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Abstract

Recent developments in high-throughput sequencing technology have made low-cost sequencing an attractive approach
for many genome analysis tasks. Increasing read lengths, improving quality and the production of increasingly larger
numbers of usable sequences per instrument-run continue to make whole-genome assembly an appealing target
application. In this paper we evaluate the feasibility of de novo genome assembly from short reads (#100 nucleotides)
through a detailed study involving genomic sequences of various lengths and origin, in conjunction with several of the
currently popular assembly programs. Our extensive analysis demonstrates that, in addition to sequencing coverage,
attributes such as the architecture of the target genome, the identity of the used assembly program, the average read
length and the observed sequencing error rates are powerful variables that affect the best achievable assembly of the target
sequence in terms of size and correctness.
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Introduction

Recent advances in massively parallel genome sequencing

provide a cost-effective potential alternative to the traditional

Sanger method [1]. However, the realized increased throughput

and lower cost comes at the expense of read length and accuracy.

Indeed, the currently reported average read lengths [2,3,4] and

are between 75 and 100 nucleotides (nts) for Illumina/Solexa

GAII, 50–75 nts for Life/APG SOLiD and 330 nts for Roche/

454 GS FLX Titanium, versus up to ,1,000 nts for Sanger

sequences. Mate paired protocols generate read lengths up to

75 nts for Illumina/Solexa and 60 nts for SOLiD. For individual

reads, the estimated error rates, as a fraction of the generated

bases, are approximately 1% (Solexa and 454 Titanium) versus up

to 1% in Sanger sequencing [5,6].

The de novo assembly of high-throughput sequencing reads into

high quality reference sequences will increase our knowledge of

important organisms and yield important advantages in many

genome analysis tasks. The number of de novo short read genome

assembly tools has been increasing steadily. A (partial) list of the

tools that are currently available can be found at http://seqanswers.

com/wiki/Software/list. Many recent methods opt to represent reads

as k-mers, i.e. words of length k. A graph is constructed from all k-

mers occurring in the input reads, and, finally, the reads are

threaded into paths through the graph: these paths represent

alternative, compatible assemblies of the input sequences. The

graph representation allows for a compact representation and

processing of the input whereas its size depends on the genome

size and the number of k-mers. Representative methods in this

category include Euler-SR [7], Velvet [8] and Allpaths-LG [9].

Other schemes are based on a more traditional overlap and contig

extension approach and include the Edena method [10], Sharcgs

[11] and Vcake [12]. These assemblers have been designed to

handle small genomes, such as bacteria, and may not be directly

applicable on larger more complex genomes. The ABySS assembler

features a distributed de Bruijn graph, employing parallel com-

puting to assemble larger genomes [13]. Recently, SOAPdenovo, a

variation of SOAP [14], was applied on the human genome using

single-end and paired-end reads of 35–75 nts, and achieved 87%

genome coverage [15]; the achieved contig N50 size was 7.4 kb at

best, thus the assembly is highly fragmented. Reviews of high-

throughput sequencing technologies and assembly tools can be

found elsewhere [16]. In addition to short read assemblers, there are

specialized tools for assembling longer pyrosequencing reads (i.e.,

from the 454 technology), such as CABOG [17].

Even the current assemblies of important model organisms are

subject to continuing finishing processes; for example, recent

improvements in the mouse genome assembly added 267 Mb of

previously missing or misassembled sequence [18]. Efforts to finish

shotgun-based vertebrate genome assemblies are further compli-

cated by a high amount of species-specific variability regarding

mis-assembly and gap characteristics, making it challenging to
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apply standardized finishing strategies [19]. Some promising

approaches for tackling the problem of high-throughput sequence

assembly by using a closely related reference genome have been

proposed, including gene-boosted assembly [20] and assisted

assembly [21].

Further complicating the picture are the error profiles of the

various new sequencing technologies and associated platforms.

These profiles have not been adequately characterized in the

literature, and they appear to be changing with every iteration of a

given platform. To the best of our knowledge, there has been only

anecdotal evidence on the impact of the resulting error rates on

the available assembly tools.

The work described below has been motivated by our

participation in the USDA/MARS/IBM consortium whose goal

is to sequence and analyze the genome of Theobroma cacao (T. cacao)

with an estimated length of approximately 400 M bases. One of

the questions that arose in the context of the project is whether the

capabilities of today’s high-throughput sequencing platforms are

such that a de novo assembly of T. cacao from short reads is feasible.

Short read lengths present formidable challenges for de novo

genome assembly because several valid alignments can exist for a

given set of very short sequences. In principle, one of those

possibilities corresponds to the target genome sequence.

The number of alignment possibilities depends on the length of

overlap that is required to align the ends of two sequences. There

are also limits to the quality of the assembly results that can be

achieved: it is not possible to determine the exact size of tandem

repeats that are longer than the read length (e.g. ATCAT-

C…ATC). Also distinguishing between two near-exact copies of

the same repeat in different parts of the genome may not be

possible, since short reads do not necessarily provide enough

sequence context to determine the relative position of the read in

the genome.

Adding information from paired reads with large insert sizes can

potentially assist in determining the correct origin of repeat copies

and can also help in scaffolding contigs into longer stretches of

ordered sequence (with gaps of unknown sequence and potentially

unknown length still remaining).

Highly fragmented assemblies with repeat expansions and

collapses, and falsely joined sequences can be characteristic of

short read assembly results on repeat-rich genomes. Clearly, these

complications continue to persist even in the presence of high

sequencing coverage.

As outlined above, there are several challenges and sources of

error associated with genome assembly from short sequencing

reads. Nonetheless, high-throughput short reads have proven

useful in several assembly tasks. Short reads have been combined

with other sources of data to generate and improve de novo genome

assemblies; examples include the rice pathogen Pseudomonas syringae

[22], the forest pathogen Grosmannia clavigera [23], plant chloroplast

genomes [24], and also Arabidopsis thaliana strains [25]. Recently,

individual human genome datasets were assembled into fragments

by ABySS [13] and SOAPdenovo [15] yielding numerous small

contigs covering in total up to 80% of the human genome. The

first example of researchers having employed high throughput

sequencing alone to assemble a large animal or plant genome was

recently reported for the giant panda genome [21]. However, it

should be pointed out that the ‘true’ quality of the resulting

assembly remains unclear, as it was estimated by employing

comparisons to the dog genome, a limited amount of pre-existing

mRNA annotations, and various repeat estimation techniques.

A fundamental concern when performing de novo genome

assembly stems from limited confidence in the assembled contigs

since they represent only one possible way of mapping the

sequence fragments to contiguous sequences. There have been

efforts to computationally simulate certain aspects of the assembly

process in order to gauge the performance of existing approaches.

For example, benchmarking datasets and assembly evaluation for

metagenomics sequencing data have been presented [26]. Also,

the original publications that describe a novel assembly algorithm

typically include some validation and comparison with some of the

existing methods [8,10,13]. Some very recent studies compare

short read assembly methods under various conditions and for

various types of genomic input [27,28]. Obviously, having a few

long contigs is desirable; however, an equally important con-

sideration is the correctness of the contigs.

In this paper, we study de novo assembly through simulation.

From several reference sequences, ranging from viral to plant, we

generated simulated reads with lengths between 50 and 100 nts,

these lengths being typical of the current short-read generating

platforms. We introduce and employ a protocol for evaluating a

de novo assembly strategy for a genome for which a reference

sequence does not exist. Our protocol calls for generating simulated

sequencing reads from a carefully chosen related reference genome,

assembling them de novo and finally aligning the assembled contigs to

the reference and quantifying the erroneously and correctly

assembled nucleotides. From the results, we can determine whether

a sequencing and assembly strategy employed in the simulation

would yield meaningful results on the related unsequenced genome.

By injecting errors at varying rates into the reads, and by

investigating different degrees of sequencing coverage, we obtain

limits to the error that the assembler tolerates, and determine which

coverage ranges are most useful. Finally, we examine the extent of

improvement that results from the use of paired read information.

It is important to point out that the employed simulation

framework represents ideal conditions for assembly. In real data,

among other complicating factors such as non-uniformity in the

lengths of obtained reads, true sequencing coverage varies across

the template and some regions may even fail to be captured in the

sequencing process. Thus assembling real data poses additional

difficulties; in that regard, our simulations represent an upper limit

(best case scenario) of what can be achieved with a given average

sequencing coverage.

Results

Assembly programs
We studied the performance of six popular genome assembly

tools that have been designed to handle short sequencing reads

(,50 nt). For our analysis, we compared tools that we were able to

port to and run in our computing environment: ABySS [13], Edena

[10], Euler-USR [7], Sharcgs [11], Vcake [12], and Velvet [8]. In order

to have control over the simulation and to simplify comparisons,

we assumed that each base of the input sequences is of sufficient

quality for assembly.

Benchmark datasets
The simulated benchmarks were generated as follows:

Benchmark I: Effect of sequence size and error on

assembly. A set of reads 50 nts long was generated from each

genomic reference sequence, and errors were introduced

uniformly and at random into E% of the read positions. Here E

assumed the values 0%, 1%, and 5%. As an example, ‘‘applying’’ a

1% error rate on 500,000 reads of length 50 nts will affect

500,000*50*0.01 = 250,000 out of a grand total of 25,000,000

bases. The reads comprising a given input were chosen randomly

and uniformly from the reference genome. Thus, each sequence

position is expected to have the same coverage, which is the ideal

Evaluating Genome Assembly from Short Reads
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case rather than what would be encountered in practice. In real

sequencing experiments the coverage would be non-uniform,

which makes the assembly more challenging, and also the errors

would be concentrated towards the ends of the reads. There would

also exist insertion and deletion errors, which would further

complicate assembly. Furthermore, heterozygosity in the genomes

of real sequenced organisms would generate variability in the

sequencing reads and make genome assembly more challenging.

As we are looking into the limits of short-read assembly in near-

ideal conditions, we did not include many of the realistic com-

plications one encounters when dealing with real sequencing

data.

The synthetic reads, 50 nts long, represent 506uniform coverage

of the source genome. An exception is the dataset having 1886
coverage of 30 nts long reads from a D. melanogaster BAC which we

did not generate but included since Sharcgs performance had

already been evaluated on this dataset. Assemblies of error-free

inputs correspond to an ideal scenario, an error rate of 1%

approximates real data and an error rate of 5% represents an

extreme of the simulation.

For the O. sativa 4 Mb dataset, we evaluated the impact of small

changes in error rate on the quality of the assembly by generating

additional sets of reads with error rates E equal to 0.5%, 1.5%, 2%

and 2.5%.

Benchmark II: Effect of read length and error on

assembly. This benchmark focused on evaluating the impact

that increased read length can have on the quality of the assembly.

We generated 506 coverage of reads with lengths 75 nts and

100 nts from the O. sativa reference sequence that had proved

challenging due to its regions of repeat sequences.

Benchmark III: Effect of coverage and error on

assembly. This benchmark focused on evaluating the impact

that increased coverage can have on the quality of the assembly.

We generated additional sets of reads corresponding to 106, 206
and 1006 coverage of the O. sativa segment.

Benchmark IV: Effect of paired end data and error on

assembly. Using the O. sativa segment, the sets comprised 506
coverage of paired reads of 50 nts originating from ends of

fragments of sizes 500, 1000, 3000 and 5000 nts with variation

650 nts. We assumed perfect pairing and experimented with

several coverage combinations of unpaired and paired reads. We

also replicated some Velvet assembly results several times to

explore the robustness of the results across runs on independently

generated data.

Assembly evaluation
We use two types of features to evaluate assemblies: correctness

scores and size statistics. See Methods for details, and Fig. 1 for an

illustration of different types of assembly errors.

1. Correctness scores. We consider five scores that reflect

fundamental aspects of assembly correctness: inversion,

insertion, redundancy, relocation, and reordering. For each

score, value 1 is best and 0 worst.

2. Size statistics. We consider largest contig length, mean contig

length, contigs sum, coverage, N50 contig size, and a match

score. Higher values of size statistics are more preferable than

lower values.

We next present and briefly discuss the results we obtained in our

four benchmarks for each of the six types of genomic input where

possible. The runs with assemblers Euler-USR, Sharcgs, and

Vcake did not complete without errors or within a reasonable time

(several hours) for the O. sativa, E. coli and S. cerevisiae datasets and

are not present in the evaluation.

Benchmark I Results: Effect of genome and error on
assembly

The results are summarized in Fig. 2 showing N50 contig size (a)

and percentage of reference covered (b), for the best values

Figure 1. Illustration of assembly errors. A single contig is aligned against the reference sequence, observed assembly mistakes are shown in
red. The contig has 4 matches against the reference. Match 1 is the longest one, and it defines the match window coordinates and orientation. The
first 157 positions in the match window do not have contig matches, corresponding to an insertion. Match 1 and Match 2 have overlap,
corresponding to redundant positions in the reference. Match 2 is inverted, it has opposite orientation compared to the match window. The latter
half of Match 3 is outside the match window, corresponding to a relocation. Match 4 and Match 3 have incorrect order, relative to their contig
positions, this corresponds to a reordering. Gaps and redundancies are also shown on the reference sequence.
doi:10.1371/journal.pone.0024182.g001

Evaluating Genome Assembly from Short Reads
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achieved among the assemblers. The O. sativa sequence shows

smallest N50 contig size and genome coverage, though the E. coli

and S. cerevisiae genomes have larger sizes. About 90% of E. coli and

S. cerevisiae genomes are covered by assemblies (when 0–1%

sequencing errors are present), whereas coverage of the O. sativa

sequence is ,80%. The numeric data are presented in Tables S1,

S2, S3, S4, S5, S6, where it is also clear that the correctness scores

(reordering, inversion, redundancy, relocation, insertion) for all

genomes are mostly near 1, except for the HIV1 genome with its

major assembly mistakes.

It is evident that besides the case of the small HIV1 genome

assembly, the rice sequence is the most challenging to assemble.

Given this observation and our interest in plant genomes in

conjunction with the T. cacao sequencing project, we used the rice

sequence in the remaining Benchmarks II–IV

HIV1. Since the genome is only 9,181 bp, we consider all

contigs at least 100 nt long (for all other genomes we use 1,000 nt

as minimum contig length to avoid evaluating uninformative short

fragments). In the case of error-free reads, all tools generated

exactly one contig with 100% coverage, except ABySS (no contigs)

and Sharcgs (52 contigs); see Table S1. The length of the

assembled contig was close to the correct genome length, and it

almost completely covered the genome, but with with poor

relocation and reordering scores, indicating chimeric assembly

mistakes. This is pretty notable considering the small genome

length, the level of coverage and the fact that the reads were error-

free. Presumably, the obtained poor performance results from the

internal structure of the virus, which includes ,600 bp long

terminal repeat (LTR) elements at 39 and 59 ends of the genome.

Interestingly, when 1% error is introduced, the repeats become a

more manageable challenge for Edena and its results improve. At

a 5% error in the input, only Velvet generates reasonable results.

ABySS does not output any contigs at all: the repeats cause the

genome to appear circular and therefore it is unable to produce

any results. Fig. 3 shows (a) correctness and (b) size statistics for the

assemblies. According to the correctness scores, Edena with 1%

read errors provides the best assembly, and its size statistics are

also near perfect. However, with 5% read errors Velvet’s results

are mostly correct but exhibit poor size statistics. On the other

hand, for Vcake and reads with 1% errors the picture is the

opposite. This demonstrates that correctness and size do not

always go hand in hand.

D. melanogaster BAC. This BAC was described with the

Sharcgs assembler (Dohm et al. 2007) and it has 0.6% errors

introduced in the 30 nt simulated reads. This input is the type of

example sequence on which many short read assembly tools have

been tested and can be characterized as an ‘‘easy’’ case: indeed, it

is a relatively short sequence, contains no complex internal

structure, and there are only a few errors in the reads. There were

500,000 reads of length 30 nts corresponding to 1886coverage of

the 80 kb sequence. Each tool assembled the sequence into 5–34

contigs, with the size of the largest contig ranging from 4,365 nts

(Euler) to 40,884 nts (Sharcgs); see Table S2. Assemblies covered

at least 98% of the source genomic sequence, with the exception of

Euler (77%). Sharcgs had the highest N50 and match score,

indicating the least fragmented assembly. In summary, and except

for Euler, all tools performed well on this input.

HHV5. The genome of the human herpesvirus 5 has a size

of 230 kb. Each tool assembled the error-free reads into 3–6

contigs; the size of the largest contig was around 170 kb. The

genome coverage by the assemblies was close to 94%. At an

error rate of 1% ABySS, Edena and Euler produce similar good

results, while the other assemblers’ performance deteriorates, as

seen in the largest contig and N50 contig sizes. At 5% almost

none of the reference is covered; see Table S3.

O. sativa. We focused on a 4 Mb region from Oryza sativa

(rice) chromosome 12, which corresponds approximately to a

BAC pool size suggested in a recent rice de novo assembly strategy

[29]. In our computing environment, only ABySS, Edena, and

Velvet were capable of completing the assembly, on O.sativa or

any of the source genomic sequences described below. Assembly

correctness scores were near perfect. N50 and match scores were

very similar for all assemblers, with Velvet performing slightly

better than the rest when read error rate was increased. For

error-free reads, assemblers produced around 840 contigs – see

Table S4 – with the longest contigs being 30 k nts for all tools.

The assemblies covered at most 81% of the reference sequence,

leaving more than 800 kb of the reference uncovered. Assemblies

of reads at 0.5–2% error rates were similar to the error-free case;

however, working with reads at a 5% error led to almost no

results. The results of ABySS, Edena and Velvet were very

similar, though none of them succeeded in assembling more than

,80% of the reference sequence even without any sequencing

errors present.

E. coli. The assemblers ABySS, Edena and Velvet generated

around 330 contigs with the size of the largest contig being about

128 k nts; see Table S5. Velvet’s assembly covered most (96.9%)

of the reference sequence, leaving uncovered 110 k nt. The results

obtained at an error rate of 1% show reduced N50 and max

contig size for Edena and Velvet. On the other hand, at a 5%

error rate, less than 1% of the genome is covered.

S. cerevisiae. Baker’s yeast with a genome size of 12 Mb

represented our final test set. In this case, we only report results by

Velvet and Abyss as the other tools failed to finish the assembly.

The assemblies are consistent up to 1% injected error, resulting in

source input coverage of 92%, and up to 1,147 contigs; see Table

S6.

Benchmark II Results: Effect of read length and error on
assembly

Assembly statistics with read lengths {50, 75, 100} nts for the O.

sativa 4 Mb segment are shown in Table S7. The results are nearly

identical across read lengths with 0–1% errors in the reads, except

for Velvet with 1% read errors, were increasing read length

actually decreases coverage. This suggests that the evaluated

algorithms and parameters are best suited for 50 nts reads. It may

well be the case that the k-mer length and other algorithmic

parameters require tuning to obtain best results as the average

read length changes.

Benchmark III Results: Effect of sequencing coverage and
error on assembly

The effect of varying the sequencing coverage from 106 to

1006 is shown in Table S8. With read error rates 0–1%, we

observe no benefit from increasing the coverage from 506 to

1006; actually the size statistics slightly deteriorate for Edena and

Velvet, a rather unexpected and very notable result. On the other

hand, when the coverage ranges between 106 and 206, the

assembly size statistics are poorer than with 50–1006coverage. In

particular, having 506 versus 206 coverage clearly increases

largest and N50 contig sizes. With reads containing 5% error, only

Velvet succeeds in spanning over 1% of the reference (the

assembly covers 66% of reference), and only with 1006 read

coverage. In this case, increased sequencing error makes increased

coverage necessary.

Evaluating Genome Assembly from Short Reads
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Benchmark IV Results: Effect of paired end data and error
on assembly

O. sativa assembly results generated by ABySS, and Velvet for

506 coverage with pair distances (fragment sizes) of 400, 1000,

and 3000 nts are shown in Fig. 4 and Table S9. With pairs it is

possible to increase the coverage from 80% to nearly 100%. The

number of contigs decreases and the largest and N50 contig sizes

generally increase with increasing insert size, while correctness

scores remain similar. In Fig. 4 we see that Velvet with 3 kb pairs

and no read errors yields the best size statistics and also high

correctness scores.

To study more moderate read coverages, we added 106and 56
paired 3 kb insert size reads to 106, 206, and 306 coverage of

linear reads. We also used 56 coverage of 0.5 kb, 1 kb, and 5 kb

insert sizes coupled with 206 linear read coverage. Error rate of

the reads was fixed at 1%. The results are shown in Table 1 and

Table S10. In all cases, adding paired reads increased genome

coverage and N50 contig size. Insert size made little difference to

these results. The highest genome coverage, 86%, was reached

with 306 linear combined with 106 paired 3 kb reads.

We studied the robustness of the results by replicating each data

generation and assembly process 10 times for coverage combina-

tions {106, 206, 306} linear with {56, 106} paired 3 kb insert

size reads. The results are shown in Table S11. The statistics are

remarkably stable across different replications of the same

experiment, notably the genome coverage is at most 2% different

across replicates. This supports our method of presenting results

based on a single run on a particular test case. The results also

show Velvet produces robust assembly results at 1% error rate and

uniform read sampling from the source sequence.

Discussion

With increasing efforts to assemble genome sequences de novo by

utilizing high-throughput sequencing technologies, there is a great

interest in generating tools and strategies for the assembly task.

Many assembly tools have been devised and found to be highly

useful in the context of specific assembly tasks. However, choosing

the best tool to use with a given sequencing and assembly strategy

for a novel organism has received less attention. In the above, we

presented a protocol for evaluating the chosen assembly strategy

Figure 2. N50 contig size and genome coverage. The best values among all the studied assembler on a given reference sequence and error rate
are reported. a) N50 contig size is shown for all studied sequences, with different error rates for the 50 nt reads at 506 coverage. Sequences are
ordered from smallest (HIV1) to largest (S. cerevisiae). BAC data has 30 nt reads with 0.6% error, its results shown under 0% error label. When N50 size
is zero it indicates the sum of contig lengths was less than 50% of reference sequence length. b) Percentage of reference genome that is covered by
the assembly is shown for all studied sequences.
doi:10.1371/journal.pone.0024182.g002

Evaluating Genome Assembly from Short Reads
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on a related model organism and applied it to several publicly

available algorithms. By varying sequencing coverage, error rates

and sequence composition of the target genome in a controlled

setting, we estimated the extent and nature of errors that one

ought to expect in a real-world setting. In addition, by pinpointing

when reasonable assemblies are no longer achieved, we were able

to establish limits on the read coverage, read lengths, and

sequencing errors that a given assembler can tolerate.

Generally speaking, short bacterial genomes and otherwise

simple sequences can be assembled accurately with many of the

available assembly tools, in the presence of few sequencing errors

and a high coverage of the target genomic sequence. When

focusing on genomes that are architecturally more complex, such

as those containing repeats or other internal structures, the

assembly process becomes a less straight-forward proposition, even

in the case of short genomes such as the HIV1. Additionally, in the

Figure 3. Correctness and size statistics for HIV1 assemblies. Assembly statistics are shown for all assemblers and various read error rates for
HIV1 assemblies. a) Correctness scores, b) Coverage, and N50 divided by genome size.
doi:10.1371/journal.pone.0024182.g003

Figure 4. Correctness and size statistics for O. sativa assemblies with varying pair distances. Assembly statistics for a) correctness and b)
size are shown for unpaired and paired O. sativa reads with distances {400, 1000, 3000} and 506 coverage, assembled by Velvet and ABySS.
doi:10.1371/journal.pone.0024182.g004

Evaluating Genome Assembly from Short Reads
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presence of sequencing errors affecting as few as 1% of the read

positions, the assembly statistics can deteriorate notably.

The evaluated tools can leave up to 20% of the reference

sequence uncovered (or ,800 k nt for O. sativa) when working with

reads of 50 nts at 506 coverage. It is important to stress that the

assembly quality and performance issues that we observed

manifest themselves even when working with short genomes. In

view of all these observations, it is apparent that attempting to

assemble large and complex genomes (e.g. the genome of T. cacao

with an estimated size 400 Mb) is a substantially more challenging

proposition.

Materials and Methods

Source of genomic sequences
In order to generate representative results, we simulated input

reads from viral (full length HIV1 and HHV5), bacterial (full

length E. coli), animal (a BAC sequence from D. melanogaster and the

complete genome sequence of the multichromosome organism S.

cerevisiae), and plant (a 4 Mb sequence from chromosome 12 from

O. sativa, rice) genomic reference sequences. The source genomic

sequences were chosen so that they capture a range of lengths and

sequence complexity. Notably, among the source genomic sequences

used to generate our inputs, O. sativa is most similar in composition

to T. cacao, the latter being the genome of our primary interest.

Details on the reference sequences are presented in Methods S1.

Computing environment and assembly parameters
Assemblers were run under Aix (ABySS, Sharcgs, Vcake,

Velvet) and Windows (Euler, Edena). The purpose of our

benchmark did not include testing the absolute or relative speed

or memory requirements of the assemblers, but rather testing the

correctness of the resulting assemblies. The details of the com-

puting environments are as follows: AIX Operating System, 91 GB

RAM, 4.7 GHz CPU speed; Linux Operating System, 12 GB

RAM, 1.4 GHz CPU speed; Windows Operating System, 3 GB RAM,

2.4 GHz CPU speed.

In our computing environment, Euler, Sharcgs and Vcake failed

to complete the assembly task for sequences larger than the HHV5

genome. All tools were run with default parameters. When k-mer

length needed to be defined, it was set to k = 21 for 30 nt reads and

k = 31 for all other reads; alternatively overlap parameter was set

to k21. Insert size and expected k-mer coverage for paired reads

were given as parameters to Velvet.

Evaluation protocol
We computed various size and quality statistics for each assembly.

We included only contigs that were at least 1,000 nts long in our

evaluation (except for HIV1, where we included all contigs at least

100 nts long). To compare the generated contigs to the reference

sequence, we performed pair-wise Blast [30] searches (Blastn version

2.2.2) to map the contigs to the reference genome. We identified all

contiguous matches in the reference genome for each contig (having

at least 95% identity with matching length at least 100).

By using the longest match of a contig as an anchor on the

reference genome, we define a match window for each contig: a

contiguous segment of the reference sequence that is the same

length as the contig, where ideally all matches for the contig are

contained. Computing the first and last coordinates of the window

is explained in Methods S1.

Each contig was evaluated as follows:

1. Obtain the longest match of the contig and use it as an anchor

to define a match window on the reference
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2. For each contig position i, compute its projected position in the

match window, Mi, and record its best match in the reference,

i.e., the match closest to Mi

3. Compute number of positions corresponding to relocation,

insertion, and inversion mistakes

4. Compute reordering score

The values of relocation, insertion and inversion scores for the

assembly are computed as the sum of positions indicated in step 3

above, divided by the total assembly size. The reordering score for

the assembly is defined as a weighted average of each contig’s

reordering scores, where weight equals contig length. Coverage,

match score, and redundancy score are computed after recording

every contig’s best matching positions in the reference. The

correctness scores and size statistics are described below, further

details are available upon request.

Correctness scores
Insertion score for a contig is one minus the fraction of contig

positions that do not match the reference. Relocation score for a

contig is one minus the fraction of contig positions that match the

reference outside the match window. Inversion score for a contig is

the fraction of contig positions with matches sharing their

orientation with the contig’s, see Methods S1. Reordering score

is computed as one minus the fraction of contig position pairs that

are in conflicting order in the contig and the reference (to ensure

computational efficiency, every 100 positions from the contigs

were sampled to perform this evaluation, except for HIV1 every

10 positions due to its shorter contigs). Redundancy score is one

minus the fraction of assembly positions that match to a reference

position already covered by one or more other assembly positions.

Size statistics
The N50 contig size is the largest contig length such that at least

50% of the total length of the reference sequence can be obtained by

considering contigs of at least this length. N50 is a measure of the

fragmentation of the assembly. Span denotes the length of the

reference sequence that has contig positions from the assembly

aligned to it, whether the alignments are correct or not. Coverage

refers to the percentage: span divided by reference sequence

length. Match score rewards for matches and penalizes for gaps,

taking their lengths into account, and is defined as K{ Ss(|us|/n)2

+(12St(|vt|/n)2 ) }, where the reference length n is divided into

alternating non-overlapping match segments (u) and gap segments

(v), n =Ssus+Stvt. Gap segments consist of adjacent positions in the

reference sequence with no contigs positions aligned to them.

Additional methods
Assembly evaluation details, reference sequences, simulated

data sets and a tool for generating simulated reads from a given

sequence are available in Methods S1. Tables S1, S2, S3, S4, S5,

S6, S7, S8, S9, S10, and S11 contain assembly statistics for each

studied genome sequence.
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