expression with 250 nM ganetespib

were clustered using established algorithms in Cluster [50].

Annotation enrichment of the gene sets was performed using

Database for Annotation, Visualization, and Integrated Discovery

(DAVID) software [51].

Flow cytometry
HEL92.1.7 cells were plated at 0.56106 cells/mL and treated as

indicated. Cells were harvested and stained with propidium iodide

using the BD Cycle TEST PLUS Reagent Kit (BD Biosciences,

San Jose, CA, USA) according to the manufacturer’s instructions.

Twenty thousand cells were analyzed for their DNA content using

a FACS Caliber cytometer (BD Biosciences).

In vivo leukemia xenograft models
Eight-week-old female immunodeficient CB-17/Icr-Prkdcscid/Crl

(SCID) mice (Charles River Laboratories, Wilmington, MA) were

maintained in a pathogen-free environment, and all in vivo

procedures were approved by the Synta Pharmaceuticals Corp.

Institutional Animal Care and Use Committee (Protocol # AP-

02.4-10). For the MV4-11 model, tumor cells were subcutaneously

implanted in SCID mice as previously described [34]. Tumor

volumes (V) were calculated by caliper measurements of the width

(W), length (L), and thickness (T) of each tumor using the formula:

V = 0.5236(LWT). Animals with 100–200 mm3 tumors were then

randomized into treatment groups of 8 and i.v. dosed via the tail

vein at 10 mL/kg body weight with either vehicle or ganetespib

formulated in 10/18 DRD (10% DMSO, 18% Cremophor RH

40, 3.6% dextrose, 68.4% water). Tumor growth inhibition was

monitored by tumor volume measurements twice weekly. As a

measurement of in vivo efficacy, the %T/C value was determined

from the change in average tumor volumes of each treated group

relative to the vehicle-treated or itself in the case of tumor

regression. Statistical significance was determined using a Kruskal-

Wallis one-way ANOVA followed by the Tukey Test multiple

comparison procedure.

For the HEL92.1.7 model, SCID mice were i.v. injected via the

tail vein with 56106 cells in phosphate-buffered saline (PBS) on

day 0. Implanted animals were then randomized into groups of 10

and i.v. dosed with either vehicle or ganetespib as above. Animals

were weighed daily and removed from the study at the first sign of

hind limb paralysis, which occurred in 100% of vehicle-treated

animals. Median overall survival was estimated using the Kaplan-

Meier method and the log-rank test (2-sided) for statistical

significance. Spinal column tumor burden was visualized using

hematoxylin and eosin stained tissue sections.

Supporting Information

Figure S1 Ganetespib differentially regulates genes
associated with the cell cycle in addition to JAK/STAT
signaling. Genes with greater than two fold increases (red) or

decreases (green) in expression with 250 nM ganetespib were

clustered using established algorithms. TreeView was used to

visualize these results and relevant subsets (Groupings A–D) are

shown here. The genes associated with each Group are listed

above the heat map. Group A contains genes rapidly and

specifically induced by ganetespib (including heat shock-related

genes). Group B contains genes repressed by P6 at both 4 and

24 hr (left column of gene names) or only 4 hr (right column).

These genes are also inhibited by ganetespib at 24 hr; thus they

can be considered JAK-response related. Group C identifies genes

specifically repressed by ganetespib at 24 hr, most of which are cell

cycle related. Group D includes those genes repressed both early

and late by ganetespib but not P6.

(TIF)

Figure S2 Ganetespib was well tolerated in the
HEL92.1.7 disseminated leukemia model. Cumulative

average body weights showed minimal effects over the 3 week

dosing period. Points represent the means and the error bars are

the s.e.m.

(TIF)

Table S1 Inhibition of JAK2 activity by P6 or destabilization of

JAK2 expression by ganetespib blocks STAT-target gene

expression.

(DOC)
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