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Abstract

Objectives: The forced swim test (FST) is a commonly used model to predict antidepressant efficacy. Uncovering the
genetic basis of the model may unravel the mechanism of antidepressant treatment.

Methods: FVB/NJ (FVB) and C57BL/6J (B6) were first identified as the response and non-response strains to fluoxetine (a
serotonin-specific reuptake inhibitor antidepressant) treatment in the mouse FST. Simple-interval (SIM) and composite-
interval (CIM) mappings were applied to map the quantitative trait loci (QTLs) of the anti-immobility effect of fluoxetine in
FST (FSTFLX) in 865 male B66FVB-F2 mice. The brain mRNA expressions of the gene with the maximum QTL-linkage signal
for FSTFLX after the FST were compared between B6 and FVB mice and also compared between fluoxetine and saline
treatment. The association of the variants in the human homologue of the mouse FSTFLX-QTL gene with major depressive
disorder (MDD) and antidepressant response were investigated in 1080 human subjects (MDD/control = 582/498).

Results: One linkage signal for FSTFLX-QTL was detected at an intronic SNP (rs6215396) of the mouse Zfp326 gene (maximal
CIM-LOD= 9.36). The Zfp326 mRNA expression in the FVB thalamus was significantly down-regulated by fluoxetine in the
FST, and the higher FVB-to-B6 Zfp326 mRNA expressions in the frontal cortex, striatum and hypothalamus diminished after
fluoxetine treatment. Two coding-synonymous SNPs (rs2816881 and rs10922744) in the human homologue of Zfp326,
ZNF326, were significantly associated with the 8-week antidepressant treatment response in the MDD patients (Bonferroni-
corrected p= 0.004–0.028).

Conclusions: The findings suggest the involvement of the Zfp326 and ZNF326 genes in antidepressant treatment response.
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Introduction

Antidepressants are the main biological treatment for major

depressive disorder (MDD). However, there are inter-individual

differences in the response to antidepressant treatments: regardless

of the kind of antidepressant used for initial treatment, 30–50% of

patients do not respond sufficiently [1–5]. Although the mecha-

nism and factors affecting individual responsiveness to antidepres-

sants are yet unknown, several observations have demonstrated

a high concordance of responsiveness to antidepressants in first-

degree relatives [6–8], indicating that antidepressant efficacy is at

least partly under genetic control [9].

The brain structure, neuronal signaling, circuits and genomic

sequence between humans and mouse are highly conserved. With

few exceptions, each human gene has a mouse ortholog and vice

versa [10,11]. Therefore, exploring the genetic mechanisms of

mouse behavior may shed light on fundamental elements of

human behavioral regulation [12], including responses to anti-

depressants.

It is thought that drug response is a complex and polygenic trait.

To dissect the genetic bases of the trait, many studies have used

quantitative trait locus (QTL) analysis to identify genomic loci

associated with responsiveness to specific drugs [13]. The analysis

is a statistical method that links phenotypic data and genotypic

data. The QTL approach has successfully pinned down the Usp46

gene that regulates the mouse baseline immobility time in the tail

suspension test (TST) and forced swim test (FST) [14]. A similar

approach also found the involvement of Rgs2 gene in mouse

anxiety [15]. The TST and FST are the most commonly used

methods in animals to predict the efficacy of antidepressants.
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Crowley et al. identified two coding non-synonymous single

nucleotide polymorphisms (Leu117Pro and Ser505Pro) in the

mouse vesicular monoamine transporter 2 gene that could be the QTL

for the TST response to cilatopram treatment [16]. Liu et al.

analyzed the NMRI6129S6 F2 mouse TST response to the

tricyclic antidepressant imipramine and identified three suggestive

chromosome regions (chromosome 1, 4 and 5) that might contain

QTLs affecting the behavioral response [17]. Although several

QTLs for the TST response to antidepressants have been

identified, it is unclear whether the mouse FST response to

antidepressants shares these QTLs. Most importantly, it remains

unclear whether QTLs for the mouse response to antidepressants

could be applied to predict human responses to antidepressants. In

this study, we applied QTL analysis to localize the loci affecting

the FST response to fluoxetine treatment in mice and used human

samples to validate our findings.

Materials and Methods

Ethics
The study comprised an animal part and a human part. The

animal part of the study was carried out in strict accordance with

the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Laboratory Animal Center,

and was conducted with the approval of the Institutional Animal

Care and Use Committee of Taipei Veterans General Hospital

(approved on 2007/10/15) and National Taiwan Ocean Univer-

sity (approval ID: 96009). The animals were sacrificed by carbon

dioxide narcosis, and all efforts were made to minimize suffering.

The human part of the study was approved by the Institutional

Review Board of Taipei Veterans General Hospital (VGHIRB

No.: 95-11-07) and E-DA hospital (E-MRP-095-014), and written

informed consent was obtained from the participants prior to

enrollment.

Animal and Drug Treatment
Animals were housed in plastic cages (five mice per cage) in

a room maintained at a temperature of 2461uC under a standard

12-hour light/dark cycle (lights on from 9:00 a.m. to 9:00 p.m.).

Food and water were provided ad libitum. C57BL/6J (B6),

BALB/cByJ (BALB) and FVB/NJ (FVB) were obtained from the

National Laboratory Animal Center, Taiwan (http://www.nlac.

org.tw/english/default.asp), and DBA/2N (DBA) and C3H/HeN

(C3H) were purchased from BioLASCO Taiwan Co., Ltd (http://

www.biolasco.com.tw/). F1 mice were generated by intercrossing

the antidepressant-sensitive and antidepressant-insensitive strains,

and F2 mice were obtained by intra-crossing the F1 mice. To

avoid the potential influence of fluctuating estrogen and pro-

gesterone in the estrus cycle on the FST, only male mice were used

throughout the study.

Fluoxetine hydrochloride (SIGMA) was prepared freshly and

dissolved in deionized water in a volume of 4 ml/kg. Saline or

fluoxetine was administered to the mice through intra-peritoneal

injection (ip) 30 minutes prior to the FST. In studying strain

differences in response to fluoxetine treatment, each animal of the

same strain was randomly assigned to the following treatment

groups: saline (4 ml/kg), 5 mg/kg, 10 mg/kg, or 20 mg/kg of

fluoxetine. In the experiments for heritability and quantitative trait

locus (QTL) analysis, all the F1 and F2 mice received 20 mg/kg of

fluoxetine.

Behavior Measurement: the FST
Each animal was tested in the FST at 8–10 weeks of age. The

FST was conducted between 10:00 and 16:00 on two consecutive

days. On day 1, animals were placed in an acrylic plastic box filled

with water (23–24uC, 15 cm in depth) for 6 minutes. The total

immobility time in the last 4 minutes (FSTBAS) was recorded

[18,19]. Twenty hours later, saline or fluoxetine was administered

to the mouse 30 minutes prior to the same procedure as that of day

1, and the total immobility time (FSTFLX) was recorded. We used

a digitalized apparatus, Method and System for Measuring

Mobility of a Tested Animal (USA Invention Patent No.: US

7,121,229), to standardize the measurements of the FST.

Agreement between the instrumental measurements and tradi-

tional naked-eye measurements for immobility time was high

(Pearson correlation = 0.932–0.957, p,0.001).

Behavior Measurement: the Open Field Test
30 minutes after saline or fluoxetine (20 mg/kg) treatment mice

were individually placed in an enclosed obstacle-free space

(90690630 cm, L6W6H). The ambulatory distance (cm), time

spent in traveling and traveling speed of the studied mice were

measured by a video tracking system (Diagnostic & Research

Instruments Co., Taiwan) for 6 minutes, corresponding to the

observation period in the FST.

Human Subjects and Assessments of Responses to
Antidepressant Treatments

This study enrolled 582 patients with MDD and 498 controls.

An author (YWY) who was blind to each subject’s genotype used

the Schedules for Clinical Assessment in Neuropsychiatry (SCAN)

[20] to assess the patients and made the diagnosis of MDD

according to the DSM-IV. Patients who had additional Axis-I

diagnoses (including schizophrenia, bipolar disorder, substance use

disorder, anxiety disorder, etc.), pregnant patients, those who

recently attempted suicide, and those with any major medical

and/or neurological disorders were excluded. The control subjects

screened by board-certificated psychiatrists were all free from

major psychiatric illness. All the participants were aged between

20 and 65 years. Parts of the cases have been studied in our

previous work [21–24].

In the MDD group, 262 patients were further evaluated in

terms of their response to 8 weeks of treatment with fluoxetine or

citalopram, both of which are selective serotonin reuptake

inhibitors (SSRIs), to reduce pharmacological variability in terms

of pharmacogenetic study of the antidepressants [25]. These

patients had a minimum total score of 18 in the 21-item Hamilton

Depression Rating Scale (HAMD) prior to treatment. The dose of

both drugs started from 20 mg/day, which could be increased to

40 mg/day on the basis of clinical presentation and judgment.

During the evaluation period, the use of any other psychotropic

drugs was forbidden, except for night-time benzodiazepines for

insomnia. For those patients with a past treatment history, a two-

week drug-free interval was required before entering the study.

Responders were defined as having a greater than 50% decrease in

total HAMD score after 8 weeks of treatment. All the participants

were Han Chinese.

Marker Selection & Genotyping
For mapping of the mouse FSTFLX, we used the ENU Mouse

Gene Mapping Panel (http://nrpgm.sinica.edu.tw/en/

serviceDetail.php?cNo = 75), which consists of two single nucleo-

tide polymorphisms (SNPs) on chromosome X and 197 SNPs on

autosomal chromosomes to distinguish B6 from the FVB genetic

background. In the analysis of human antidepressant response,

two coding synonymous SNPs, rs2816881 C.A (Val412Val) and

rs10922744 A.G (Glu505Glu), in the human ZNF326 gene were
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selected from the CHB (Han Chinese in Beijing) population

information listed in the International HapMap Project (http://

hapmap.ncbi.nlm.nih.gov/index.html.en). The ZNF326 gene is

the human homologue of the mouse Zfp326 gene. The two SNPs

tag 100% of the genetic variations in ZNF326 in the CHB

population, under the marker selection criteria of no less than 10%

of the minor allele frequency, greater than 0.8 in r2 and two- and

three-marker aggressive tagging with Haploview V4.1 (http://

www.broadinstitute.org/haploview/haploview-downloads).

High-throughput MALDI-TOF mass spectrometry was

adopted to genotype the SNPs. In genotyping the mouse samples,

one B6, FVB and two F1 genomic DNAs were included as internal

controls. For the human samples, 24 randomly selected subjects

were re-genotyped for rs2816881 and rs10922744. The genotyp-

ing consistency rates for rs2816881 and rs10922744 were 100%

and 96%, respectively.

Quantification of mRNA Expression in the Mouse Brain
To quantify the Zfp326 mRNA expression in different brain

regions of the mouse, a new batch of B6 (n = 20) and FVB (n = 20)

mice were subjected to the two-day FST and were also treated

with saline or 20 mg/kg of fluoxetine 30 minutes before the 2nd

FST on the second day. At the end of the 2nd FST, the animals

were sacrificed immediately, and the frontal cortex, striatum,

nucleus accumbens, thalamus, hypothalamus, amygdala and

hippocampus were dissected and stored in RNAlater (Ambion).

Total RNA of individual brain regions was extracted with TRIzol

(Invitrogen), treated with DNase I (Promega) and then transcribed

to complimentary DNA (cDNA) using Moloney Murine Leukemia

Virus (MMLV) reverse transcriptase according to the manufac-

turer’s instructions. RNA was quantified using absorption of light

at 260 and 280 nm. The amounts of Zfp326 and cyclophilin A

cDNAs were measured using SYBR green-based real-time

quantitative polymorphism chain reaction (RT-qPCR), which

was performed using a Rotor-Gene 3000H (Corbett, Sydney,

Australia), and the relative cDNA levels of Zfp326 were

normalized by the amount of cyclophilin A cDNA in the same

sample. Cyclophilin A is an immediate factor of calcium/calmodulin

signaling that is expressed ubiquitously [26]. The gene is expressed

at a ‘‘high’’ level (.100 copies per cell) and its expression is less

variable and more stable than that of GAPDH and beta-actin in

the rat ischemia hippocampus and striatum [27], in experimental

brain trauma in mice [28], and in a mouse model of kainite-

induced mesiotemporal epilepsy [29]. It is also one of the most

reliably expressed endogenous reference genes in the brain of

those with Alzheimer’s disease [30]. Therefore, cyclophilin A

appears to be a suitable internal or reference control in the

quantitation of CNS mRNA expression [31,32], was selected as an

endogenous reference cDNA normalizer in this study.

A specific sample cDNA was used as a relative standard and

inter-assay controller in each batch of RT-qPCR throughout the

measurements of Zfp326 and cyclophilin A cDNA. The primer

sequences for Zfp326 were zfp326-F: 59-TGCAGATGATCA-

CATGAT-39 and zfp326-B: 59-CCTGAGGGTGATCTTGAA-

39; for cyclophilin A, cyclophilin-A-F1:59-TATAAAG-

GAAGCCGCGGCGA-39 and cyclophilin-A-B1:59-

CTTTGTCTGCAAACAGCTCGA-39. To obtain a reliable

quantitative measurement of mouse brain cDNA, a linear

standard curve was generated for each experiment plate. The

standard curve was generated with serial 4-fold dilution to four

dilution levels from one reference brain cDNA (R2.0.9). In all the

experiments, the lowest and highest detection limits from the

standard curves for Zfp326 and cyclophilin A expression were as

follows: Zfp326: lower = 18.8,19.3 Ct/upper = 25.4,25.8 Ct;

cyclophilin A: lower = 18.0,18.6 Ct/upper = 25.3,25.6 Ct (Ct:

the PCR cycle at which the sample reached the threshold). A

sample with a Ct value residing in the linear range between the

two detection limits was regarded as a reliable measurement. All

samples were run in duplicate on the sample experiment plate.

The intra-assay and inter-assay CVs for Zfp326 and cyclophilin A

mRNA were 0.8% and 2%, respectively. Data were derived from

the mean of two independent amplifications.

Statistical Analysis
The details of the analysis for the quantitative and qualitative

traits measured in the study are summarized in the supplementary

materials. In the QTL analysis for FSTFLX, we first used simple

interval mapping (SIM) in R/qtl (http://www.rqtl.org/) [33] to

scan the potential region harboring the QTL for FSTFLX. A

‘‘normal model’’ was used to scan the whole genome for normally-

distributed phenotypes. However, for the phenotypes that deviated

from a normal distribution, we performed the ‘‘non-parametric

form of interval mapping’’ [33]. To control the residual genetic

effect on SIM-detected signals, composite interval mapping (CIM)

in R/qtl, a combination of SIM and multiple linear regression, was

applied [34,35]. The empirical genome-wide significant thresholds

of 3.33 for SIM and 4.68 for CIM were obtained from 1000

permutation tests. The lowest LOD for suggestive linkage was set

at 2.8 according to the guidelines proposed by Lander et al. [36].

In the C576FVB F2 population, FSTFLX was positively

correlated with FSTBAS (Pearson correlation coefficient = 0.35,

p,0.001). To reduce the confounding effect of FSTBAS on

FSTFLX, the standardized residual of FSTFLX (i.e., z_ FSTFLX)

was obtained with linear regression by treating FSTBAS as

a covariate [17,37]. The z_ FSTFLX was then subjected to QTL

scanning with SIM and CIM. The empirical genome-wide

significant thresholds of SIM and CIM for the phenotype were

3.38 and 4.08, respectively. The lowest LOD for suggestive linkage

was also set at 2.8 [36].

In humans, the linkage between ZNF326 rs2816881 and

rs10922744 was estimated with Haploview V4.1. The difference

in the haplotype frequency between groups was compared using

SNPAlyze V3.5 (http://www.dynacom.co.jp/english/). The sig-

nificance of the comparison was determined after 100000

permutation tests. As we tested two phenotypes (major depression

diagnosis and treatment response after 8 weeks of antidepressant

treatment) and two SNPs, the correction factor was 4, and a p-

value lower than 0.0125 was regarded as significant.

Results

FSTBAS in Different Mouse Strains
There were significant differences in the FSTBAS among strains

(F(4,227) = 27.84, p,0.001) (Table S1). Post hoc Scheffé’s pro-

cedure showed the following differences (p,0.05): BALB.B6,

FVB, DBA, C3H; B6.C3H; FVB/NJ.C3H and DBA/

2N.C3H. The FSTBAS of B6 and FVB were similar.

Surveying FSTFLX in Different Mouse Strains
The mean FSTFLX in the B6 mice was not affected by

administration of fluoxetine (F(3,38) = 0.76, p = 0.522, Figure 1a).

However, a significant difference in the mean FSTFLX was

observed in the BALB mice treated with various doses of

fluoxetine (Figure 1b, F(3,44) = 4.198, p = 0.011). Post hoc Dun-

nett’s analysis indicated that the 20 mg/kg group had a lower

FSTFLX than the saline group (p = 0.011). The FVB mice showed

dose-dependent responses to fluoxetine in the FST (F(3,50) = 5.54,

p = 0.002, Figure 1c). The 20 mg/kg group’s FSTFLX was

Zinc Finger Protein 326 and Antidepressant
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significantly lower than that of the saline group (post hoc analysis

p = 0.002), while the difference between the 10 mg/kg saline

groups was borderline (p = 0.054). The FSTFLX of the DBA and

C3H mice was not changed by the administration of different

doses of fluoxetine (DBA: F(3,39) = 0.44, p = 0.723, Figure 1d;

C3H: F(3,41) = 0.18, p = 0.931, Figure 1e). The survey suggested

that the BALB and FVB mice were the fluoxetine-sensitive strains

and B6 was the fluoxetine-insensitive strain in the FST.

Confirmation of the Sensitive and Insensitive Strains in
Response to Fluoxetine Treatment

In order to confirm the sensitive and insensitive strains in

response to fluoxetine treatment, we used further batches of

BALB, FVB and B6 mice and 20 mg/kg of fluoxetine to repeat the

FST. In the FVB mice the fluoxetine group showed a shorter

FSTFLX than the saline group (fluoxetine (n = 8) vs. saline (n = 8):

142.3623.6 vs. 175.4615.2 sec, two-tailed independent t test,

p = 0.005). In the B6 mice, there was no significant difference in

the FSTFLX between the fluoxetine and saline groups (fluoxetine

(n = 8) vs. saline (n = 8): 210.2614.1 vs. 212.466.0 sec, two-tailed

independent t test, p = 0.688). The results of the BALB mice were

inconsistent with those of the survey experiments (fluoxetine (n = 9)

vs. saline (n = 8): 193.7615.4 vs. 206.1618.5 sec, two-tailed

independent t test, p = 0.154). The results confirmed FVB to be

the fluoxetine-sensitive strain and B6 to be the fluoxetine-

insensitive strain in the FST.

Open Field Test
In order to rule out the possibility that fluoxetine may induce

hyperactivity [38,39], open field tests were conducted 30 minutes

after fluoxetine (20 mg/kg) administration in independent batches

of experimentally naı̈ve B6 and FVB mice. There was no

significant difference in the mean traveling distance, time spent

in traveling and the speed of traveling between the mice treated

with saline and those treated with fluoxetine in both mouse strains

(Table S2, all p.0.1).

Heritability Study
B6 (fluoxetine-insensitive strain) and FVB (fluoxetine-sensitive

strain) mice were crossed to produce the F1 progeny. The F1 mice

were intra-crossbred to generate the F2 progeny. The mean and

variance of the FSTFLX of the B6, F1, F2 and FVB were as listed

in Table S3. The mean FSTFLX were significantly different among

the B6 (n = 19), F1 (n = 112), F2 (n = 865) and FVB (n = 22) mice

(Figure 2, FSTFLX: Kruskal-Wallis test, p,0.0001). The post hoc

Mann-Whitney test revealed that the B6 mice had the longest

FSTFLX (214.7613.7 sec, least sensitive), F1 and F2 the in-

termediate FSTFLX (F1:204.4624.5 sec; F2:195.0632.2 sec), and

FVB the shortest FSTFLX (165.1626.6 sec, most sensitive) (B6.

FVB, all p,0.0001, F1$F2.FVB, all p,0.0001). As the F1 mice

are genetically homogeneous, the broad-sense heritability (H2) for

the F2 FSTFLX was 0.42 [(1039.7–602.4)/1039.7] [40]. The

narrow-sense heritability (h2) due to all additive genetic contribu-

tions on FSTFLX variation of the F2 (VA/VF2) was 0.30. The

heritability due to dominance (VD/VF2) was 0.06 (Table S3) [40].

QTL Analysis for the FST Response to Fluoxetine
Using SIM, we identified 11 consecutive SNPs with LOD scores

greater than the genome-wide significant threshold of 3.27

(Table 1). All the 11 SNPs are located in mouse chromosome 5,

with a 2-LOD confidence interval (2-LOD CI) spanning the

47.3 cM to 54.2 cM region (Figure 3). Under the additive model,

the 11 SNPs contributed 1.6%,4.7% of the inter-individual

variation in the FSTFLX (Table 1). The F2 mice with homozygous

FVB alleles on these SNPs had a significantly shorter FSTFLX than

the heterozygotes or homozygous B6 alleles (Table 1), suggesting

that the F2 mice’s FST responsiveness to fluoxetine was affected by

the alleles of the FVB mice. The results of the SIM and CIM for

FSTFLX are compared and plotted in Figure 3. Although the LOD

scores of some chromosome 5 markers obtained from the two

algorithms were not always consistent, the maximum linkage

signal detected by the SIM and CIM emerged on the same SNP

rs6215296, with a LOD score of 8.21 in the SIM and 9.36 in the

CIM. The inconsistency in the LOD scores obtained from the two

programs for the other markers may arise from residual genetic

influences on adjacent markers, an effect that is taken into account

in the CIM but not in the SIM [35].

In the F2 mice, about 13% of the individual variation in

FSTFLX was correlated with their FSTBAS (FSTFLX vs. FSTBAS:

Pearson correlation coefficient = 0.35, p,0.001). It is possible that

the identified FSTFLX-QTL is partly contributed to by the

FSTBAS. Therefore, the effect of FSTBAS was removed from each

F2 mouse’s FSTFLX through linear regression. The standardized

residuals of each F2 mouse’s FSTFLX (ie, z_ FSTFLX) were then

subjected to the SIM and CIM. One signal of z_ FSTFLX was

linked to mouse chromosome 5 in the SIM and CIM (Figure S1).

Again, both programs’ optimal results converged on rs6215296,

with a LOD of 4.75 in the SIM and 4.80 in the CIM. The results

were consistent with that using FSTFLX (Figure 3 for FSTFLX),

indicating that the SNP is a specific QTL for the mouse FST

response to fluoxetine.

Associations between Mouse Zfp326 Exonic
Polymorphisms and Mouse FST Responses to Fluoxetine

The maximum linkage signal for the FST response to fluoxetine

is located on rs6215296 (Figure 3 and Figure S1), a SNP of the

mouse Zfp326 gene. There are two exonic SNPs in the mouse

Zfp326 that distinguish B6 from FVB mice: rs33550587 is a coding

nonsynonymous SNP (Asp494Gly) in exon 12, while rs13473815 is

a polymorphism in the 3-untranslated region (39-UTR) (http://

www.informatics.jax.org/strains_SNPs.shtml). In silico analysis

predicted that different alleles of rs33550587 transcribe into

different secondary structures of Zfp326 mRNA (Figure S2a), and

the same goes for rs13473815 (Figure S2b). To further study the

effect of Zfp326 variations on mouse responses to fluoxetine, the

B66FVB F2 mice were genotyped for the two Zfp326 SNPs. For

rs33550587, the F2 mice carrying one or two FVB alleles exhibited

a shorter FSTFLX than the F2 carrying homozygous B6 alleles

(F(2,827) = 21.9, p = 5.5610210, post hoc Dunnett t test: B6/B6 vs.

B6/FVB, p = .032; B6/B6 vs. FVB/FVB, p = 3.861029,

Figure 4a). A similar finding was noted with rs1373815

(F(2,826) = 21.9, p = 5.6610210, post hoc Dunnett t test: B6/B6

vs. B6/FVB, p = 0.033; B6/B6 vs. FVB/FVB, p = 3.861029,

Figure 4b). The two SNPs rs33550587 and rs13473815 are in

strong linkage disequilibrium (LD, absolute D’ = 1.0, r2 = 1.0) with

rs6215296, suggesting that the maximal detected LOD score of

rs6215296 may reflect the effect of rs33550587 and rs13473815 on

FSTFLX through inter-marker LD.

Zfp326 mRNA Expressions in the Mouse Brain
The mRNA levels of the reference gene cyclophilin A in the

selected brain regions of B6 and FVB were not regulated by the

treatment with fluoxetine in the FST (Table S4), indicating that

cyclophilin A is an appropriate endogenous reference gene for use in

this study. Figure 5 shows the Zfp326 mRNA expression in

different brain regions of B6 or FVB mice after 20 mg/kg of

fluoxetine treatment. Significant inter-strain differences in Zfp326

Zinc Finger Protein 326 and Antidepressant
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mRNA expression between B6 and FVB were noted in the frontal

cortex, hippocampus, hypothalamus, amygdala, nucleus accum-

bens and striatum (Mann-Whitney U test, all p,0.05). However,

after fluoxetine treatment, the inter-strain difference in the frontal

cortex, hypothalamus and striatum disappeared (Figure 5). Fur-

thermore, in FVB, the Zfp326 mRNA levels in the thalamus were

significantly lower in the fluoxetine group than in the saline group

(Mann-Whitney test, p = 0.027).

Association between Human ZNF326 Variations and
Responses to SSRI Antidepressant Treatments

There are two coding-synonymous SNPs in the human ZNF326

gene (rs2816881 (Val412Val) and rs10922744 (Glu505Glu)). They

tag 100% of the overall ZNF326 genetic variations in the CHB

population recruited in the international HapMap project (http://

hapmap.ncbi.nlm.nih.gov/). In the study, the gender proportions

and mean age of the MDD and control groups were similar

(gender (male/female): MDD vs. control = 238/344 vs. 220/278,

p = 0.276; age (SD): MDD vs. control = 44.3 (16.4) vs. 43.1 (12.6),

p = 0.218). There was no significant difference between the

responders and non-responders in terms of gender distribution,

antidepressants (fluoxetine or citalopram), mean age, duration of

current episode, number of previous episodes and mean baseline

HAMD scores (Table S5, all p.0.05).

Table 2 shows the genotype and allele distributions in the study

subjects. The genotype distributions of the two SNPs in the MDD

and control subjects were in Hardy-Weinberg equilibrium. The

genotype and allele distributions of the two ZNF326 SNPs were

similar between the MDD patients and controls, but were

significantly different between the responders and non-responders.

The A-carrier rate of rs2816881 was higher in the responders

(15.3%) than in the non-responders (3.3%) (Fisher’s exact

p = 0.003, odds ratio (OR) for being the responder = 5.20, 95%

CI = 1.53–17.69). Similarly, the G-carrier rate of rs10922744 was

higher in the responders (15.7%) than in the non-responders

(3.4%) (Fisher’s exact p = 0.002, OR for being the responder

= 5.34, 95% CI = 1.57–18.12). Haplotype-based analysis for

rs2816881–rs10922744 did not further increase the significance

(data not shown) because they are highly linked (absolute D’ = 1.0,

r2 = 1.0). The association between the two ZNF326 SNPs and

antidepressant treatment response survived the corrections for

multiple comparisons.

Discussion

Identification of the QTL for Mouse Sensitivity to
Fluoxetine

FST and TST are usually served as convenient animal models

for predicting the efficacy of antidepressants. Several mouse

chromosome regions (chromosomes 1, 4, 5, 7, 12 and 19) have

been linked to the mouse response to antidepressants in the TST

using QTL mapping [16,17]. However, the genetic determinants

underlying the response to antidepressant in the mouse FST have

not been extensively studied. In this study, we applied QTL

mapping to narrow down the genetic factors affecting the mouse

FST response to fluoxetine in 865 male B66FVB F2 mice. Both

the SIM and the CIM algorithms consistently revealed linkage

signals in the 26.8–60.3 cM region of chromosome 5 (2-LOD CI

= 47.3–54.2 cM) (Table 1 & Figure 3). The results suggest that the

region contains the QTL of the mouse FST response to fluoxetine.

Interestingly, Liu et al. reported that D5Mit41 (0.25 cM away

from rs6215296) was a suggestive QTL (LOD = 2.9) for mouse

sensitivity to imipramine treatment in the TST [17]. The close

proximity of rs6215296 and D5Mit41 indicates that the 47.3–

54.2 cM region of chromosome 5 contains shared QTL(s)

modifying responses to antidepressants in the TST and FST.

There are five other suggestive QTLs thought to be associated

with the anti-immobility effect of antidepressant in the TST.

Crowley et al. reported that one significant QTL on mouse

chromosome 19 (D19Mit71) and two suggestive QTLs on

chromosome 7 (D07Mit259) and chromosome 12 (D12Mit118)

were associated with mouse responses to citalopram, another SSRI

antidepressant, in the TST [16]. The other suggestive QTLs

(D1Mit410 and D4Mit204) for response to imipramine in the TST

were reported in the work of Liu et al. [17]. However, we did not

obtain significant LOD scores in those regions in this study. The

inconsistencies among studies might arise owing to the different

parental strains (ex, Balb/cJ6A/J vs. NMRI6129S6 vs.

B66FVB), behavioral paradigms (TST vs. FST), sample sizes

and/or the use of antidepressants (e.g., imipramine, citalopram or

fluoxetine).

Strain Difference and Fluoxetine Treatment on Zfp326
Expression in the Brain

The maximum linkage signal for the FST response to fluoxetine

is located on rs6215296. Since the SNP is located on mouse Zfp326

gene, we looked into Zfp326. Except for limited evidence of

involvement in neuronal differentiation [41], the function of

Zfp326 has rarely been explored. We investigated the expression

profiles of Zfp326 in the brain of FVB and B6 mice. The Zfp326

Figure 1. Strain-specific response to fluoxetine in mouse FST. Immobility time in the FST of B6 (1a), BALB (1b), FVB (1c), DBA (1d) and C3H
(1e) mice after administration of different doses of fluoxetine. The FST was conducted 30 minutes after fluoxetine or saline injection (i.p.). ‘‘*’’ denotes
a p-value lower than 0.05 compared with the saline group in the post hoc analysis. FST: forced swim test.
doi:10.1371/journal.pone.0032984.g001

Figure 2. FST response to fluoxetine in B6, F1, F2 and FVB
mice. Immobility time in the FST for B6 (n = 19), FVB (n = 22) and their
F1 (n = 112) and F2 (n = 838) mice after fluoxetine treatment. The FST
was conducted 30 minutes after fluoxetine (20 mg/kg) or saline
injection (i.p.).‘‘*’’ denotes a p-value lower than 0.05 in post hoc
analysis compared with the FVB mice. FST: forced swim test; i.p.:
intraperitoneal.
doi:10.1371/journal.pone.0032984.g002
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mRNA levels of the FVB mice were significantly higher than those

of the B6 mice in the frontal cortex, hypothalamus and striatum,

but the inter-strain difference became insignificant after fluoxetine

treatment (Figure 5). Furthermore, in the thalamus of FVB, the

Zfp326 mRNA expression was down-regulated by fluoxetine

treatment (Figure 5). Interestingly, the four regions are thought

to be involved in the cognitive aspect (feelings of worthlessness and

guilt), neuro-vegetative signs and hedonic deficit of depression

[42]. The results that Zfp326 mRNA levels are different in some

brain areas of B6 and FVB mice and that Zfp326 mRNA can be

regulated by fluoxetine in some brain areas may suggest a role of

Zfp326 in regulating mouse sensitivity to fluoxetine and partly

Table 1. Mouse single nucleotide polymorphisms (SNPs) that were associated with immobility time in the FST after fluoxetine
treatment (FSTFLX).

FSTFLX (SD, N), seconds

SNP ID
Location
(cM)

LOD

(SIM)

LOD

(CIM)

Contribution
(%)a

C57/
C57

C57/
FVB

FVB/
FVB P-valueb

Response
allelec

Nearest
gened

rs13459086 26.8 3.28 0.00 1.6 200.5 (30.0, 227) 195.1 (33.6, 415) 188.7 (32.8, 193) 0.001 FVB Gpr125

rs13478271 31.7 4.01 0.21 1.8 200.2 (30.0, 220) 196.0 (33.0, 420) 187.4 (33.5, 196) ,0.001 FVB Pcdh7,
LOC100041385

rs6167151 32.8 4.67 0.04 2.2 201.4 (29.3, 218) 195.3 (33.4, 423) 187.2 (33.2, 193) ,0.001 FVB Tbc1d1, Ppia-
ps22,
LOC433894

rs6366606 38.9 5.39 0.01 2.8 202.7 (28.6, 219) 195.0 (32.9, 423) 186.9 (34.5, 193) ,0.001 FVB Dcun1d4

rs13478385 44.3 6.55 0.08 3.6 203.2 (28.2, 212) 195.8 (32.1, 413) 185.5 (35.6, 207) ,0.001 FVB Adamts3

rs6232866 46.0 6.12 0.14 3.4 203.0 (28.2, 214) 195.8 (32.2, 415) 185.6 (35.7, 205) ,0.001 FVB G3pb2, Vdp

rs13478403 47.3 6.91 0.04 3.0 203.2 (27.6, 205) 197.4 (29.8, 391) 188.0 (36.6, 191) ,0.001 FVB Fras1

rs13478418 48.5 7.35 0.32 4.1 203.1 (28.4, 217) 196.1 (31.1, 410) 184.3 (36.8, 208) ,0.001 FVB LOC666417

rs6215296 50.9 8.21 9.36 4.7 202.9 (28.2, 235) 197.4 (30.8, 389) 183.2 (36.6, 207) ,0.001 FVB Zfp326

rs13478462 54.2 7.49 0.43 4.6 203.1 (27.5, 238) 196.2 (31.6, 391) 183.4 (36.9, 203) ,0.001 FVB Mn1,

A230057G18Rik
rs13478488 60.3 5.65 0.07 3.8 202.8 (27.3, 229) 195.5 (32.1, 409) 185.4 (36.8, 198) ,0.001 FVB EG665194,

LOC100039529

SD: standard deviation; cM: centi-morgan; LOD: logarithm (base 10) of odds; LOD(SIM): the LOD scores derived from simple interval mapping; LOD(CIM): LOD scores
derived from composite interval mapping;
aThe proportion of contribution the genetic polymorphism on the overall variation of the immobility time in FST after fluoxetine treatment.
bP-value for one way analysis of variance.
cThe allele that shows significantly shorter immobility time in FST after fluoxetine treatment than the other allele.
dThe list of the gene located in 1 mega-bases from the SNP.
doi:10.1371/journal.pone.0032984.t001

Figure 3. LOD scores for linkage for FSTFLX. The solid red line at LOD = 3.33 and the blue dashed line at LOD = 4.68 denote the genome-wide
significance threshold for FSTFLX (SIM) and FSTFLX (CIM), respectively. The gray zone indicates the 2-LOD confidence interval. FST: forced swim test;
FSTFLX: immobility in the mouse FST with fluoxetine treatment; LOD: logarithm of odds; SIM: simple interval mapping; CIM: composite interval
mapping.
doi:10.1371/journal.pone.0032984.g003
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explain the difference in sensitivity to fluoxetine treatment between

B6 and FVB mice. In addition, two genetic variants in Zfp326, one

with amino acid change (rs33550587, Asp494Gly) and one in the

39-UTR region (rs13473815), are associated with the mouse FST

response to fluoxetine (Figure 4). These findings provide further

evidence supporting the involvement of Zfp326 in the mouse FST

response to fluoxetine and explaining the discrepancy in sensitivity

to fluoxetine between B6 and FVB mice.

Association between ZNF326 Variations and Human
Responses to Antidepressants

Since the FST is a widely used animal model in predicting

antidepressant efficacy, it is imperative to examine the role of

human homologue of mouse Zfp326, ZNF326, in predicting the

efficacy of fluoxetine in humans. We found that rs2816881-A and

rs10922744-G and the A–G haplotype were significantly associ-

ated with a favorable response in patients with MDD after 8 weeks

of antidepressant treatment (Table 2). The effect of the two SNPs

Figure 4. The association of mouse Zfp326 function SNP with FST response to fluoxetine treatment. Genetic variations in Zfp326,
rs33550587 (Asp494Gly) (4a) and rs13473815 (4b), are associated with the mouse response to fluoxetine in the FST. The B66FVB-F2 mice were
grouped according to genotype. * p,0.05; #p,0.0001. The digits in the bars represent the number of animals in each group. Zfp326: zinc finger
protein 326 gene; SNP: single nucleotide polymorphism; FST: forced swim test.
doi:10.1371/journal.pone.0032984.g004
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on ZNF326 function is unclear and remains to be studied. Both

rs2816881 and rs10922744 are coding synonymous SNPs and do

not change the corresponding amino acid in the ZNF326 protein

sequence. According to the finding of Nembaware et al.’s study,

rs2816881 and its surrounding nucleotide sequence constitute

a splicing regulatory sequence located at the exonic splicing

enhancer elements of ZNF326 [43]. Meanwhile, in silico prediction

shows that both SNPs may have an effect on the ZNF326 RNA

secondary structure (Figure S2). In addition, rs2816881 and

rs10922744 are in strong linkage disequilibrium with another

Figure 5. Zfp326mRNA expressions in different brain regions in B6 and FVBmice. The level of Zfp326mRNA was normalized by the level of
cyclophilin A in the same region in each mouse. ‘‘**’’ and ‘‘*’’ represent a p-value lower than 0.01 and 0.05, respectively, comparing FVB with B6 in the
same brain region with the Many-Whitney U test. ‘‘#’’ indicates a p-value lower than 0.05, comparing the same brain region of mice treated with
saline or fluoxetine using the Many-Whitney U test. n = 8,10 mice for each bar. FLX: fluoxetine. FC: frontal cortex; Hip: hippocampus; HTh:
hypothalamus; Amy: amygdala; NAc: nucleus accumbens; Th: thalamus; St: striatum.
doi:10.1371/journal.pone.0032984.g005

Table 2. Genotype and allele distribution of ZNF326 polymorphisms in the controls, and in the patients with major depressive
disorder and their responses to 8-weeks’ antidepressant treatment.

Phenotype

Diagnosis
8-week treatment
response

SNP Genotype/allele MDD (%) Control (%) Responder (%) Non-responder (%)

rs2816881 CC 488 (84.3) 437 (81.7) 145 (84.8) 87 (96.7)

(Val412Val) CA 84 (14.5) 94 (17.6) 23 (13.5) 3 (3.3)

AA 7 (1.2) 4 (0.7) 3 (1.8) 0 (0.0)

P-value(genotype) 0.305 0.007#

C allele 1060 (91.5) 968 (90.5) 313 (91.5) 177 (98.3)

A allele 98 (8.5) 102 (9.5) 29 (8.5) 3 (1.7)

P-value(allele) 0.377 0.0017#

rs10922744 AA 480 (83.9) 432 (81.5) 145 (84.3) 86 (96.6)

(Glu505Glu) AG 85 (14.9) 95 (17.9) 24 (14.0) 3 (3.4)

GG 7 (1.2) 3 (0.6) 3 (1.7) 0 (0.0)

P-value(genotype) 0.232# 0.005#

A allele 1045 (91.3) 959 (90.5) 314 (91.3) 175 (98.3)

G allele 99 (8.7) 101 (8.5) 30 (8.7) 3 (1.7)

P-value(allele) 0.475 0.001#

*The P-value in boldface indicates the significance survived after correction for multiple comparisons (adjusted significant threshold with Bonferroni’s procedure:
P,0.0125). ‘‘#’’ denotes the p-value obtained from Fisher exact test.
doi:10.1371/journal.pone.0032984.t002
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ZNF326 SNP, rs11808927, a cis-acting SNP involved in ZNF326

mRNA expression in human liver (http://hapmap.ncbi.nlm.nih.

gov/index.html.en) [44]. Therefore, rs2816881 and rs10922744

may affect ZNF326 mRNA expressions through changing ZNF326

RNA secondary structure, or disrupting normal gene splicing and

causing aberrant splicing of either a proportion or all of the

transcripts produced [43]. Interestingly, a recent genome-wide

association study conducted in the GENDEP project reported that

three SNPs (rs2136093, rs6701608 and rs2136094), about

0.20 Mb away from ZNF326 in human chromosome 1 were in

suggestive association (p = 3.82–5.5661027) with antidepressant

responses [45]. Based on the convergent evidence obtained from

mouse FSTFLX-QTL mapping, human study in Uher et al. [45],

and our results, it is highly possible that zinc finger protein 326 is

involved in regulating the effect of fluoxetine in mice and humans.

The Function of Zfp326 Needs Further Exploration
The Zfp326 gene encodes a protein that contains two C2H2-

type zinc finger motifs and glutamic acid-rich domains in the C-

terminal region [46]. It exhibits DNA-binding activity in a zinc-

dependent manner and plays a role in regulating cell growth

[46]. Zfp326 is thought to play a role in neuronal differentiation

because its expression in the neuro-epithelium of the brain and

neural tube in E11.5 embryos increased and its mRNA and

protein were transiently elevated in cells treated with retinoic

acid [41]. Recently, another human zinc finger protein ZNF804A

gene, which also encodes a protein product with a C2H2-type

domain like Zfp326, was reported to be associated with

schizophrenia and a broader psychosis phenotype [47,48].

However, detailed information about the Zfp326 gene and its

mechanism of functioning is still unknown, and the role of the

gene in the pathogenesis of depression and antidepressant effect

requires further characterization.

Discrepancies Among Inbred Mouse Strains in Response
to Antidepressants

In the first part of the study, we identified B6 as the fluoxetine-

insensitive strain and FVB as the fluoxetine-sensitive strain. In

a study of such a huge scale, the use of an automatic recording

device is an important factor in achieving significant linkage

results. Crowley et al. suggested that the use of an automatic

recording device for scoring rodent behavior in the FST had

many advantages over manual scoring [49], which included

consistency and reliability across different experiments, raters and

laboratories [49]. However, the applicability of an automatic

device for the FST requires validation through contrasting with

manual scoring procedures [49]. Prior to the commencement of

the study, we proved that the correlation between manual and

device scoring for the FST was high (Pearson correlation

coefficient = 0.93–0.96, p,0.001). In order to confirm the

sensitive and insensitive strains for the subsequent heritability test

and QTL analysis, replication experiments using a fixed dose of

20 mg/kg of fluoxetine and independent batches of B6, BALB

and FVB mice were conducted. The results confirmed that the

FVB and B6 were respectively sensitive and insensitive to 20 mg/

kg of fluoxetine treatment in the FST (result 3.3). Possible

psychostimulant or hyperactivity-inducing effects of fluoxetine

[38] on the FST were ruled out, because neither the B6 nor FVB

mice displayed increased activity in the open field test 30 minutes

after fluoxetine treatment (Table S2).

Conclusion
Through genotyping of 199 SNPs of 865 male B66FVB F2

mice and applying SIM and CIM analysis, we localized the trait to

the 47.3–54.2 cM region of mouse chromosome 5. Inside the

region, a rarely studied gene, Zfp326, deserves special attention,

because (1) its expression can be regulated by fluoxetine in the

thalamus of FVB, (2) its expression differs between B6 and FVB

mice in some brain areas and the discrepancies can be altered by

fluoxetine, and (3) the SNPs in Zfp326 were found to be associated

with sensitivity to fluoxetine in the F2 mice. Most importantly,

polymorphisms of the human homologue of Zfp326, ZNF326, were

found to be associated with therapeutic response to SSRI

treatment in patients with major depressive disorder. By studying

the function of Zfp326 or ZNF326, we may unravel the mechanism

of antidepressant action and gain further insight into the pathology

of major depressive disorder.
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