
A Modifier Screen for Bazooka/PAR-3 Interacting Genes
in the Drosophila Embryo Epithelium
Wei Shao., Johnny Wu., Jeyla Chen., Donghoon M. Lee, Alisa Tishkina, Tony J. C. Harris*

Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada

Abstract

Background: The development and homeostasis of multicellular organisms depends on sheets of epithelial cells. Bazooka
(Baz; PAR-3) localizes to the apical circumference of epithelial cells and is a key hub in the protein interaction network
regulating epithelial structure. We sought to identify additional proteins that function with Baz to regulate epithelial
structure in the Drosophila embryo.

Methodology/Principal Findings: The baz zygotic mutant cuticle phenotype could be dominantly enhanced by loss of
known interaction partners. To identify additional enhancers, we screened molecularly defined chromosome 2 and 3
deficiencies. 37 deficiencies acted as strong dominant enhancers. Using deficiency mapping, bioinformatics, and available
single gene mutations, we identified 17 interacting genes encoding known and predicted polarity, cytoskeletal,
transmembrane, trafficking and signaling proteins. For each gene, their loss of function enhanced adherens junction defects
in zygotic baz mutants during early embryogenesis. To further evaluate involvement in epithelial polarity, we generated GFP
fusion proteins for 15 of the genes which had not been found to localize to the apical domain previously. We found that
GFP fusion proteins for Drosophila ASAP, Arf79F, CG11210, Septin 5 and Sds22 could be recruited to the apical
circumference of epithelial cells. Nine of the other proteins showed various intracellular distributions, and one was not
detected.

Conclusions/Significance: Our enhancer screen identified 17 genes that function with Baz to regulate epithelial structure in
the Drosophila embryo. Our secondary localization screen indicated that some of the proteins may affect epithelial cell
polarity by acting at the apical cell cortex while others may act through intracellular processes. For 13 of the 17 genes, this is
the first report of a link to baz or the regulation of epithelial structure.
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Introduction

Epithelial structure is essential for the development and

homeostasis of multicellular organisms (for reviews see [1–9]).

Each cell in an epithelial sheet has an apical domain facing the

sheet surface and a basolateral domain facing underlying tissue.

This polarity is tightly linked to epithelial structure. Adherens

junctions (AJs; formed from cadherin adhesion molecules and the

b-catenin (Armadillo; Arm) and a-catenin adaptor proteins) form

around the circumference of the apical domain and connect

neighbouring cells. Actin associates with AJs but also localizes

laterally and basally. Similarly, microtubules (MTs) are organized

in specific apical, lateral and basal networks, while intracellular

trafficking pathways direct specific cargo to the apical or

basolateral domains. This polarized organization of epithelial cells

controls transport between body compartments, and is critical for

the development and maintenance of epithelial structure.

Studies from C. elegans, Drosophila and mammalian systems have

revealed specific polarity complexes that regulate polarized

epithelial structure (for reviews see [1,10–18]). The Baz (fly

PAR-3) complex (cytoplasmic Baz, PAR-6, aPKC and Cdc42) and

the Crumbs (Crb) complex (transmembrane Crb, and cytoplasmic

Stardust and Patj) are apical cues, whereas the Discs large (Dlg)

complex (cytoplasmic Dlg, Lethal giant larvae and Scribble) is a

basolateral cue. Mutations disrupting these polarity complexes

lead to epithelial breakdown and depolarization, and interactions

between the complexes form key elements of the polarity

establishment hierarchy. Certain interactions recruit and maintain

proteins in the apical domain. Baz and PAR-6 recruit Crb and

Patj, respectively [19,20]; and aPKC stabilizes apical Crb [21]. In

turn, Crb stabilizes AJs and Baz [22–24]. Other interactions help

segregate the apical and basolateral domains. Crb has a mutually

antagonistic relationship with the basolateral Dlg complex [19,25].

Apical aPKC activity can exclude both Lgl [20] and the
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basolateral kinase PAR-1 [26], while Lgl and PAR-1 in the

basolateral domain displace aPKC and Baz, respectively [20,27].

Baz/PAR-3 is a molecular scaffold with no predicted enzyme

activity. It is a cytoplasmic protein with three main regions, an N-

terminal region, a central region with three PDZ protein

interaction domains, and a C-terminal region. The N-terminal

region can homo-oligomerize [28]. PAR-6 binds the first PDZ

domain of PAR-3 and aPKC interacts with the C-terminal region

of PAR-3 [15]. However, studies in C. elegans and Drosophila

indicate that Baz/PAR-3 can also function separately from PAR-6

and aPKC [29,30]. Studies from a variety of cell types have shown

that Baz and/or PAR-3 can also directly interact with components

of cell adhesion complexes; Arm and Echinoid (Ed) [31] and

p75NTR [32]; actin cytoskeleton regulators; Tiam 1 [33], PTEN

[34], LIM kinase 2 [35], and Rho-kinase [36]; the microtubule

motors KIF3A [37,38] and dynein [39]; Numb [40]; the ubiquitin

ligase Smurf2 [41], and lipids [42].

Drosophila embryogenesis provides an excellent model to study

how Baz/PAR-3 regulates epithelial structure. In Drosophila, Baz

plays a key role in positioning AJs as the first epithelium forms

[24,43]. This involves an unknown actin-based apical scaffold and

the positioning of Baz in proximity to apical MT minus-ends by

dynein [29]. Baz also positions an actin-regulator (Bitesize) that

affects AJs just after they have formed [44]. Moreover, Baz

becomes planar polarized in these later tissues suggesting a role in

polarized junctional modeling [45]. Other work has shown roles

for Baz in regulating the endocytosis and recycling of AJs [46,47]

and apical proteins [48]. This diverse set of cellular activities

suggests that Baz interacts directly or indirectly with a variety of

epithelial polarity regulators.

We performed a genetic screen to identify additional players

that function with Baz to regulate epithelial structure in the

Drosophila embryo. At the end of embryogenesis, the epidermis

secretes a protective cuticle which provides an assay for detecting

defects in epidermal structure and patterning [49]. Maternal/

zygotic baz mutants display a severe cuticle phenotype with only

scattered scraps of cuticle produced by residual epithelia [19].

However, zygotic baz mutants have a maternal supply of baz gene

product that can produce a largely intact cuticle with only one or

two holes [25,50]. The activity of this maternal supply can be

reduced by reducing levels of proteins that function with Baz. For

example, reduction of dynein heavy chain levels dominantly

enhances the zygotic baz mutant cuticle phenotype [29].

In a pilot screen, we found that the baz zygotic mutant cuticle

phenotype could be dominantly enhanced to varying degrees by

reducing the levels of known polarity regulators. To identify new

polarity regulators we screened molecularly defined deficiencies of

chromosomes 2 and 3. 37 of the deficiencies showed strong dominant

enhancement of the baz zygotic mutant cuticle phenotype. We used

deficiency mapping, bioinformatics, and available single gene

mutations to identify 17 interacting genes. Immunofluorescence

microscopy showed that loss of function of these genes enhanced AJ

defects in zygotic baz mutants in early embryonic epithelia.

Surprisingly, the individual cuticle phenotypes for the interacting

alleles were relatively mild. Nonetheless, seven of the 17 proteins

localize to the apical cortex. Some of the identified genes are known

polarity regulators, but most have not been previously linked to baz or

the regulation of epithelial structure.

Methods

Fly stocks and genetics
Descriptions of genetic mutations and constructs can be found

on FlyBase (http://flybase.bio.indiana.edu). bazXi106, par1w3,

apkcK06403, shgR69, edkg, hk11 and aspL18 mutants were gifts of A.

Wodarz (Göttingen Univ., Germany), H. McNeill (Univ. of

Toronto, Canada), C. Doe (Univ. of Oregon, USA), U. Tepass

(Univ. of Toronto, Canada), M. Peifer (Univ. of North Carolina,

USA), H. Kramer (Univ. of Texas Southwestern, USA) and D.

Glover (Univ. of Cambridge, UK), respectively. Drosdel and

Exelixis deficiency stocks, all other mutants and balancer

chromosomes marked with Twist-Gal4, UAS-GFP were from

the Bloomington Drosophila Stock Center. The genomic coordi-

nates for the deficiencies are summarized on the Bloomington

Drosophila Stock Center web page (http://flystocks.bio.indiana.

edu). Baz::GFP and Arm::CFP were on the same recombinant X-

chromosome as described previously [51]. WT was yellow white.

Cuticle preparations and scoring
Embryos were collected for 24 h at 25uC and then removed

from adults and allowed to develop for another 48 h. Unhatched

embryos were washed and dechorionated with 50% bleach.

Dechorionated embryos were mounted on slides with Hoyer’s

mountant:Lactic acid (1:1), and baked at 60uC overnight. Embryos

were viewed and scored by two people simultaneously using a dual

view Olympus BX41 microscope with 4x and 10x objective lenses.

For quantification of cuticle phenotypes, 100–200 cuticles were

counted per experiment and the percentages from two experi-

ments were averaged for the final distributions. For quantification

of hatch rates, 300 unhatched embryos were tested per experiment

and percentages from two experiments were averaged for the final

hatch rate (unfertilized eggs were identified after cuticle prepara-

tions and were excluded from the analysis).

Embryo staining and fluorescence microscopy
Embryos developed for 3–6 h at 25uC were dechorionated and

then fixed in 1:1 3.7% formaldehyde in PBS:heptane for 20

minutes, and were devitellinized using methanol. Blocking and

staining was performed with PBS/1% goat serum/0.1% Triton X-

100. Embryos were stained with rat anti-DE-cadherin (DE-cad)

antibodies (DCad2 at 1:100; [52]), mouse anti-phosphohistone H3

antibodies (1:1000; Cell Signaling) and Alexa546 and 647

secondary antibodies (Invitrogen). Embryos were mounted in

Aqua Polymount (Polysciences, Inc.). Epifluorescence imaging was

performed using an Olympus BX51 microscope at room

temperature with a 60x oil objective. Images were captured using

Evolution UF cooled monochrome camera and QCapture Pro

software. Adobe Photoshop was used for contrast and brightness

adjustments.

Generating and expressing GFP fusion proteins
cDNAs were from the Canadian Drosophila Microarray Centre

and the Drosophila Genomic Resource Center. They were

amplified by PCR, cloned into gateway entry vectors, sequenced

and recombined into gateway destination vectors to add C-

terminal GFP and an upstream UAS sequence. The gateway

destination vector was pPWG with the attB sequence inserted into

its NsiI restriction site. Transgenic flies were generated by Genetic

Services with transgenes inserted into the attp2 site. Transgenic

flies were crossed to actin5C-Gal4 females (Bloomington Drosophila

Stock Center) for imaging F1 embryos.

Live imaging
Dechorionated embryos were mounted in halocarbon oil (series

700; Halocarbon Products) on petriPERM dishes (Sigma). Images

were collected with a Quorum spinning disk confocal system

(Quorum Technologies), at RT, with a Zeiss 63x (Plan-
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Apochromat; NA 1.4) objective, a piezo top plate, a Hamamatsu

EM CCD camera and Volocity software (Improvision). Z-stacks

were collected with 300 nm step sizes. In all experiments, the

autofluorescent vitelline membrane of the egg shell was used as a

marker for the apical surface of the cells found just below it.

Results

Known epithelial regulators enhance the baz cuticle
phenotype

To assess whether a baz mutant enhancer screen would identify

regulators of epithelial structure, we analyzed the effects of loss of

function of four candidate genes on the baz zygotic mutant

phenotype in a pilot screen. Specifically, we generated double

heterozygote females for baz and each candidate gene, crossed

them to WT males and analyzed the cuticle phenotypes of

embryos that failed to hatch. In this scheme only hemizygous baz

embryos (one quarter of the progeny) are expected to die (baz is X-

linked). For all of these hemizygous baz embryos, maternal

candidate interacting gene dosage is reduced by half, and for half

of them, the zygotic candidate interacting gene dosage is also

reduced by half (Fig. 1A).

First, we isogenized a stock carrying the strong hypomorphic

bazXi106 allele (referred to as baz mutants), and analyzed the

progeny of outcrossed baz mutant females crossed to WT males as

a control. Dead embryos had largely intact cuticles with one, or

two, small holes often at the head (Fig. 1B, C). This is likely due to

defects in head morphogenesis rather than general break down of

epithelial structure. We noticed that the presence of an X-

chromosomal balancer enhanced the baz mutant phenotype (data

not shown), possibly explaining why other studies reported a

stronger zygotic phenotype for this allele [25].

Candidate gene mutations enhanced the baz mutant phenotype

to varying degrees. We used the following categorization to classify

defects (Fig. 1B): minor (outer cuticle largely intact with subtle

head defects and/or missing head skeleton, arrow), morphological

(head and/or dorsal holes due to failed epithelial rearrangements,

arrow), sheet (a large sheet of cuticle likely resulting from major

morphogenesis defects and some breakdown of basic epithelial

structure, bracketed), sheets and scraps (substantial breakdown of

basic epithelial structure, bracketed), scraps (major breakdown of

basic epithelial structure resulting in only small residual epithelial

structures capable of secreting cuticle, bracketed). The crumbs allele

crb2 produced the greatest enhancement of the baz mutant

Figure 1. Examples of enhanced baz zygotic mutant cuticle phenotypes and a pilot screen. (A) Mating scheme to probe for dominant
enhancement of the baz mutant phenotype. Abbreviations: Df (deficiency), bal (balancer chromosome). (B) Examples of cuticle phenotypes observed.
A WT cuticle is shown. Disrupted cuticles were categorized from minor effects to scraps. Defects in minor and morphological categories indicated
with arrows. Cuticle remaining in sheets, sheets and scarps, and scraps categories bracketed. Non-linear levels adjustments were done to accentuate
the cuticle phenotypes without interference from the surrounding vitelline membrane (gamma values were set to 2.0 in Photoshop). (C) Cuticle
phenotype distributions resulting from crossing mutant alleles for known epithelial regulators to baz mutants using the scheme in (A). The results are
color-coded according to the classes shown in (B). The distribution of the control non-modified baz phenotypes is labeled ‘none’ because no
additional mutant allele was added in the cross shown in (A). For these controls, the baz allele was out-crossed, and then the progeny of baz/X
females and wildtype males were analyzed.
doi:10.1371/journal.pone.0009938.g001
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phenotype, followed by apkcK06403, the shotgun allele shgR69 (shg

encodes DE-cadherin, DE-cad) and the echinoid allele edkg (Fig. 1C).

Since reduced levels of crb and apkc, produced the scraps

phenotype (Fig. 1B) in 44 and 21% of the dead progeny,

respectively, we established the presence of .15–20% of dead

embryos with the scraps phenotype as a threshold for selecting baz

interactions. With this criterion, false negatives will occur, as shg

and ed alleles only moderately enhanced the baz mutant

phenotype. Also, our mating scheme prevented analysis of other

X-linked genes (e.g. the epithelial regulators par-6, cdc42, stardust

and arm could not be tested in our mating scheme because they are

X-linked).

Screening chromosome 2 and 3 deficiencies for
enhancers of baz

To screen for additional baz-interacting genes, we assembled a

deficiency kit composed of molecularly defined Drosdel and

Exelixis deficiencies available from the Bloomington Drosophila

Stock Center. Since Drosdel deficiencies are generally larger, we

first selected Drosdel deficiencies that gave the maximum coverage

of chromosomes 2 and 3 with the minimal number of deficiencies.

We then filled gaps where Exelixis deficiencies were available.

Overall, this kit allowed us to screen 8514 of the 11466 protein

coding genes on chromosomes 2 and 3 (74%) (Table 1). We began

by screening dead F2 embryos (100–300 per cross) for an

enhanced cuticle phenotype class making up at least 15–20% of

the population. Of the 278 deficiencies screened, 26 had minimal

effect, 93 produced enhanced morphogenesis defects in the most

severe class, 122 produced embryos with detached sheets in the

most severe class, and 37 produced embryos with small cuticle

scraps in the most severe class (Table 1). Quantification of the

strongest 37 interactions revealed a range of severity (Fig. 2). In

some, the phenotypes of the majority of baz mutant embryos were

enhanced to scraps or a mix of sheets and scraps. Others displayed

a more even distribution across the phenotype spectrum or

bimodal distributions, suggestive of two classes of interactions. The

proportion of embryos displaying only scraps ranged from 17.2%

to 51%, meeting our criterion for strong interactions based on our

pilot screen.

To test if the interactions were due to a combination of

maternal and zygotic interactions or solely zygotic interactions we

crossed baz heterozygous females to males heterozygous for each

parent deficiency. This removes any maternal effect of the

deficiencies. Only two of the deficiencies enhanced the baz

phenotype to produce .15–20% dead embryos with the scraps

phenotype, suggesting that most of the interactions involve

maternal effects and thus may involve the earlier establishment

of epithelial structure during embryogenesis (Table S1, column 4).

Of note, the parent deficiency Exel6039 had non-maternal

interaction with baz and contained the gene for muscle Myosin

heavy chain. Reducing levels of muscle Myosin heavy chain also

had a non-maternal interaction with baz producing dead embryos

with the scraps phenotype (data not shown), suggesting a possible

late interaction between muscle tissue and the epidermis.

However, we focused on pursuing earlier interactions.

Mapping and categorizing potential interacting genes
To identify the genes responsible for the enhanced baz mutant

phenotypes, we first selected other Exelixis or Drosdel deficiencies

that overlap with the 37 interacting deficiencies identified above to

narrow the chromosomal interval (Table S1, columns 1–3). For 12

of the parent interacting deficiencies, overlapping deficiencies were

not available. For four, the strong interaction was lost when

multiple deficiencies that fully spanned the parent were analyzed,

suggesting the original interaction was with two genes in the

parent deficiency. For 18, a partially overlapping deficiency

enhanced the baz mutant phenotype, allowing us to map the

position of the interacting gene to a smaller chromosomal interval.

For three, overlapping deficiencies did not enhance the baz mutant

phenotype but deficiencies were unavailable to test all genes in the

parent deficiency. For these three, we negatively mapped a shorter

gene span that excluded genes in the non-interacting mapping

deficiencies, but it is possible that the interaction involves more

than one gene and might be lost if full coverage of the parent

deficiency was possible.

We used bioinformatics to characterize gene function in the

minimal mapped intervals. We first used Flybase to compile gene

ontogeny data for molecular function, biological process and/or

cellular component. If gene ontogeny data were not available, we

performed a BLAST search to assign a possible function. If a

possible function was still unclear, we used the BLAST search

results to classify the gene as either unique to Drosophila (and closely

related species (as far as mosquito)) or unknown but conserved

among a range of species. For genes with functional information,

we selected more relevant candidates (polarity, cytoskeletal,

transmembrane, trafficking (involving possible plasma membrane

interactions), and signaling (involving potential cytoskeletal effects))

and disregarded other categories (genes with unknown function,

nucleic acid interacting genes, metabolic genes etc.) (Table S1,

column 5). In total, we selected 86 more relevant candidates and

disregarded 569 apparently less relevant candidates.

Since most of the interactions we discovered involved a

maternal effect, we further reduced the list of 86 functionally

relevant candidates by selecting those with significant mRNA

expression in syncytial early embryos detected in either the

expression studies of the Berkeley Drosophila Genome Center

(genes with scores below 400 excluded) or the study by Pilot et al.

[53] (low percentile ranks excluded) (Table S1, column 6). The

results from each study were generally comparable, but in cases

where one suggested early expression and the other did not the

gene was considered expressed for our analysis. There was

Table 1. Distribution of baz mutant cuticle phenotype modifications by deficiencies.

Protein Coding Genes Protein Coding Genes Screened Minor defects Morphological Sheets Scraps

2L 2617 1812 (69%) 14 28 33 5

2R 2740 1936 (71%) 5 21 17 13

3L 2706 1981 (73%) 5 15 35 8

3R 3403 2785 (82%) 2 29 37 11

Total 11466 8514 (74%) 26 93 122 37

doi:10.1371/journal.pone.0009938.t001
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evidence for early embryo expression of 64 of the 86 functionally

relevant candidates and these were pursued (Table S1, column 7).

Identifying individual gene mutations that enhance the
baz mutant phenotype

To identify genes within the deficiencies that interact with baz,

we analyzed potential or known mutant alleles available from the

Bloomington Drosophila Stock Center (Table S1, columns 8–9). For

23 of the 64 properly expressed and functionally relevant

candidates, there were no stocks available. For 24, the available

alleles produced no scraps when combined with baz in our mating

scheme—they displayed no or more subtle interactions. For 17,

the available alleles enhanced the baz phenotype producing a

substantial proportion of embryos with sheets and scraps of cuticle

(Fig. 3). However, only five of these 17 displayed .10% of dead

embryos in the scraps class; the microtubule regulator abnormal

spindle (asp) (51%), rho1 (32.7%), the possible cytoskeletal protein

aluminum tubes (alt) (13%), par-1 (11.6%), and the possible ubiquitin

conjugating enzyme CG5823 (10.8%). Since null alleles were

available for only two of the 41 mutants tested, the lack of strong

phenotypes for many of the tested genotypes could be due to

incomplete loss of function (Table S1, column 9). However, in

three cases, multiple interacting genes were found for one

deficiency (two deficiencies contained two interacting genes each,

and one deficiency contained three interacting genes), suggesting

that the stronger phenotype of the deficiency may arise in part

from the reduction of multiple interacting genes. Each of the 17

mutants also enhanced the cuticle defects of a separate baz allele

(bazGO484) (data not shown).

The identified genes interact with baz in regulating AJs in
specific tissues

Maternal/zygotic baz mutants fail to properly position AJs prior

to gastrulation resulting in severe disruption of epithelial structure

and morphogenesis [19,24,54]. We wondered whether loss of

interacting gene function in zygotic baz mutants might limit the

ability of maternally supplied Baz to regulate AJs and whether this

occurs during specific epithelial morphogenesis events. The

Drosophila embryo body plan takes shape at gastrulation [55].

The ventral furrow internalizes the mesoderm, and the posterior

Figure 2. Distributions of baz zygotic mutant cuticle phenotypes enhanced by chromosome 2 and 3 deficiencies. Results are color-
coded according to the classes shown in Fig. 1B. Each graph is organized with the strongest enhancements at the front (red peaks) and progressively
weaker enhancements further back. A black horizontal bar separates interactions with more bimodal distributions to the back.
doi:10.1371/journal.pone.0009938.g002
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midgut invaginates from the posterior pole. The lateral germband

undergoes convergent extension along the anterior-posterior axis

(germband extension), and simultaneously, flat and elongated

amnioserosa cells form on the dorsal surface and fill the space

between the ventral and dorsal halves of the fully extended

germband. The germband ectoderm and regions of the head

epidermis form the larval epidermis which produces the outer

cuticle, but first they develop mitotic domains, undergo neuroblast

delamination and rearrange during dorsal closure and head

involution.

To specify when and how loss of interacting gene function

enhances the baz mutant epithelial phenotype, we collected the F2

generation from our mating scheme 3–6 hours after egg laying and

probed for AJ positioning using DE-cad immuno-fluorescence

(Fig. 4A). We focused on stage 9–11 embryos in which the

germband is extended and contains mitotic domains and

delaminating neuroblasts, and in which the amnioserosa is fully

formed. baz mutants alone displayed minimal defects at these

stages (AJ defects were observed in 0/167 embryos of which 25%

were baz zygotic mutants). Reducing the dosage of interacting

genes in baz zygotic mutants did not block germband extension,

suggesting that early morphogenesis was relatively normal.

However, we found AJ fragmentation in stage 9–11 embryos.

Quantifying all stage 9–11 embryos from these crosses, revealed a

range of 5.3–26.4% with AJ fragmentation (Fig. 4B, 100–200

embryos from two separate experiments were scored for each

cross). This was within the expected Mendelian ratio (25% are

expected to be baz zygotic mutants with the dosage of an

Figure 3. Cuticle phenotype distributions of baz zygotic mutants enhanced by individual gene mutants. Results are color-coded
according to the classes shown in Fig. 1B. The individual genes are grouped into functional categories from Table S1. Each graph is organized with
the strongest enhancements at the front (red peaks) and progressively weaker enhancements further back. Gene abbreviations used: abnormal
spindle (asp), aluminum tubes (alt), cullin-5 (cul-5), four jointed (fj), hook (hk), septin 5 (sep5).
doi:10.1371/journal.pone.0009938.g003
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interacting gene decreased by #50%, see Fig 4A). A balancer

chromosome was not used to identify the baz zygotic mutants

because we found that it modifies both the baz mutant cuticle

phenotype and the AJ phenotype on its own—this would thus

confound the analyses of the baz interacting genes.

Next, we evaluated whether specific epithelia were affected in

the enhanced baz phenotype. Minimal to severe AJ defects were

observed in both the amnioserosa (Fig. 4C, tissue bracketed,

arrows show abnormal AJ clustering) and the germband (Fig. 4D,

tissue bracketed, arrows show cells missing AJs). In the germband,

Figure 4. Assessing early AJ phenotypes of enhanced baz zygotic mutants. (A) Experimental set-up to analyze the DE-cad distribution of
enhanced baz zygotic mutants in the F2 generation. (B) The percentage of F2 embryos displaying AJ defects detected by DE-cad staining. (C) The
different types of amnioserosa AJ defects observed with DE-cad staining. The amnioserosa is bracketed. Lateral views of the embryonic body region
are shown (dorsal is up and anterior is left). Normal, mild, moderate and severe defects are color-coded. Yellow arrow show abnormal clumps of DE-
cad staining. DE-cad staining is lost from cell contacts in the moderate and severe categories. (D) The different types of germband AJ defects
observed with DE-cad staining. The ventral neurectoderm region of the germband is bracketed. Dorsal views are shown with the anterior to the left
(the germband is extended over the dorsal surface of the embryo at this stage). Normal, mild, moderate and severe defects are color-coded. Yellow
arrows show groups of ventral cells that have lost DE-cad staining at cell contacts. DE-cad staining is lost from cell contacts of larger groups of cells in
the moderate and severe categories. White arrowheads mark the ventral midline in each. The normal example is a lateral view showing one half of
the epidermis from its most ventral edge (at the ventral mid-line) to its most dorsal edge (at the amnioserosa). The mild, moderate and severe
examples focus on the ventral epidermis where the defects were seen. (E) The distribution of amnioserosa (a.s.) and germband (g.b.) AJ defects for
each baz mutant enhancement identified. 4 groups are distinguished: (1) crosses which produced AJ defects in ,10% of the F2 embryos (see panel
B), (2) crosses which produced AJ defects in .10% of the F2 embryos (see panel B) in which ,40% of amnioserosa defects were moderate or severe
and .25% of germband defects were moderate or severe, (3) crosses which produced AJ defects in .10% of the F2 embryos (see panel B) in which
.40% of amnioserosa defects were moderate or severe and .25% of germband defects were moderate or severe, and (4) crosses which produced AJ
defects in .10% of the F2 embryos (see panel B) in which .40% of amnioserosa defects were moderate or severe and ,25% of germband defects
were moderate or severe. In each group the results are arranged in order of severity in the amnioserosa.
doi:10.1371/journal.pone.0009938.g004
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groups of cells had no AJs between them, suggestive of either

mitotic domains or regions of neuroblast delamination (Fig. 4D,

arrows). Double staining for DE-cad and phospho-histone H3 (a

marker for mitotic chromosomes) showed that these cells were not

mitotic (data not shown) suggesting the AJ defects may be

associated with neuroblast delamination. This is consistent with

past observations of AJ breakdown associated with neuroblast

delamination after reducing DE-cad levels [56], although other

explanations are possible.

The effects of the different genetic interactions were separated

into groups based on the severity of overall AJ defects and tissue

specific effects. For crosses which produced AJ defects in ,10% of

the F2 embryos, the amnioserosa and germband AJ defects were

relatively non-severe (for CG1951, four-jointed (fj), cullin-5 (cul-5) and

arf79f mutant alleles) (Fig. 4E). For crosses which produced AJ

defects in .10% of the F2 embryos we separated the interactions

based on the relative effects on the amnioserosa and germband

(Fig. 4E). Enhancement of the baz zygotic phenotype by CG11210,

septin 5 (sep5) and hook (hk) mutant alleles produced a relatively

strong effect in the germband (,40% of amnioserosa defects were

moderate or severe and .25% of germband defects were

moderate or severe). Enhancement by roc2, CG5823, rho1 and

sds22 mutant alleles had a relatively strong effect on both tissues

(.40% of amnioserosa defects were moderate or severe and

.25% of germband defects were moderate or severe). Enhance-

ment by muskelin, CG30372, alt, asp, CG10702 and par-1 mutant

alleles had a relatively strong effect on the amnioserosa (.40% of

amnioserosa defects were moderate or severe and ,25% of

germband defects were moderate or severe). Thus, the identified

genes interact directly or indirectly with baz to regulate proper AJ

positioning. Additionally, they can be divided into groups that

have differential affects on AJs in the amnioserosa and the

neurectoderm in the baz mutant background.

Cuticle phenotypes of single mutants for the
baz-interacting genes

To assess the phenotypes of each interacting gene individually,

we began by assessing the terminal embryonic phenotypes of

zygotic mutants. Nine of the mutant lines were homozygous lethal

and three of these had .7.5% embryonic lethality (25% expected

for full embryonic lethality; Fig. 5B). Eight of the mutant lines were

viable and fertile as homozygotes, although four of them showed

.7.5% embryonic lethality (100% were homozygous mutant

embryos; Fig. 5A). Of the seven mutant lines with .7.5%

embryonic lethality, rho1 mutants displayed mainly holes in the

head cuticle (Fig. 5B, arrows). alt and CG30372 mutants had

internal bulges apparently in the tracheal system (Fig. 5B,

arrowheads). asp, hk and CG5823 mutants had no apparent cuticle

defects (Fig. 5B). CG1951 mutants displayed a twisted sheet of

cuticle, but this phenotype was not evident when the allele was

placed in trans with a deficiency deleting CG1951 (data not

shown). Thus, only rho1, alt and CG30372 single mutants displayed

epithelial phenotypes as terminal cuticle defects. These mild

phenotypes may be due to hypomorphic alleles and/or the

presence of maternal supplies of normal gene product.

To test if the single mutants had defects in Baz or AJ

localization, we generated stocks for each mutant allele in which

Baz::GFP and Arm::CFP were co-expressed at endogenous levels.

All mutants were imaged live by 3-D live spinning disk confocal

microscopy in the epidermis and amnioserosa at dorsal closure,

but only asp, CG30372, fj, hk, par-1, roc2, and sep5 displayed

reduced levels of cortical Baz::GFP and Arm::CFP versus wild-

type embryos co-expressing Baz::GFP and Arm::CFP (data not

shown). To determine if endogenous Baz and Arm are also

affected in the seven mutants, we immuno-stained mutant stocks

without Baz::GFP and Arm::CFP. At dorsal closure, the cortical

levels of endogenous Baz and Arm in the mutants were

indistinguishable from WT (data not shown). This difference

may be due to Baz::GFP and Arm::CFP being more sensitive to

perturbation than their endogenous, untagged counterparts.

However, it appears that stronger alleles will be needed to assess

affects of these genes on endogenous Baz and AJ localization.

Seven of the 17 interacting genes encode proteins that
localize to the apical cortex

Immuno-staining studies have shown apical localization of both

Rho-1 [57,58] and Par-1 [59] in the Drosophila embryo. To

Figure 5. Cuticle phenotypes of individual zygotic mutants of
baz-interacting genes. (A) Embryonic lethality rates. Left, non-viable
mutants are shown. Alleles were out-crossed from balancer chromo-
somes before analysis. 25% percent of the population is expected to be
homozygous mutant (indicated with red line). Right, viable mutants are
shown. 100% of the population is homozygous mutant (indicated with
red line). 300 embryos analyzed for each. (B) Cuticle phenotypes for
mutants displaying .7.5% embryonic lethality.
doi:10.1371/journal.pone.0009938.g005
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determine the sub-cellular location of the other 15 genes, we

generated GFP-tagged versions of the proteins, expressed them

during embryogenesis, and performed live imaging of the

epidermis at stage 15 (dorsal closure).

Five additional proteins localized to the apical circumference.

CG30372::GFP showed strong enrichment at the apical circum-

ference (Fig. 6A, white arrow) and apical surface (Fig. 6A, yellow

arrow) versus the basolateral cortex and the cytoplasm.

Arf79F::GFP was also enriched at the apical circumference

(Fig. 6B, white arrow) but not as strongly as CG30372::GFP.

Arf79F::GFP also localized to punctate cytoplamic complexes/

compartments (Fig. 6B, yellow arrow). CG11210::GFP was

enriched at the apical circumference (Fig. 6C, white arrow) and

to the apical surface (Fig. 6C, yellow arrow). CG11210::GFP also

localized to punctate cytoplamic complexes/compartments

(Fig. 6C, cyan arrow) with some similarities to those seen with

Arf79F::GFP. Sds22::GFP displayed enrichment at the apical

circumference (Fig. 6D, white arrow), a diffuse cytoplasmic

distribution and some nuclear localization. Sep5::GFP had a

punctate apical distribution that appeared to be around the cell

circumference (Fig. 6E, white arrow) and also localized to

cytoplasmic complexes/compartments (Fig. 6E, yellow arrow).

Thus, CG30372, Arf79F, CG11210, Sds22 and Sep5 can be

recruited to the apical domain of epithelial cells.

The remaining 10 proteins localized to various non-cortical

compartments. CG1951::GFP and Fj::GFP labeled punctate

cytoplasmic complexes/compartments (Fig. 6F-G, yellow arrows)

similar to those labeled with Arf79F::GFP and CG11210::GFP.

Alt::GFP, CG5823::GFP and CG10702::GFP localized to large

cytoplasmic compartments that may be part of the ER (Fig. 6H-J,

yellow arrow) and to the nuclear membrane (Fig. 6H-J, cyan

arrows). hk::GFP localized to intermediate-sized compartments

with hk::GFP-negative centers (Fig. 6K, yellow arrow). Asp::GFP

was weakly detected but appeared to localize in parallel lines along

the dorsal-ventral axis of the embryo after deconvolution (Fig. 6L,

yellow arrows). Muskelin::GFP localized diffusely in the cytoplasm

with nuclear exclusion (Fig. 6M). Roc2::GFP localized diffusely in

the cytoplasm with nuclear enrichment and apparent nucleolar

exclusion (Fig. 6N). Cul-5::GFP was undetectable. These proteins

may affect epithelial structure through intracellular trafficking or

signaling.

Discussion

We identified 17 genes that interact with Baz to regulate

epithelial structure. For 13 of these, this is the first report of a role

in epithelial polarity. Use of a genetic modifier screen was key for

implicating these genes as epithelial regulators, since single

mutants for these genes had very subtle cuticle phenotypes with

alleles available. Further implicating a role in epithelial polarity,

seven of the 17 genes encode proteins that can be recruited to the

apical domain of epithelial cells in the Drosophila embryo (Fig. 6;

[57–59]).

Microarray data indicate that all 17 genes are expressed in early

Drosophila embryos (Berkeley Drosophila Genome Center; [53]).

mRNA localization data from the Berkeley Drosophila Genome

Project and Flyfish [60] show that some of them are expressed in

distinctive patterns. During cellularization and early gastrulation,

CG30372 is expressed as a wide central band ending at the

anterior and posterior termini of the embryo, while fj is expressed

in two stripes that appear to overlap the two ends of the CG30372

band—these are interesting patterns given the role of the anterior-

posterior patterning system in controlling Baz planar polarization

and cell intercalation at gastrulation [45,61]. asp mRNA is apical

in both epithelial cells and in neuroblasts, similar to Baz mRNA

and protein localization [62]. CG5823, rho1, par-1, sds22 and hk

mRNAs have ubiquitous expression at cellularization. CG1951,

CG11210 and roc2 mRNAs are also in all cells at cellularization but

are excluded from the apical domain. mRNA localization data was

not available for the six other interacting genes (cul-5, arf79f, sep5,

muskelin, alt and CG10702).

The genetic interactions identified in our screen appear to be

especially important for regulating dynamic epithelia. We

observed AJ disruption in both the amnioserosa and the

neurectoderm. These tissues have specific demands for AJ

remodeling. During gastrulation, the amnioserosa undergoes a

transition from a columnar epithelium into a flattened squamous

epithelium. The flattening of these cells greatly enlarges their

circumferences and Baz has been shown to regulate AJ remodeling

as this occurs [51]. In the neurectoderm, a reduction of DE-cad

leads to loss of AJs because of dynamic AJ remodeling associated

with neuroblast delamination [56]. Recently, Cdc42, PAR-6,

aPKC and Baz have been shown to indirectly stabilize

neurectoderm AJs by controlling the trafficking of Crb [48]. The

proteins we have implicated appear to directly or indirectly affect

AJs during these processes as well. The partial tissue specificity we

observed may reflect separable regulatory networks important for

AJ positioning in each tissue. Based on our localization studies,

many of the proteins could act directly in the apical domain while

the others may impact apical polarity indirectly from various

intracellular sites.

Polarity proteins
In our pilot screen we found that reduction of apkc or crb

substantially enhances the baz mutant cuticle phenotype. Our

deficiency screen also found genetic interactions with par-1 and fj.

Baz/PAR-3 is known to interact with aPKC in a complex with

PAR-6 to regulate cell polarity in many contexts [15]. In the

follicular epithelium, PAR-1 has been shown to localize the

basolateral membranes where it phosphorylates and inhibits Baz

to maintain apical Baz polarity [27]. Similarly, knock-down of

PAR-1 in the early embryo leads to abnormal spreading of AJs in

the apicolateral region, but in embryonic epithelia PAR-1 is

enriched in the apicolateral region versus the basolateral domain

[59].

Although direct links between Baz and the planar polarity

regulator fj have not been made, Baz localizes in a planar

polarized pattern during germband extension [45]. Germband

extension occurs independently of the canonical planar polarity

genes Frizzled and Dishevelled [45], but to our knowledge, other

planar cell polarity genes, such as fj, have not been tested. As

discussed above, fj has an intriguing striped mRNA expression

pattern at this stage, suggesting a link to the A-P patterning system,

which regulates planar polarity in the tissue [45]. Fj is a golgi-

associated protein, consistent with our localization data, which can

phosphorylate transmembrane proteins en route to the plasma

membrane [63]. Thus, Fj may affect the apical domain via

transport from the Golgi.

Intracellular trafficking proteins
Intracellular membrane trafficking plays a central role in

controlling epithelial cell polarity [8] and AJs [64]. More

specifically, Baz/PAR-3 and its interaction partners PAR-6 and

aPKC have been implicated in regulating the endocytosis of apical

proteins and AJs in Drosophila epithelia [46–48] and to impact

general endocytic traffic in C. elegans [65]. Thus, we were

interested in pursuing genes implicated in trafficking by gene

ontogeny. We also found a number of additional proteins that
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Figure 6. Localization of the proteins encoded by the baz-interacting genes. Live images of GFP-tagged versions of the proteins in lateral
epidermal cells at stage 15 are shown. (A-E) Both apical sections and sections midway down the same cells are shown. (F-K and M-N) Sections midway
down the cells are shown. (L) An apical section is shown. (A) CG30372::GFP around the apical circumference (white arrow) and at apical surface
(yellow arrow). (B) Arf79F::GFP around apical circumference (white arrow) and at cytoplasmic puncta (yellow arrow). (C) CG11210::GFP around apical
circumference (white arrow), at apical surface (yellow arrow) and at cytoplasmic puncta (cyan arrow). (D) Sds22::GFP around apical circumference
(white arrow). (E) Septin 5::GFP around apical circumference (white arrow) and at cytoplasmic puncta (yellow arrow). (F-G) CG1951::GFP and Fj::GFP at
cytoplasmic puncta (yellow arrows). (H-J) Alt::GFP, CG5823::GFP and CG10702::GFP over large cytoplasmic compartments (yellow arrow in H) and at
nuclear membrane (cyan arrows). (K) hk::GFP at intermediate-sized compartments (yellow arrow). (L) Asp::GFP in parallel linear structures (yellow
arrows). (M) Muskelin::GFP diffuse in cytoplasm. (N) Roc2::GFP diffusely in the cytoplasm and with nuclear enrichment.
doi:10.1371/journal.pone.0009938.g006
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appear to localize to intracellular compartments. Three of these

localized to the apical cortex as well.

We found that Arf79F and CG30372 can localize to the apical

domain. Generally, Arfs function in the formation and targeting of

vesicles in the cell [66]. Arf79F is the Drosophila version of Arf1 and

has been implicated in lipid droplet transport [67] and the

regulation of the apical domain during Drosophila rhabdomere

formation [68]. Intriguingly, CG30372, encodes a putative

ArfGAP. Although not characterized in Drosophila, CG30372 has

a similar domain structure to the ASAP proteins (Arf GAPs with

Src homology 3, ankyrin repeat, and pleckstrin homology

domains), which have been implicated in the regulation of actin

and endocytosis [69]. It will be interesting to test whether Arf79F

and Drosophila ASAP interact to regulate epithelial structure. Of

note, CG11210::GFP has a similar distribution as Arf79F,

localizing to the apical cortex and intracellular compartments.

CG11210 is an uncharacterized protein predicted to have 10–11

transmembrane helices. We hypothesize that these proteins may

co-ordinate membrane trafficking with the apical cortex.

Five other proteins localized to intracellular compartments

without apparent cortical localization. As discussed, Fj appears to

localize to the Golgi. CG1951, an uncharacterized kinase, appears

to localize to scattered small vesicles. Alt, CG5823 and CG10702

appear to localize to ER membranes. Alt is functionally

uncharacterized, but displays some sequence similarity with

Myosins and MT associated proteins CLP190 and NUMA

(BLAST search) and has been co-fractionated with lipid droplets

from early embryos [70]. CG5823 has been implicated in

ubiquitination (Flybase annotation), and CG10702 is a predicted

receptor tyrosine kinase (Flybase annotation). hk localizes to

intermediate sized vesicles consistent with past localization studies

in other Drosophila cell types and hk’s role in trafficking to the

multivesicular body [71]. These five proteins might affect cell

polarity through intracellular trafficking.

Cytoskeletal proteins
The cytoskeleton also plays a major role in regulating epithelial

structure. Our screen found that rho1, sep5 and asp genetically

interact with baz. Rho1 localizes to the apical domain and other

parts of Drosophila embryonic epithelia, and has been shown to

have a general role in regulating epithelial structure [57,58]. We

also found that Sep5 can be recruited to the apical domain. In

mammalian cells, Septin 2 has been shown to regulate AJs [72].

Asp functions at the centrosomes to control the structure of the

mitotic spindle [73]. At stage 15, we detected Asp::GFP in linear

parallel arrays consistent with the organization of MTs in

these cells [74]. Thus, we speculate that Asp affects cell polarity

via MTs. Muskelin is functionally uncharacterized, but

contains kelch motifs found in cytoskeletal and other proteins

[75]. However, Muskelin::GFP localized diffusely through the

cytoplasm.

Signaling proteins
We found that Sds22 localizes to the apical domain of

embryonic epithelial cells. Sds22, a regulatory subunit of protein

phosphatase 1 (PP1), has recently been linked to regulation of cell

shape and apical-basal polarity in Drosophila imaginal disc and

follicular epithelia, where a GFP-tagged form of Sds22 localized to

the cytoplasm and nucleus [76]. Sds22 binds to all four Drosophila

PP1 isoforms, and sds22 phenotypes correlated with elevated

phosphorylation of Myosin regulatory light chain and Moesin

[76]. Intriguingly, PP1alpha has been shown to de-phosphorylate

PAR-3 and affect tight junction formation in mammalian cell

culture [77].

Cul-5, Roc2 and CG5823 are involved in protein ubiquitina-

tion. PAR-3 has been shown to interact with a ubiquitin ligase in

the generation of neuronal polarity [41] and ubiquitination has

also been linked to polarized cell protrusion [78]. Cul-5 regulates

the neuromuscular junction in Drosophila [79], but roles for Cul-5,

Roc2 and CG5823 in epithelial structure have not been described.

Intriguingly, Roc2 and Cul-5 form a complex in Drosophila [80].

Perhaps this complex supports epithelial structure by down-

regulating inhibitors of the apical domain.

In this screen, we sought to identify additional proteins that

function with Baz to regulate epithelial structure in the

Drosophila embryo. From the 655 possible interacting genes

identified through our deletion screening and mapping, we used

gene ontogeny terms to select genes with possible functions in

polarity, the cytoskeleton, membrane trafficking or signaling, as

well as transmembrane proteins. We did this based on the

known roles for Baz/PAR-3 in controlling cell structure at the

cortex, but our approach would miss novel Baz functions and

interactions with genes with unknown function or that are

unique to Drosophila. Nonetheless, 13 of the 17 genes implicated

by our screen have not been previously shown to interact with

Baz or to affect epithelial structure, and thus should be of

interest for future studies.

Supporting Information

Table S1 Genetic Mapping and Bioinformatic Analysis of

Interacting Deficiencies.

Found at: doi:10.1371/journal.pone.0009938.s001 (0.02 MB

PDF)
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