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Abstract

The yeast protein-protein interaction network has been shown to have distinct topological features such as a scale free
degree distribution and a high level of clustering. Here we analyze an additional feature which is called Neighbor Overlap.
This feature reflects the number of shared neighbors between a pair of proteins. We show that Neighbor Overlap is enriched
in the yeast protein-protein interaction network compared with control networks carefully designed to match the
characteristics of the yeast network in terms of degree distribution and clustering coefficient. Our analysis also reveals that
pairs of proteins with high Neighbor Overlap have higher sequence similarity, more similar GO annotations and stronger
genetic interactions than pairs with low ones. Finally, we demonstrate that pairs of proteins with redundant functions tend
to have high Neighbor Overlap. We suggest that a combination of three mechanisms is the basis for this feature: The
abundance of protein complexes, selection for backup of function, and the need to allow functional variation.
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Introduction

The yeast Saccharomyces cerevisiae protein interaction network

is probably the most studied protein interaction network both

experimentally and computationally. The network has been shown

to be scale free [1] i.e. the distribution of the degrees of the nodes

follows a power law. In addition the network was shown to have

large clustering coefficients (CC), [2,3] meaning that neighbors of

nodes in the network tend to interact amongst themselves (a

property sometimes referred to as locality or modularity).

Here we explore a measure called Neighbor Overlap (NO)

which reflects the number of common neighbors a protein pair has

in the protein interaction network, normalized in various ways.

Similar measures were used in previous studies to improve protein

annotation, as it was expected that pairs with high NO should

have similar function. Ravasz et al. utilized this measure to study

the hierarchical organization of modularity in metabolic networks

[4]. A related measure that calculates an edge clustering coefficient

between directly connected nodes was used [5,6] to detect

communities in complex networks, including the C. elegans

metabolic network.

In this work our aim is different. We study NO as a network

property and show that it is highly enriched in the yeast protein

interaction network compared to carefully designed control

networks. Thus, we demonstrate that NO is an independent

property of the yeast interaction network. Later we also explore

the functional consequences of this observation.

The systematic analysis of large scale genetic and interaction

data has led to intriguing observations regarding the ability of

living organisms to sustain damage to their genes and still function

effectively. It was demonstrated [7] that about 82% of the yeast

proteins are non-essential in the sense that a single knockout of any

of these genes leaves the organism viable, although about 15%

show slower growth rate under rich medium conditions. While the

lethality effect of genes is not easy to describe in such simple terms,

it is reasonable that this kind of study can provide insight into

robustness of biological systems. To further study the mechanisms

used by biological systems to confer robustness, large scale

experiments of double knockouts were performed. In these

experiments pairs of genes are knocked out (or knocked down

by RNAi). Two genes are said to participate in a genetic

interaction if the effect of the double knockout is different from

the expected effect of the combination of the two single knockouts.

For example, a sample of 132 single knockouts in yeast for which

all other second knockouts were performed [8] demonstrated that

on average, each tested yeast gene was involved in a few dozen

such genetic interactions.

In other studies the effect of double knockouts was tested on 424

genes involved in endoplasmic reticulum function [9] and on 743

genes related to DNA damage and transcription [10]. In these

studies the phenotypic effect was measured on a continuous scale

(i.e. not as a binary value of either synthetically lethal/sick or

neutral) showing that many such genetic interactions have some,

although small, effect. These experiments have also shown that

some double mutants have an alleviating effect (i.e. the effect of the

double knockout is smaller than the expected combination of the

effect of the two single knockouts).
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From these studies it became clear that backup patterns in living

organisms are complicated. While in man-made systems, backup is

often provided by simple pairing of parts that can directly

substitute each other (e.g. a pair of pumps), the pattern revealed by

the network of genetic interactions is much more complex.

Several studies have tried to link robustness of yeast against

knockouts and mutations, to the structure of its protein interaction

network. For example, the scale free characteristic of the yeast

protein interaction network [1] has been associated with robust-

ness to random mutations and vulnerability against direct attacks

on the central hubs [11]. Additionally, using data from systematic

single gene knockdown experiments, it was shown that hub genes

tend to be more essential than genes with low connectivity [1]

although the reason for this tendency is debated [12,13].

When analyzing double knockdown experiments, Kelly and

Ideker [14] emphasized the importance of genetic interactions that

take place between proteins that reside in different modules, as they

found that there are significantly more (in a ratio of about 1:3.5)

genetic interactions between pairs of proteins that are in different

modules than between pairs of proteins that are in the same module.

Their work was further extended by Ulitsky and Shamir [15] who

found 140 cases of genetic interactions between modules.

Whentwoproteinsreside indifferentmodules it isunlikely that they

will share many neighbors. Thus, NO, which is the focus of our study,

is a property of interactions that occur within a module. We show that

high NO is associated with functional similarity and is enriched in

pairs of proteins that participate in genetic interactions and that

supply backup to each other. In the discussion we describe a few

examples that demonstrate that high NO can stem from protein

complexes, protein backup and functional variation and we argue

that in many cases these factors are combined. Thus, this very simple

measure correlates with significant factors that shape the protein-

protein and genetic interaction networks.

When we want to show that any property of a complex network

is either over or under represented compared to the expected

value, a critical question is how to calculate the expected value.

Almost always, it is impossible to derive analytical values for

network properties. Thus, it is a common practice to create many

randomized versions of the network, and consider the average

frequency of the property in the randomized network as the

expected value. This raises the question of how the randomization

is done. In general, the randomization should be done in a way

that will preserve as many of the other properties of the network,

such that it will be clear that the claimed enrichment stands

independently and is not a by-product of other properties. For

example, in our case we want to show that the yeast protein

interaction network is enriched with pairs of high NO. As we

mentioned above, it was shown that the yeast protein interaction

network is scale free and has high clustering coefficients. Thus, it is

possible that the large number of pairs with high NO is a side

effect of these properties and that every network that has these two

features will have large number of pairs with high NO. To show

that the yeast protein interaction network is specifically enriched

with high NO we must therefore show that the overlap in the yeast

network is higher compared to randomized networks that have

similar scale free and cluster coefficient properties. Since this issue

was the subject of several heated discussions [16,17,18], in this

study we tried to be careful about the design of proper controls.

Results

Definitions of Neighbor Overlap
NO is a measure of how many common neighbors a pair of

proteins has in the protein interaction network. In our analysis, we

use three forms of this measure. First we normalize the number of

common neighbors to the minimum degree of the protein pair

(NOnorm):

NOnorm(A,B) ~
DNeighbors(A)\Neighbors(B)D

Min(Deg(A),Deg(B))

Second we use the Jaccard index (NOjaccard):

NOjaccard(A,B)~
DNeighbors(A)\Neighbors(B)D
DNeighbors(A)|Neighbors(B)D

And third we use a simple count of common neighbors

(NOcount):

NOcount(A,B) ~ DNeighbors(A)\Neighbors(B)D

For example, in Figure 1 NOnorm = 3/5, NOjaccard = 3/

9 = 1/3 and NOcount = 3. We note that this definition applies

whether proteins A and B have a direct link or not.

The Yeast Network is Enriched with High Neighbor
Overlap

First we demonstrate that the yeast protein interaction network

is enriched with protein pairs that have a high Neighbor Overlap,

compared with 1000 control networks. These control networks

were designed to preserve the degrees of each node in the original

protein interaction network. Moreover, since protein interaction

networks were shown to have modular characteristic [3], we

further engineered the control networks to preserve the average

cluster coefficient and a similar cluster coefficient distribution

(Figure S1).

Figure 2 shows the NOnorm distribution in the yeast and

control networks over five bins of increasing NOnorm values.

These results demonstrate that the yeast protein interaction

network is enriched with protein pairs for bins of NOnorm .0.2

(Figure 2A). The statistical significance of this result was verified by

comparing the yeast and control distributions using the Mann

Whitney U test (p,0.0001). Similar results are observed for the

NOjaccard and NOcount measures (Figures S2 and S3, panel A).

Figure 1. Schematic view of Neighbor Overlap. In the depicted
example nodes A (degree = 7) and B (degree = 5) have 3 common
neighbors. According to the definitions in the text, NOcount = 3,
NOnorm = 3/5 and NOjaccard = 1/3.
doi:10.1371/journal.pone.0039662.g001

Neighbor Overlap Enriched in Yeast Network
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To further neutralize the concern that the high modularity of

the yeast protein interaction network is the main source of high

NO, we checked the correlation between these attributes. Figure

S5 reveals a low correlation (Pearson correlation coefficient = 0.17,

p,0.0001) for NOnorm values versus the average cluster

coefficient values for each pair. Although significant, the low

correlation between these attributes indicates that the modular

characteristic of the yeast protein interaction network can’t solely

explain the high NO values. As evident in this plot, a wide spread

of NO values is observed for any given cluster coefficient value.

Taken together with the fact that our control networks preserve

the cluster coefficient characteristics of the original yeast network,

we conclude that Neighbor Overlap is an independent property of

the yeast interaction network.

Only Part of the High Neighbor Overlap Enrichment
Originates in Protein Complexes

Two proteins that are part of the same protein complex are both

likely to interact with other proteins that are part of the same

complex. Therefore it is logical to assume that the abundance of

protein complexes in yeast is a major source of high Neighbor

Overlap. To assess the contribution of such protein pairs to the

high NO enrichment, we removed all pairs reported to be in the

same complex together. Our analysis is based on three datasets

created by Pu et al. [19], Krogan et al. [20] and Gavin et al. [21].

The yeast NOnorm distribution after removing all protein pairs

that were reported by Pu et al. (CYC2008 dataset) to be in the

same complex is shown in the green bars of Figure 2A. High

Neighbor overlap pairs are still over-represented in the yeast

network when compared with the control network for bins of

NOnorm.0.2 (Figure 2A). Although this over-representation is

weaker than before, (the green bars are lower than the blue bars

for the three highest bins of Figure 2A) the ‘‘complex removed’’

distribution is still significantly different from the control network

based on the Mann Whitney U test (with p,0.0001). We

performed the same analysis removing complexes that were

reported by Krogan et al. and Gavin et al. and got similar results

(Figure S6). Comparable results were also achieved for the

NOjaccard and NOcount measures (Figure S2 and S3, panel A).

To further validate that protein complexes were not the only

source of the high NO we created an additional control network.

In this network we collapsed all proteins that were listed as being

Figure 2. Enrichment of Neighbor Overlap in the yeast protein-protein interaction network – with and without complexes. Panel A
shows the distribution of Neighbor Overlap using the NOnorm measure, for yeast (blue bars) versus control (red bars). Assessing the contribution of
protein complexes to Neighbor Overlap was implemented by removing protein pairs that belong to the same complex from the original analysis
(green bars). Panel B shows the yeast (blue bars) and control (red bars) NOnorm distributions on a collapsed version of the yeast interaction network.
This was achieved by collapsing all proteins that are part of the same complex to a unified node and computing NOnorm values for the new network.
To overcome difference in scale, the higher NOnorm bins are presented in the enlarged inserts. The figure shows that complexes contribute
considerably to the NO enrichment, but even when complexes are removed the NO signal is strongly evident.
doi:10.1371/journal.pone.0039662.g002

Neighbor Overlap Enriched in Yeast Network
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part of the same protein complex (in the CYS2008 dataset), to a

single node. For example, if proteins A and B form a complex and

either or both interact with C, we collapse A and B into a single

node that interacts with C (see Methods). Here too, we created a

set of 1000 control networks preserving both the degree and

cluster coefficient characteristics of the network and re-performed

the analysis. Figure 2B shows that the high NO enrichment

persists under the conditions of this control as well. The

distribution of the yeast and the control networks are significantly

different using the Mann Whitney U test (with p,0.0001). This

analysis was done for the NOcount and NOjaccard measures as

well, and the results were similar (Figures S2 and S3, panel B).

Note that counter intuitively, the NO values of the collapsed

networks can be higher than in the original network that contains

complexes. The fact that only pairs with non-zero NO values are

considered and that all interactions of non collapsed nodes are

assigned to the single collapsed node, contribute to this effect.

Figure S4 demonstrates this effect in a ‘‘toy’’ example of a

common scenario in a protein interaction network in which the

nodes are highly connected within a complex but sparsely

connected between complexes. Because of this effect it is not

meaningful to compare the results of the original and collapsed

networks but rather to compare each result with its corresponding

control.

High Neighbor Overlap Pairs have Higher Sequence
Similarity than Low Ones

To start probing the relationship between pairs of proteins that

share a high number of neighbors we checked if high NO protein

pairs have higher sequence similarity than low ones. To this end

we divided our data into two groups of high (NOnorm.0.5,

n = 4,233) and low (0.5$NOnorm.0, n = 294,307) NOnorm

values and checked the sequence similarity levels in each group.

To overcome the dramatic difference in size between the high and

low sets, and in order to achieve a comparison that takes the

degree of protein pairs into account, we used a sampling

technique. We sampled 1000 subsets of the same size (n = 100)

from the high and low sets, such that each pair in the high subset

had a respective pair in the low subset with the same degree (for

each of the two proteins). We calculated the average similarity for

each subset in the high and low sets and compared their

distribution. The results shown in Figure 3 clearly indicate that

on average, high NO pairs have higher sequence similarities than

low ones (p,0.0001 using the Mann Whitney U test to compare

the distributions).

Similar GO Annotations for High Neighbor Overlap
Protein Pairs

To elucidate the functional ramification of high NO we

checked if two proteins with high NO tend to have similar GO

annotations. Using the sampling procedure described above we

compared the GO similarity of high and low NO pairs for the

three GO ontologies: Biological Process, Molecular Function and

Cellular Component. The level of similarity was determined

using the GOSim software package [22]. GOSim allows

calculating the functional similarity of genes based on various

normalization techniques for the GO terms of each protein.

Figure 4 clearly shows that high NO protein pairs have a higher

level of similarity for all three GO ontologies (p,0.0001 for all

three ontologies using the Mann Whitney U test to compare the

distributions).

High Neighbor Overlap Pairs have Stronger Genetic
Interactions than Low Ones

Quantitative measurements of genetic interactions can formal-

ly be defined by e= Wab–Wa6Wb [23] where Wa and Wb

represent the fitness of organisms with either mutations a or b

respectively and Wab represents the fitness of organisms with

both mutations a and b. The fitness of the mutated organisms is

defined by their growth rates relative to that of wild-type

organisms. Thus the e value is expected to be close to zero for

non-interacting gene pairs, less than zero for synthetic lethal (SL)

Figure 3. High Neighbor Overlap pairs have higher sequence
similarity than low ones. The distribution of average sequence
similarity for 1000 subsets (each of size 100) from the high (blue bars)
and low (red bars) Neighbor Overlap groups are shown. These
distributions indicate that high Neighbor Overlap pairs tend to have
higher sequence similarity than low ones.
doi:10.1371/journal.pone.0039662.g003

Figure 4. GO annotation similarity for high and low Neighbor
Overlap groups. The distributions in each panel represent the GO
annotation similarity of 1000 subsets each of size 100) from the high
(blue bars) and low (red bars) Neighbor Overlap groups. The
distributions for the three ontologies: Biological Process (top),
Molecular Function (middle) and Cellular Component (bottom) show
a marked separation between their GO similarities for pairs with high
and low NO values.
doi:10.1371/journal.pone.0039662.g004

Neighbor Overlap Enriched in Yeast Network
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and synthetic sick (SS) gene pairs and greater than zero for

alleviating gene pairs. Many discussions have been devoted to

understanding the functional meaning of SL and SS pairs (see for

example Kupiec et al. [24]), however less emphasis has been

given so far to the functional meaning of alleviating gene pairs.

Nevertheless, it is reasonable to assume that protein pairs with

either large negative or large positive e values are functionally

related.

To demonstrate the relationship between Neighbor Overlap

and genetic interactions we used a dataset created by Collins et

al. [10], consisting of quantitative pair-wise genetic interaction

measurements between 743 yeast genes involved in DNA

damage and transcription. With the sampling procedure

described above we compared the genetic interaction strength

(i.e. absolute e values) for the high and low NO groups. Figure 5

shows that high NO pairs have stronger genetic interactions than

low ones (p,0.0001 using the Mann Whitney U test). Since

genetic interactions are associated with backup of function

between two genes we can suggest that high NO is indicative for

gene backup.

Redundant Gene Pairs are Enriched with High Neighbor
Overlap

To further show that high NO indicates protein pairs with

backup potential, we examined the NO values of redundant gene

pairs. We expect that redundant gene pairs will have higher than

average NO values. Thus, we analyzed two sets of gene pairs in

which the two genes are mutually redundant; the first is a literature

curated set and the second is computationally predicted set [25]

(see methods for details). Crossing these datasets with our protein

interaction network leaves us with 73 and 162 gene pairs

respectively.

We begin by examining the fraction of pairs that have at least

one common neighbor (non-zero NO) in the redundant sets and

compared them with 1000 control sets. The control sets were

designed so that every protein pair in the control had a respective

pair with the same degree as in the redundant set being analyzed.

Table 1 shows that the fraction of non-zero NO pairs is

dramatically higher for the two redundant sets than for the

control average (p,0.001 for both datasets in resampling tests).

Next, we analyze the average NO values (NOnorm, NOjaccard

and NOcount) only for pairs that have at least one common

neighbor (NO.0) and compare them with 1000 control sets. The

control sets in this case were designed to include only non-zero

NO pairs with the same degree as the redundant set being

analyzed. The results presented in Table 2 show that for all three

measures NO values are significantly higher for the two redundant

sets than for the control average (p,0.001 for all cases in

resampling tests), strengthening the association of high NO with

backup.

Discussion

Several previous studies have used high NO values for

annotation. Samanta and Liang [26] used pairs of high NO to

predict the function of one member of the pair whose function is

unknown from the function of the other member. In Sun et al.

[27] this measure was used as part of the inputs to a learning

procedure whose goal was to assign function. Lin et al. [28]

suggested that the small-world property (i.e. small diameter and a

large clustering coefficient) implies high NO values and then went

on to use this property to predict function. Other studies [5,6]

defined an edge clustering coefficient which was used to identify

communities for various complex networks (mainly in social

networks and in the C. Elegans metabolic network). Although this

measure is similar to the NO measure, it has not been used to gain

biological insight as to the origin and functional implications of this

property. Additionally, the edge clustering coefficient is only

defined for pairs of nodes that have a direct link. In our study, NO

values were calculated for 298,540 pairs out of which only 10,828

pairs (about 4%) have a direct link; therefore the edge clustering

coefficient is not applicable to NO analysis.

Several special features such as scale free topology and modular

organization have been shown for the yeast protein interaction

network and much effort has been invested in understanding the

functional significance of these characteristics. Neighbor Overlap

is an additional interesting characteristic which may have

important functional implications. We have shown that the yeast

protein interaction network is enriched with protein pairs that

have high Neighbor Overlap compared with control networks that

preserve degree and clustering coefficient characteristics. These

two characteristics are intrinsic topological parameters of the

network. However, we did not control for additional biological

parameters like sequence similarity and GO similarity since, as we

show, they are inherently related to the NO property. The

sequence similarity and the similar GO annotations suggest that

high NO pairs tend to have similar functions. The association with

genetic interactions and enrichment of redundant genes with high

NO pairs indicate that these functionally similar high NO pairs

may be part of an effective backup mechanism that contributes to

the robustness of the organism.

We suggest that the enrichment of Neighbor Overlap in the

yeast protein interaction network is associated with at least three

different, but related, mechanisms. One is from the existence of

complexes, the second is associated with functional backup and the

third is to allow functional variation.

We show three examples, one for each mechanism, and briefly

describe the interactions with their common neighbors.

The definition of what constitutes a complex varies and as a

result the estimation of the number of complexes in cells varies

Figure 5. High Neighbor Overlap pairs have stronger genetic
interactions than low ones. The distributions represent the average
e values of 1000 subsets (each of size 100) from the high (blue bars) and
low (red bars) Neighbor Overlap groups. Clearly, the e values are higher
for the high than for the low group.
doi:10.1371/journal.pone.0039662.g005

Table 1. Non-zero Neighbor Overlap in redundant gene pairs.

Redundant gene sets Neighbor Overlap.0

dataset control

Literature Curated (n = 73) 68% 12% (63)

Computationally Predicted (n = 162) 77% 13% (62)

doi:10.1371/journal.pone.0039662.t001
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significantly [19,20,21]. Nevertheless, it is clear that protein

complexes are abundant. When two proteins are part of the same

complex, it is clear that their interaction pattern will be similar.

While some variation may occur due to geometrical or temporal

considerations, it is likely that proteins within a complex will

interact with the same set of proteins. Indeed, our data (Figures 2

and S6) show that a considerable portion of the enrichment in

Neighbor Overlap comes from this attribute. One example is the

pair of proteins Vph1 and Stv1 which are isoforms of the subunit

‘‘a’’ of Vascular ATPase (V-ATPase) V0 domain. V-ATPases are

ATP-dependent proton pumps that acidify intracellular vacuolar

compartments [29]. In our network, Vph1 and Stv1 have 13 and

15 neighbors respectively, of which 9 are common: Vma2, Vma4 -

8, Vma10, Vma13 and Tpf1 (NOnorm = 0.69, NOjaccard = 0.47

and Nocount = 9). Their common interaction partners are all

other subunits of the V-ATPase complex and are the source of the

high NO in this case.

Another reason for the enrichment of Neighbor Overlap may be

related to selection for functional backup. In these cases, the two

proteins that share neighbors can substitute each other. One such

example in our data is Mkk1 and Mkk2 which are mitogen

activated protein kinases (MAPKs), involved in the cell wall

integrity pathway [30,31]. In our network, Mkk1 and Mkk2 have

11 and 41 neighbors respectively, of which 5 are common: Bck1,

Slt2, Spa2,Sph1 and Atp2 (NOnorm = 0.45 and NOjaccard = 0.11

and NOcount = 5). Two of which are other kinases immediately

upstream (Bck1) and downstream (Slt2) in the signaling pathway.

Spa2 and Sph1 are scaffolding proteins [32,33]. It was shown that

the signal transduction pathway is fully functional with either one

of these two proteins [34,35]. Thus, the high NO in this case is a

result of the similar neighborhoods required for two proteins to

carry out the same (or a very similar) task.

Another possible reason for the enrichment of high NO pairs is

that an organism may have proteins with the same basic function

in many different contexts and nuances. An example of this is

illustrated by Dig1 and Dig2 which are two regulatory proteins

from the MAPK signaling cascade [36]. In our network Dig1 and

Dig2 have 12 and 14 neighbors respectively of which 6 are

common: Fus3, Kss1, Ste12, Cln1, cln2 and Srp1 (NOnorm = 0.5

and NOjaccard = 0.3 and NOcount = 6). Ste12 activates signal-

responsive transcription required for pheromone response in

haploid yeasts and filamentous growth as a result of limiting

nutrients [37]. Regulation of Ste12 appears to involve the two

MAP kinases Fus3 and Kss1, which phosphorylate Ste12, Dig1

and Dig2, which in turn inhibit the Ste12 function [38].

Additionally, Fus3 and Kss1 take part in the control over G1

arrest by repressing transcription of G1/S cyclin genes Cln1, Cln2

and Clb5 [39]. Since Ste12 is involved in separate signal paths that

result in unique behavior, its activity must be tightly regulated.

Dig1 and Dig2 are both negative regulators of Ste12 in both the

pheromone and the filamentous growth response [40]. Dig1 and

Dig2 have been shown to be functionally redundant; that is the

individual disruption of either one has no apparent phenotype

while their simultaneous disruption results in extensive filaments

and elevated expressions of pheromone responsive genes

[36,40,41]. Despite this apparent redundancy, Dig1 and Dig2

inhibit Ste12 through independent mechanisms. It has been shown

[42] that while Dig1 binds to a central region of Ste12 (residues

309 to 547), Dig2 binds to its DNA binding domain (residues 1 to

215). A possible hypothesis accounting for these separate

interaction sites is that Dig2 directly modulates the capability of

Ste12 to bind to the pheromone response element by blocking its

DNA binding site. In contrast, Dig1 may interact not by

modulating the DNA binding but rather by interacting with the

DNA bound Ste12 and preventing its transcriptional activation.

The origin of high NO in this example is from five proteins all

involved in this regulatory pathway. Thus, this is an example of

functionally, rather than mechanistically, redundant proteins and

it underlines an important feature necessary for the fine tuning of

regulatory pathways.

Although we have suggested three separate mechanisms as the

source of the high NO in yeast, it is clear that these mechanisms

are intertwined. High NO pairs that are in complexes are likely to

be relevant for backup and/or variation as well. For example,

although Vph1 and Stv1 have high NO partly as a consequence of

being members of the same complex, they have also been shown to

have a partially compensatory relationship. Moreover, it was

suggested that they have distinct variant roles in targeting the V-

ATPase complex to different cellular compartments [29]. Simi-

larly, as we have discussed, Mkk1 and Mkk2 are known to provide

backup but they too are suspected to have different regulatory

roles in promoting cell wall integrity [43].

We must keep in mind that many of the gene pairs that

provide the combination of back-up and functional variation

may come from gene duplication: Immediately after the

duplication, the function of the two genes and their product

would have been identical and the pair must have served

mainly for backup function. However, with time, only pairs that

offer significant functional variation [44] or regulatory control

variation [45] may have survived. It is therefore a combination

of these mechanisms in yeast that is the major source of the

high NO. This hypothesis is supported by the observation that

pairs with high NO tend to have higher sequence similarity and

by the fact that the redundant gene sets for which we showed

high NO, are based [25] on duplicated yeast genes. The

number of duplicated gene pairs is presumably higher in the

yeast Saccharomyces cerevisiae because of its ancient whole

genome duplication [44]. This is relevant to our discussion since

it has been suggested [46] that paralogs resulting from the

whole-genome duplication are more likely to share interaction

partners and biological functions than smaller-scale duplicates.

On the other hand, it has been demonstrated [47] that the age

of the duplication has a major effect on function diversification

of the proteins, although interestingly even after duplication,

Table 2. Neighbor Overlap in redundant gene pairs for Non-zero Neighbor Overlap pairs.

Redundant gene sets
(non-zero NO pairs only) NOnorm NOjaccard NOcount

dataset control dataset control dataset control

Literature Curated (n = 50) 0.49 0.30 (60.01) 0.16 0.08 (60.01) 5.2 2.1 (60.2)

Computationally Predicted (n = 125) 0.34 0.18 (60.01) 0.12 0.06 (60.01) 4.5 2.4(60.3)

doi:10.1371/journal.pone.0039662.t002
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proteins tend to maintain their domain architecture. The

differences between whole genome duplications and more local

duplications leave open for further studies the question of

whether NO will be lower in organisms that did not undergo

massive duplication.

In summary, we have shown that NO, although simple and

straightforward, is an informative property of the yeast protein

interaction network that reflects the complicated relationship

between proteins. Clearly, the fact that a pair of proteins has a

high NO does not always have obvious functional implications;

but having similar neighborhoods is often a consequence of the

intricate functional relationship between proteins.

Methods

Yeast Protein Interaction Network Data
The protein interaction network was downloaded from the

DIP database (using the version published on the 27/10/11,

filename: Scere20111027.txt) and comprises 5,009 genes and

21,894 reciprocal interactions (43,788 non-reciprocal ones).

Each gene has an average of 8.74 interacting partners (degree),

and the degree distribution has a scale free topology (linear

distribution on a log-log scale). The network is predominantly

one giant connected component of 4,958 genes with an

additional 24 isolated pairs and one isolated triplet. The

evidence for these interactions is based mainly on yeast Two-

Hybrid assay and Affinity Purification followed by Mass

Spectrometry. For the analysis presented in this paper we

considered only protein pairs in which both proteins have at

least 5 interacting partners resulting in 298,540 pairs with non-

zero NO. A list of all pairs with NOnorm.0.5 (4,233 pairs) is

given in Table S1. The average cluster coefficient calculated for

this network is 0.322.

Control Networks
Degree preserving networks were created by shuffling the

original network. This was done by randomly choosing an existing

pair of edges in the original yeast network and rewiring them. In

this procedure, for each removed edge another edge is gained and

thus the degree of each node is preserved, similar to the method

described in [48]. For example, edges A-B and C-D were rewired

to be A-C and B-D, provided they did not already exist. 1000 such

control networks were created. However, a byproduct of shuffling

the original yeast network is a reduction in the average cluster

coefficient of the control networks. Therefore we implemented a

shuffling algorithm that takes the control networks and reshuffles

them such that only rewiring steps that increase the local average

cluster coefficient are accepted. We continued this ‘‘biased’’

rewiring until the original average cluster coefficient was restored.

We note that under the degree preserving constraint this

procedure also preserves the cluster coefficient distribution to a

large extent (Figure S1).

Collapsed Network
To create a ‘‘complex free’’ protein interaction network we

collapsed all proteins that were documented in [19] to be in the

same biological complex. All proteins that were part of the same

complex were collapsed and unified into a single node that

interacts with all proteins that previously interacted with the

proteins of the complex. If a protein was part of more than one

complex it was collapsed to all. The new network comprised 3,637

nodes and 9,084 reciprocal interactions (18,168 non-reciprocal

ones).

Sequence Similarity
The similarity between protein sequences was determined using

the global alignment algorithm ‘‘Needle’’ from the EMBOSS

package with the default parameters [49].

GO Analysis
The similarity between two genes was computed using the

GOSim R package [22].A yeast database (org.Sc.sgd.db) was

added to the package. We used the getGeneSim function with

default parameters.

Genetic Interactions
The genetic interaction e values were downloaded from the

supporting information of [10] (filename: Chromosome biology

genetic interaction scores.xls). After removing genes that appeared

more than once and crossing the data with the yeast network we

were left with 676 genes. For our analysis we discarded

interactions that were not symmetric (i.e. e (A,B)? e (B,A)).

Dividing this data into high (NOnorm.0.5) and low (0.5$NOn-

orm.0) groups left us with 201 and 9,935 pairs in each group

respectively.

Redundant Gene Sets
The two redundant gene sets [25] were created by the authors

based on the following criteria: The literature curated set

comprises 84 paralogous gene pairs that have documentation of

functional overlap (from non high throughput studies) as well as

experimental validation of a compensatory relationship. The

computationally predicted set comprises 161 gene pairs that: [a]

are paralogs based on BLASTP (E,10220), [b] have a mean

expression similarity ,0.3 and [c] have at least 5 connections in

the protein interaction network derived from the GRID database.

Crossing these data sets with the interaction network left us with

73 pairs for the literature curated set and 162 pairs for the

computationally predicted set.

Supporting Information

Figure S1 Cluster Coefficient distribution for the yeast
and control networks. Cluster Coefficient distribution across

10 bins for the yeast (blue bars) and the average of 1000 control

networks (red bars).

(TIF)

Figure S2 Enrichment of Neighbor Overlap in the yeast
protein-protein interaction network using NOjaccard –
with and without complexes. Panel A shows the distribution

of Neighbor Overlap using the NOjaccard measure, for yeast (blue

bars) versus control (red bars). Assessing the contribution of

protein complexes to Neighbor Overlap was implemented by

removing protein pairs that belong to the same complex from the

original analysis using three different complex lists created by Pu et

al., Krogan et al. and Gavin et.al (green, purple and aqua bars

respectively). Panel B shows the yeast (blue bars) and control (red

bars) NOjaccard distributions on a collapsed version of the yeast

interaction network. This was achieved by collapsing all proteins

that are part of the same complex to a unified node and computing

NOjaccard values for the new network. To overcome difference in

scale, the higher bins are presented in the enlarged inserts. The

figure shows that complexes contribute considerably to the NO

enrichment, but even when complexes are removed the NO signal

is strongly evident.

(TIF)
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Figure S3 Enrichment of Neighbor Overlap in the yeast
protein-protein interaction network using NOcount –
with and without complexes. Same as figure S2 but using the

NOcount measure.

(TIF)

Figure S4 Original versus collapsed NO values. Using a

‘‘toy’’ network, this figure demonstrates that in a typical scenario

in which the nodes are highly connected within a complex but

sparsely connected between complexes, the NO distribution is

shifted to the right for the collapsed network. The original network

(top left) and its NOnorm distribution (bottom left) are shown.

When collapsing the network by unifying proteins from the same

complex into a single node, the collapsed network (top right) has a

NOnorm distribution with higher NO values (bottom right).

(TIF)

Figure S5 Correlating Neighbor Overlap and average
Cluster Coefficients. A plot of NOnorm values versus the

average cluster coefficient values for each pair is shown. While

there is some correlation (Pearson correlation coefficient = 0.17

which is statistically significant (p,0.0001)), it is clear that there is

a wide spread of Neighbor Overlap values for any given cluster

coefficient value. This observation supports our claim the

contribution of the high clustering coefficient of the yeast network

to the high NO values is limited.

(TIF)

Figure S6 Enrichment of Neighbor Overlap in the yeast
protein-protein interaction network using NOnorm –

with and without complexes. Panel A shows the distribution

of Neighbor Overlap using the NOnorm measure, for yeast (blue

bars) versus control (red bars). To Assess the contribution of

protein complexes to Neighbor Overlap, protein pairs that belong

to the same complex were removed from the original analysis

using three different complex lists created by Pu et al., Krogan et

al. and Gavin et al. (green, purple and aqua bars respectively, A).

To overcome difference in scale, the higher NOnorm bins are

presented in the enlarged inserts. All analyses show that complexes

contribute considerably to the NO enrichment, but even when

complexes are removed the NO signal is strong.

(TIF)

Table S1 The table lists the details of protein pairs for
which NOnorm .0.5 and the degree of both proteins in
the protein interaction network is $5.

(XLS)
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