
Computation Emerges from Adaptive Synchronization of
Networking Neurons
Massimiliano Zanin1,2*, Francisco Del Pozo1, Stefano Boccaletti1

1 Centre for Biomedical Technology, Polytechnic University of Madrid, Pozuelo de Alarcón, Madrid, Spain, 2 Innaxis Foundation & Research Institute, Madrid, Spain

Abstract

The activity of networking neurons is largely characterized by the alternation of synchronous and asynchronous spiking
sequences. One of the most relevant challenges that scientists are facing today is, then, relating that evidence with the
fundamental mechanisms through which the brain computes and processes information, as well as with the arousal (or
progress) of a number of neurological illnesses. In other words, the problem is how to associate an organized dynamics of
interacting neural assemblies to a computational task. Here we show that computation can be seen as a feature emerging
from the collective dynamics of an ensemble of networking neurons, which interact by means of adaptive dynamical
connections. Namely, by associating logical states to synchronous neuron’s dynamics, we show how the usual Boolean
logics can be fully recovered, and a universal Turing machine can be constructed. Furthermore, we show that, besides the
static binary gates, a wider class of logical operations can be efficiently constructed as the fundamental computational
elements interact within an adaptive network, each operation being represented by a specific motif. Our approach
qualitatively differs from the past attempts to encode information and compute with complex systems, where computation
was instead the consequence of the application of control loops enforcing a desired state into the specific system’s
dynamics. Being the result of an emergent process, the computation mechanism here described is not limited to a binary
Boolean logic, but it can involve a much larger number of states. As such, our results can enlighten new concepts for the
understanding of the real computing processes taking place in the brain.

Citation: Zanin M, Pozo FD, Boccaletti S (2011) Computation Emerges from Adaptive Synchronization of Networking Neurons. PLoS ONE 6(11): e26467.
doi:10.1371/journal.pone.0026467

Editor: Eshel Ben-Jacob, Tel Aviv University, Israel

Received July 20, 2011; Accepted September 27, 2011; Published November 4, 2011

Copyright: � 2011 Zanin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: massimiliano.zanin@ctb.upm.es

Introduction

Synchronization is one of the most important features observed

in neural systems [1–3], and it certainly is the basic mechanism

for the processing and integration of information across

functionally and anatomically specialized regions of the brain

[4–6]. The current understanding is that neural assemblies are

the basic computation units, composed of networks of neurons,

which intermittently share information, and transiently use

dynamical connections. However, synchronization alone is

clearly not enough to ensure a computational capability, which

requires, instead, a proper balance between synchronous and

asynchronous behavior [7]. A modification of this balance is

related to a number of neurological illnesses, including schizo-

phrenia [8] and Alzheimer [9]. A complete understanding of how

synchronization is related to computation is still lacking, and

synchrony is sometimes even seen as a source of knowledge

destruction, as a number of different systems collapse into a

single, shared dynamics.

Here we show that computation can emerge from the

synchronization of groups of adaptively coupled neurons. Such

collective dynamics can encode information within different

synchronization states, and efficiently perform any Boolean

operations, thus being able to construct a universal Turing

machine [10]. While our study is in the spirit of past attempts

focused on defining computation outside the digital realm, which

made use of chaotic systems to manipulate information [11–14],

the main message here is that computation arises as an emergent

feature of synchronization, and it does not need additional

external control loops such as thresholds [12,13] or specific initial

conditions [14].

Methods

The basic computational unit (see Figure 1a) is here constituted

by: i) a neuron, modeled by the Hodgkin-Huxley equations [15], ii)

two input ports (A and B), and iii) one output port. The Hodgkin-

Huxley model of neurons describes changes in the membrane

potential V by the equation:

Cm
dV

dt
~Il{INa{IK{Gn{W (V{VA) ð1Þ

where Cm is the membrane capacitance and Il~gl(V{Vl) a

passive leak current. We assume that an ensemble of such neurons

is networking, so that each neuron is forced by the external signal

VA entering from port A, with a coupling strength W defined by an

adaptive coupling mechanism (see Figure 1a). Furthermore, all

neurons are under the effect of a common external source of

Gaussian noise Gn, so that, in the absence of external forcing or

coupling, their autonomous dynamics results in a specific

synchronous spike pattern ID [16,17]. Following the original

model introduced by Hodgkin and Huxley [15], INa and IK

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e26467

represent simplified de- and repolarizing (respectively, Na and K)

currents. The current for the Na ion is defined as follows:

INa~gNa
0 m3h(V{VNa)

dm

dt
~am(1{m){bmm

dh

dt
~ah(1{h){bhh

am~
0:1(Vz25)

e
Vz25

10 {1

bm~4eV=18

ah~0:07eV=20

bh~
1

e
Vz30

10 z1

ð2Þ

The K channel is modeled by the following set of equations:

IK~gK
0 n4(V{VK)

dn

dt
~an(1{n){bnn

an~
0:01(Vz10)

e
V{10

10 {1

bn~0:125eV=80

ð3Þ

Constants are common for all neurons, and their values are

gl~0:3, V1~{10:613, gNa
0 ~1:2, VNa~{115, gK

0 ~0:36 and

VK~12. The integration is performed using the first order Euler

method, with dt equal to 0.005.

We further assume that at least one reference spike pattern

exists (henceforth called R), that is generated by units that are not

under the influence of the same Gaussian noise, and is therefore

not synchronous with the common internal dynamics ID. Each

neuron is coupled to an input signal that enters from port A, whose

coupling strength W is the result of the following adaptive

dynamics:

dW

dt
~{W (W{w1)(W{w2)zk D(A,B){thr½ � ð4Þ

In this equation, D(A,B) represents the synchronization error

between signals entering ports A and B, that is, the proportions of

spikes in the pattern entering from port A (B) which do not

correspond to a spike in the signal of port B (A). When w1~0:5

and w2~1:0, the first term of the rhs of Eq. 4 creates three

equilibrium points, two of them stable (zero and one). The second

term forces the system toward one of these two equilibrium points,

depending on the synchronization error D between the spike

patterns entering from ports A and B. k~0:3 is a positive

parameter that defines the velocity of adaptation, and thr~0:25 is

a threshold, used to filter small synchronization errors that may

arise from random sources of noise. In summary, the adaptive

dynamics is defined in such a way that the coupling strength W

tends to zero when the synchronization error between the input

signals entering ports A and B is vanishing, i.e., when both inputs

are synchronized, and to a positive value otherwise (Fig. 1b). The

dynamics of each neuron (and, therefore, the sequence of spikes

outcoming from the computational element) encodes binary

information: sequences synchronized with the autonomous

dynamics ID of the neurons represent a zero bit, while sequences

synchronized with the external reference R codify a 1.

Results

Static boolean gates
Using the previously described computational unit, the simplest

Boolean operation that can be constructed is the unary NOT gate:

a logical gate which returns zero when the input is one, and one

otherwise. Such a Boolean gate corresponds to a configuration

where the input signal to be processed is fed inside port B, while

port A receives the reference signal R (see Fig. 2a). It is

straightforward to check that the proposed computational unit

performs a NOT operation. An input of 0 is represented by a

pattern of spikes synchronized with the autonomous dynamics of

the neuron (as e.g. the output of another neuron of the network

subjected to the same Gaussian white noise source), thus the error

with the signal entering A will be greater than zero, and, following

the adaptive coupling process, the output will synchronize with the

input of A, i.e., the 1 reference signal. On the other hand, if the

input follows the reference signal R (i.e., it is a 1 bit), the

synchronization error will be close to zero, thus the output will be

the internal dynamics ID of the neuron (Fig. 2b). Fig. 2c depicts a

temporal snapshot of the spikes’ pattern of all the involved signals:

ID, R, and the input and output of the Boolean gate.

By further embedding the basic computational unit inside a

network [1,18,19], more complicated logical gates can be

constructed. The output of a gate can feed the input(s) of one

(or multiple) gates, and each gate may receive information from

several neurons: therefore, a circuit can be naturally seen as a

weighted network [1]. Several examples are reproduced in Fig. 3.

The first is a NAND gate, whose output is zero only when both

inputs are 1. This gate is associated to a motif [20] where the

reference signal R is fed inside the port A, and the two input signals

Figure 1. Basic computation unit. A) Schematic representation of the basic computation unit. A neuron, subject to a common Gaussian noise,
receives two control signals from ports A and B. B) Output signal of the neuron as a function of D(A,B) (the synchronization error between the signals
entering ports A and B). If D is of the order of 0 (w0), the neuron’s output sequence of spikes follows the internal dynamics ID (the spike sequence of
the signal entering from port A).
doi:10.1371/journal.pone.0026467.g001

Computation Emerges from Adaptive Synchronization

PLoS ONE | www.plosone.org 2 November 2011 | Volume 6 | Issue 11 | e26467

are summed (both of them with weight 1=2) and presented to port

B. Fig. 3c reports the response of the NAND gate when different

inputs are presented; for sake of clarity, the response is represented

by the synchronization level SL, defined as:

SL(A,B)~1{D(A,B) ð5Þ

It is important to remark that the NAND gate is known to be a

universal Boolean gate [21], meaning that any Boolean function

can be implemented by using a combination of NAND gates, so

that any Turing machine can be constructed from them [10].

Following this idea, the second port, the XOR gate (whose output

is 1 only when the two inputs have opposite values), can be

constructed by joining NAND gates. While this option would

require a combination of at least 4 NAND gates, a more efficient

strategy is proposed in Fig. 3: port A receives the sum of both

input signals, each one of them with a weight of 0:5, while port B

only receives the second input. Although this configuration is

more efficient, as just a computation element is required, here the

output value 1 is no longer encoded by the spike pattern R, but by

another sequence R�~IDzR. The last gate of Fig. 3 is therefore

a configuration that allows switching between different reference

signals, i.e., to translate the message: in the example, the output

of the XOR gate (expressed in terms of R�) is translated back to

R. Fig. 3c reports all relevant signals in terms of their

synchronization level with R, with 1 meaning full synchroniza-

tion, and 0 no synchrony. Notice that the system is, therefore, not

limited to a Boolean coding of the information, with just one

representation for each state: multiple reference signals R can be

used in the same network, thus enabling a richer and more

efficient computation.

This feature, that is, the possibility of improving the efficiency of

the computation by encoding information with different reference

signals, is used in Fig. 4 to create a full Boolean adder. This circuit

is composed by three inputs (input bits A and B, and an input

carry Cin) and two outputs: Sum (that is, the sum AzBzCin) and

Cout (the carry resulting from the operation AzBzCin). The

standard circuit corresponding to this operation would require 15

binary NAND gates [22]; on the other side, the use of the R�

reference signal enables a significant reduction of its complexity, as

only 3 computation elements are needed (see Fig. 4a). It should

also be noticed that the output Sum is the result of the activity of

three different computation elements, connected in a chain-like

motif. This kind of motifs are of interest because of their intrinsic

instability: any small perturbation in the input of the system, or

any error in the first computation step, may be amplified and

result in a wrong output. As can be observed in Fig. 4b, where the

numerical simulation of the full binary adder is presented, the

proposed computation scheme is stable, even when multiple

computation units are used to construct complex circuits.

Dynamical operations
Beside the standard, static binary gates, a wider class of

dynamical logical operations can also be efficiently constructed,

that are of biological relevance. In Fig. 5a we configure a Set Reset

Flip Flop circuit. This circuit is a simple memory, composed by

two computation units, with two inputs (Set and Reset) and two

Figure 2. The unary NOT gate. A) The NOT gate is constructed by feeding a reference signal R into port A, and the signal to be processed into port
B of the computational unit of Figure 1. B) Following the adaptive dynamics (see the text for further details), the output of the neuron results in the
logical opposite of the input. C) (Color online) Temporal snapshots of all signals involved in the computation: the spikes’ patterns corresponding to
the reference R, the internal dynamics ID induced by the common noise, and the input and output signals. Following the definition used for the
association of the Boolean states (see text), the red (blue) color indicates a 0 (1) bit. The black color is, instead used for coloring the transient intervals
of the output signal before its convergence to the logical response.
doi:10.1371/journal.pone.0026467.g002

Computation Emerges from Adaptive Synchronization

PLoS ONE | www.plosone.org 3 November 2011 | Volume 6 | Issue 11 | e26467

outputs (Q and �QQ). Both units receive the reference R on their port

A, and the weighted sum of an input (Set or Reset) and the output of

the other unit on port B. In such a configuration, as long as both

input signals are 1, the output is maintained in a stable state by the

two loops, with being the binary complement of Q; if the set (reset)

input changes to 0, the Q output is forced to 1 (0), and maintain

this new status even when both inputs returns to 1. In other words,

this circuit acts as a memory, storing a bit and presenting it on its

output Q, as clearly shown by numerical simulations (Fig. 5b).

Likewise the full Boolean adder of Fig. 4a, this motif is also

challenging: small errors might be amplified in the two feedback

connections, making the system unstable. Nevertheless, the

proposed computation unit is resilient against small perturbations

and can be used in circuits containing loops, as demonstrated in

Fig. 5b.

Finally, Fig. 5c and 5d depict a differentiator, a logical gate

whose output is 0 all the time, except when the input changes from

level 0 to 1, in which case a positive output is maintained during a

fixed amount of time. This simple circuit is configured by feeding

R on port A, the input signal on port B, and considering as

outcoming signal the weighted sum (with weights 1=2) of the

output of the computational unit and the input signal itself. The

computation here is realized by slowing down the velocity of the

adaptive mechanism (see the Methods section for details): when

the input changes, the neuron will take some time in updating its

coupling forces, thus the input and the neuron’s output will be

synchronous only within a time window following the change.

Discussion

In conclusions, we have introduced a basic computation unit,

made of a neuron that is interacting with others neurons, following

the topology of a dynamical weighted network. Some neurons are

forced to synchronize with a reference signal, with a coupling

Figure 3. Other binary logical gates. A) Circuit configurations corresponding to the Boolean gates NAND, XOR, and a reference translator (R
change). Dashed (solid) lines indicate the signal entering port A (B). In all cases, the numbers indicate the weights of the signals to be summed.
B) Table representing the two inputs, the signals present at position * of A), and the output signals. Notice that the output of the XOR operation is
expressed in terms of R�, and that the reference translator converts it back to a R referenced signal. C) Temporal evolution of SL (the synchronization
level with the reference signal R, see Eq. 5) for the two inputs, and for the output of each gate.
doi:10.1371/journal.pone.0026467.g003

Computation Emerges from Adaptive Synchronization

PLoS ONE | www.plosone.org 4 November 2011 | Volume 6 | Issue 11 | e26467

strength that depends on a simple adaptive mechanism, while

others are let free to follow their internal dynamics, guided by a

common external Gaussian noise. The synchronization and

desynchronization of neurons with the reference signal is then

used to codify binary information, and we show how the topology

of the network is essential for the execution of specific Boolean

operations, by means of which it is possible to construct a universal

Turing machine.

This approach is of interest for several reasons. First of all, there

is a growing quantity of experimental evidences supporting the

Figure 4. Full boolean adder. A) Network motif corresponding to a full Boolean adder. Same stipulations as for Figure 3a. B) Temporal evolution of
SL for the three inputs (A, B and Cin) and two outputs (S and Cout) of the adder. The synchronization level SL is calculated with respect to the
reference signal R for the three inputs, and with respect to R�~IDzR for the outputs.
doi:10.1371/journal.pone.0026467.g004

Computation Emerges from Adaptive Synchronization

PLoS ONE | www.plosone.org 5 November 2011 | Volume 6 | Issue 11 | e26467

hypothesis that synchronization is the form used by the brain to

represent and compute information [4,6]. Here we present a first

evidence that computation can indeed emerge from the collective

dynamics of an ensemble of neurons, without the addition of any

external control mechanism. Furthermore, it is important to remark

that, being here an emergent feature, the proposed computation is

not limited to a binary Boolean logic, but it can be straightforwardly

extended to a much larger number of states (by having several

reference signals R), thus potentially enlightening the real

mechanisms at the basis of computation processes of the brain.

Acknowledgments

The authors acknowledge I. Sendiña Nadal for many discussions on the

model equations and parameters used in this manuscript.

Author Contributions

Conceived and designed the experiments: MZ SB. Performed the

experiments: MZ. Analyzed the data: MZ SB. Contributed reagents/

materials/analysis tools: FDP. Wrote the paper: MZ SB FDP.

References

1. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex

networks: Structure and dynamics. Phys Rep 424: 175–308.
2. Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS (2002) The

synchronization of chaotic systems. Physics Reports 366: 1–101.

3. Arenas A, Dı́az-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization
in complex networks. Physics Reports 469: 93–153.

4. Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, et al. (1999)
Perception’s shadow: long-distance synchronization of human brain activity.

Nature 397: 430–433.
5. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2002) The brainweb: phase

synchronization and large-scale integration. Nature Reviews Neuroscience 2: 229–239.

6. Fries P, Schröder JH, Roelfsma PR, Singer W, Engel AK (2002) Oscillatory
neuronal synchronization in primary visual cortex as a correlate of stimulus

selection. J Neurosci 22: 3739–3754.
7. Breakspear M, Williams LM, Stam CJ (2004) A novel method for the

topographic analysis of neural activity reveals formation and dissolution of

‘dynamic cell assemblies’. Journal of Computational Neuroscience 16: 49–68.
8. Lee KH, Williams LM, Breakspear M, Gordon E (2002) Synchronous gamma

activity: A review and contribution to an integrative neuroscience model of
schizophrenia. Brain Res Rev 41: 57–78.

9. Koenig T, Prichep L, Dierks T, Hubl D, Wahlund LO, et al. (2005) Decreased
eeg synchronization in alzheimer’s disease and mild cognitive impairment.

Neurobiology of Aging 26: 165–171.

10. Turing AM (1937) On computable numbers with an application to the
entscheidungsproblem. Procs of the London Mathematical Society 42: 230–265.

11. Hayes S, Grebogi C, Ott E (1993) Communicating with chaos. Phys Rev Lett

70: 3031–3034.

12. Sinha S, Ditto WL (1998) Dynamics based computation. Phys Rev Lett 81:

2156–2159.

13. Murali K, Sinha S (2007) Using synchronization to obtain dynamic logic gates.

Phys Rev E 75.

14. Ditto WL, Miliotis A, Murali K, Sinha S, Spano ML (2010) Chaogates:

Morphing logic gates that exploit dynamical patterns. Chaos 20.

15. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and

its application to conduction and excitation in nerve. J Physiol 117: 500–544.

16. Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory

information processing: a tutorial and review of application. Clin Neurophysiol

115: 267–281.

17. Pikovsky AS (1984) Synchronization and stochastization of the ensamble of

autogenerators by external noise. Radiophys Quantum Electron 27.

18. Albert R, Barabasi AL (2002) Statistical mechanics of complex networks.

Reviews of Modern Physics 74: 47–97.

19. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science

286: 509–512.

20. Milo R, Shan-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network

motifs: Simple building blocks of complex networks. Science 298: 824–827.

21. Wernick W (1942) Complete sets of logical functions. Transactions of The

American Mathematical Society 51: 117–132.

22. Bartee TC (1991) Computer Architecture and Logic Design McGraw-Hill.

Figure 5. Dynamical logical gates. A) Network motif corresponding to a Set Reset Flip Flop. Same stipulations as for Figure 3a. B) Temporal
evolution of SL for the two inputs and two outputs of the Flip Flop motif. C) Network motif corresponding to a differentiator gate, whose output is
zero all the time, except (and during a limited amount of time) when the input changes from zero to one. D) Temporal evolution of SL for the input
and the output resulting from the differentiation.
doi:10.1371/journal.pone.0026467.g005

Computation Emerges from Adaptive Synchronization

PLoS ONE | www.plosone.org 6 November 2011 | Volume 6 | Issue 11 | e26467

