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Abstract

HMG-CoA reductase inhibitors (statins) decrease atherosclerosis by lowering low-density-lipoprotein cholesterol. Statins are
also thought to have additional anti-atherogenic properties, yet defining these non-conventional modes of statin action
remains incomplete. We have previously developed a novel mouse transplant model of atherosclerosis regression in which
aortic segments from diseased donors are placed into normolipidemic recipients. With this model, we demonstrated the rapid
loss of CD68+ cells (mainly macrophages) in plaques through the induction of a chemokine receptor CCR7-dependent
emigration process. Because the human and mouse CCR7 promoter contain Sterol Response Elements (SREs), we
hypothesized that Sterol Regulatory Element Binding Proteins (SREBPs) are involved in increasing CCR7 expression and
through this mechanism, statins would promote CD68+ cell emigration from plaques. We examined whether statin activation
of the SREBP pathway in vivo would induce CCR7 expression and promote macrophage emigration from plaques. We found
that western diet-fed apoE-/- mice treated with either atorvastatin or rosuvastatin led to a substantial reduction in the CD68+
cell content in the plaques despite continued hyperlipidemia. We also observed a significant increase in CCR7 mRNA in CD68+
cells from both the atorvastatin and rosuvastatin treated mice associated with emigration of CD68+ cells from plaques.
Importantly, CCR7-/-/apoE-/- double knockout mice failed to display a reduction in CD68+ cell content upon statin treatment.
Statins also affected the recruitment of transcriptional regulatory proteins and the organization of the chromatin at the CCR7
promoter to increase the transcriptional activity. Statins promote the beneficial remodeling of plaques in diseased mouse
arteries through the stimulation of the CCR7 emigration pathway in macrophages. Therefore, statins may exhibit some of their
clinical benefits by not only retarding the progression of atherosclerosis, but also accelerating its regression.
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Introduction

Atherosclerosis is responsible for more than half of all mortality

in Western countries. Elevated low-density-lipoprotein cholesterol

(LDL-C) is an established risk factor for coronary artery disease.

Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-

CoA) reductase, statins, are lipid-lowering drugs that effectively

lower LDL-C level and reduce the risk of cardiovascular events in

hypercholesterolemic and normocholesterolemic patients [1].

Clinical studies also suggest that statins may exert vasculoprotec-

tive effects that are independent of their cholesterol-lowering

properties. Pleiotropic effects of statins include the improvement of

endothelial function and reduction in oxidative stress, inhibition of

inflammation, and stabilization of atherosclerotic plaques [2,3,4].

As useful as statins may be in limiting progression of

cardiovascular disease, there is likely to be a significant plaque

burden remaining in the treated population. In spite of the clinical

desirability to achieve regression and the success of statin

treatment to achieve it in some patients [5,6], research into the

factors that may be mediating this process has been hampered by

the relative paucity of appropriate animal models. The similarities

between atherosclerosis progression in humans and mice deficient

either in apoE (apoE-/-) or the LDL receptor suggest that

molecular mechanisms underlying regression in these mouse

models could be relevant to the reduction in plaque burden in

the human population (reviewed in [3,7]).

Regression studies in mice, indeed, have been undertaken, with

some modest successes reported (reviewed in [4]). To introduce a
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more robust model, we developed an approach in which

transplantation of either an atherosclerotic-containing thoracic

aortic segment [8] or an aortic arch segment [9] from apoE-/- mice

to wild-type (WT) recipient mice leads to the dyslipidemia being

corrected indefinitely. Under the conditions of the WT mouse,

regression is rapidly apparent (as judged by plaque content of cells

positive for CD68, an accepted marker of macrophages and

macrophage-foam cells), whereas when the recipient is an apoE-/-

mouse, further progression is evident [10,11,12].

Notably, the decrease in CD68+ cell content could be attributed

to emigration of these cells from plaques to regional and systemic

lymph nodes under regression, but not progression, conditions

[11,12]. The emigrating cells expressed markers of dendritic cells

(DCs), which like macrophages, can derive from monocytes [13].

Because migration of DCs to lymph nodes absolutely requires the

chemokine receptor CCR7 [14], we hypothesized that it became

induced in CD68+ cells under regression conditions. Indeed, we

found an increase in CCR7 mRNA and protein expression only in

plaque CD68+ cells from the regression environment and went on

to show the functional requirement of CCR7 for regression in our

transplant model [12,15].

The importance of this gene has led us to study its regulation.

Interestingly, bioinformatic analysis revealed putative sterol

response elements (SREs) along the promoter region of CCR7.

The presence of such elements suggest that sterol response element

binding proteins (SREBPs)[16] may bind to those sites and that

through this molecular mechanism, statins may regulate CCR7

expression. Given these considerations, we examined whether

statin therapy provides an additional benefit to the arterial wall by

promoting regression through this mechanism in a mouse model of

atherosclerosis. Our findings from both studies in vitro and in vivo

suggest that this is indeed the case.

Results

Atorvastatin and rosuvastatin decrease total cholesterol
without significantly affecting HDL-C in western-diet fed
apoE-/- mice

To examine the effects of atorvastatin and rosuvastatin on total

cholesterol levels, apoE-/- mice were fed an atherogenic ‘‘western

diet’’ for 16 weeks and then fed for 4 weeks a western diet

containing either atorvastatin or rosuvastatin milled into the food.

A group of mice not treated with statins, but maintained on the

western diet, served as the baseline control group. Total

cholesterol and high density-lipoprotein cholesterol (HDL-C) from

serum were measured for each group. As expected, in the baseline

untreated group, total cholesterol levels were extremely high

(1313 mg/dL; normal ,80 mg/dL), whereas the atorvastatin and

rosuvastatin treated groups had lower total cholesterol levels of

767 mg/dL and 593 mg/dL, respectively (Table 1). Although

both statins were able to significantly reduce total cholesterol

levels, the atorvastatin and rosuvastatin treated mice remained

significantly hyperlipidemic, maintaining levels known to promote

atherosclerosis progression [7,17]. Importantly, though the

atorvastatin and rosuvastatin treated group reduced the total

cholesterol by roughly half of that of the control group, HDL-C

levels were not significantly changed (Table 1). Thus, both

atorvastatin and rosuvastatin were capable of lowering total

cholesterol levels without affecting HDL-C, and at the doses used,

rosuvastatin appeared to be more effective in lowering total

cholesterol than atorvastatin.

Statin treatment decreases the contents of CD68+ cells
and cholesteryl ester in atherosclerotic plaques while
increasing collagen deposition

We next examined the impact of statin treatment on plaque

CD68+ cell and cholesterol ester content. To measure CD68+ cell

content, frozen sections were immunostained and the positive

areas were quantified by computer-aided morphometric analysis.

Over 65% and 75% of the CD68+ cell contents were reduced in

the atorvastatin and rosuvastatin treated groups, respectively,

compared to baseline controls (Figure 1A). Interestingly, neutral

lipid content (expected to be primarily cholesteryl esters), as

measured by oil red-O staining, was also decreased by roughly

60% in both treatment groups (Figure 1B). Thus, both atorvastatin

and rosuvastatin reduced plaque CD68+ cell and cholesterol ester

content in vivo.

Although CD68+ cell content significantly decreased in both

statin-treated groups, plaque size appeared not to significantly

change (Figure 2A). This suggested that other plaque components,

such as collagen, might have increased. Using Sirius red staining,

we found a significant increase in collagen content in plaques from

the statin-treated mice as compared to controls (Figure 2B and C).

Statin treatment promotes monocyte emigration out of
atherosclerotic plaques in a CCR7-dependent manner

We previously reported that regression is characterized by

emigration of monocyte-derived cells out of atherosclerotic lesions

[11,12]. There are two major subsets of monocytes expressing

chemokine receptors to different degrees: 1) Ly-6Chi that express

both CX3CR1 (fractalkine receptor) and CCR2 (chemokine

receptor 2), with higher expression of CCR2; and 2) Ly-6Clo that

express high levels of CX3CR1, but low levels of CCR2. Given

that both CCR2 and CX3CR1 have been linked to progression of

atherosclerotic plaques (e.g.,[18]), we asked whether statin

treatment could promote the migration of these subsets out of

plaques.

The ability to differentially label and track these monocyte

subsets has been recently reported [19]. Applying these methods to

our mice, we found that the content of cells derived from either

subset of monocyte decreased in plaques after 4 weeks of statin

treatment (Figures 3A and B). These results supported a role for

statins in inducing cells of monocyte origin to migrate from an

atherosclerotic plaque.

We next addressed the mechanism of statin-induced monocyte

emigration. We previously reported in a transplant-based mouse

model of atherosclerosis regression that the rapid depletion of

plaque CD68+ cells was through a migration process dependent

upon the induction of chemokine receptor CCR7 [12]. To

determine whether a similar mechanism was operating in statin-

treated mice, we measured CCR7 mRNA from laser-captured

CD68+ cells from these and control mice. We found that CCR7

mRNA was increased in both the atorvastatin and rosuvastatin

Table 1. Statin treatment decreases total cholesterol without
affecting HDL-C in western-diet fed apoE-/- mice.

Baseline Atorvastatin Rosuvastatin

Total Cholesterol
(mg/dL)

1313±138 767±40 593±31

HDL Cholesterol
(mg/dL)

30.8±3.3 32.3±6.0 36.2±2.8

Total cholesterol and HDL cholesterol levels were measured (n = 10 mice per
group). Listed are the average values with standard errors of the means.
doi:10.1371/journal.pone.0028534.t001

Statins Induce CCR7 and Athrosclerosis Regression
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treated mice more than 5X (p,0.05) compared to baseline control

mice (Figure 3C).

To directly test the requirement for CCR7 in statin induced

foam cell depletion, we generated CCR7-/-/apoE-/- double knock

out mice, placed them on a western diet and switched half to the

statin-treated western diet for 4 weeks. Importantly, plaque

CD68+ cell depletion in the CCR7-/- mice was significantly

impaired in the statin treated mice as compared to the baseline

controls. This strongly suggests that CD68+ cell migration induced

in plaques by statins is CCR7 dependent (Figure 3D).

We also examined the levels of the proinflammatory chemokine

monocyte chemoattractant protein-1 (MCP-1). We find a decrease in

MCP-1 protein expression in both the atorvastatin and rosuvastatin-

treated mice compared to baseline control mice (Figure 3E). This

suggests the statin treatment promotes a more anti-inflammatory

environment in the plaques, as has been reported before [20].

Statins induce SREBP regulation of CCR7 expression
The above results imply that statins can modulate CCR7

expression and function. We analyzed in silico the CCR7 gene

from human and mouse for common motifs and response elements

and identified consensus sterol binding protein response elements

(SRE) at ,220 bp upstream of the transcription start site (Figure

S1). Given that statins increase the activation of SRE binding

proteins (SREBPs) [21], we first examined whether the three

SREBP isoforms, SREBP-1a, SREBP-1c, and SREBP-2, were

induced at the mRNA level by statins. Atorvastatin, rosuvastatin,

and lovastatin all induced these three isoforms in RAW264.7

Figure 1. Statin treatment decreases CD68+ cell and choles-
teryl ester contents in atherosclerotic plaques. ApoE-/- mice
(n = 10 per group) were fed a high fat diet (western diet) after which
they were either maintained on the western diet, or switched to a
western diet that included atorvastatin or rosuvastatin. A) Macrophage
content was assessed by CD68 staining, and B) cholesteryl ester content
was assessed by oil red-O staining. The symbol * indicates statistical
significance, p,0.05.
doi:10.1371/journal.pone.0028534.g001

Figure 2. Statin treatment does not significantly affect plaque
area likely due to the increase in collagen content. A) Plaque size
was assessed by morphometric analysis after hematoxylin and eosin
staining of serial sections (n = 10 per group). B) Collagen levels were
measured using Sirius red staining under polarizing light microscopy
(n = 10 per group). The symbol * indicates statistical significance,
p,0.05.
doi:10.1371/journal.pone.0028534.g002

Statins Induce CCR7 and Athrosclerosis Regression
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macrophages (a mouse cell line) by 24 hours (Figure 4A-C). Only

SREBP-2 was induced in as little as one-hour post statin treatment

and remained up regulated throughout the 24-hour time-point

(Figure 4C). CCR7 gene expression was also induced by statins at

1 hour with maximal induction at the 6 hour time point, with the

greatest induction by rosuvastatin (Figure 4D). Therefore, the

subsequent experiments were performed with rosuvastatin. Given

the rapid and robust induction of SREBP-2, we hypothesized that

it regulates CCR7 expression in macrophages. Consistent with this

was that of the three SREBP isoforms only SREBP-2 was

Figure 3. Statin treatment promotes Ly-6Chi and Ly-6Clo monocyte emigration from atherosclerotic plaques in a CCR7-dependent
manner and represses MCP-1 expression. The number of beads remaining in the plaque 4 weeks post-statin treatment that corresponded to; A)
CCR2 (Ly-6Chi) monocytes and B) CX3CR1 (Ly-6Clo) highly positive monocytes are shown (n = 8 per group). C) Relative CCR7 mRNA expression levels as
a function of statin treatment were determined by RT-PCR (n = 9 per group). D) CD68+ cell content in plaques from CCR7-/-apoE-/- double knockout
mice treated with statin were determined by morphometric analysis of the immunostained areas (n = 7 per group). The symbol * indicates statistical
significance, p,0.05. E) MCP-1 expression in plaques as a function of statin treatment. Sections of aortic roots from baseline, atorvastatin and
rosuvastatin treated mice were stained with a biotinlyated mouse MCP-1 antibody, and visualized using chromogenic and fluorescent reaction
products. Brightfield images of MCP-1 immunostaining of the whole root (top row) and confocal fluorescent images of the selected areas (inserts,
bottom row) are shown and demonstrate reduced levels of MCP-1 protein in plaques of statin treated mice compared to baseline controls.
doi:10.1371/journal.pone.0028534.g003

Statins Induce CCR7 and Athrosclerosis Regression
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significantly induced in laser-captured CD68+ cells from athero-

sclerotic plaques in statin-treated mice (not shown).

Statins regulate CCR7 expression through modulating
SREBP-2

To demonstrate that the CCR7 promoter has a functional SRE

in vitro, RAW 264.7 cells were co-transfected with a series of

deletion constructs spanning the 59 upstream region of the mouse

CCR7 gene and an expression vector for SREBP-2. Each CCR7

promoter sequence was linked to a luciferase reporter gene, and

luciferase activity was measured to estimate promoter activity. As

can be seen in Figure 5A, CCR7 59-truncations from -3100 to -320

did not compromise SREBP-2 induction of CCR7 expression. In

contrast, a deletion from -320 to -190 reduced CCR7 promoter

activity, suggesting that elements required for SREBP-2-depen-

dent CCR7 expression lie between -320 and -190bp, which

coincides with the predicted location of the SRE in CCR7.

The importance of the SRE for CCR7 promoter activity was

assessed using CCR7-luciferase reporter constructs with point

mutations in the SRE element (Figure 5B). Mutation of the SRE

compromised CCR7 promoter activity by more than 80% upon

expression of mature SREBP-2 (Figure 5B), suggesting that the

SRE binding site is important for SREBP-2-dependent CCR7

promoter activity.

Additionally, we were able to demonstrate that over-expression

of SREBP-2 can increase the expression of endogenous CCR7

mRNA in RAW264.7 cells (Figure 5C). Furthermore, when

SREBP-2 was silenced by siRNA, this reduced rosuvastatin-

dependent CCR7 expression levels in RAW cells (Figures 5D and

E). This indicates that SREBP-2 is a mediator of the effects of

rosuvastatin treatment on CCR7 expression in macrophages.

SREBP-2 nuclear expression was also up-regulated at the protein

level in regressing plaques using immunohistochemistry, which

further suggests a link between SREBP2 and CCR7 expression

upon a reduction of non-HDL-cholesterol levels in vivo (Figure S2).

Statins induce acetylation of histones H3 and H4 and
recruit SREBP-2 and p300 to the promoter region of CCR7

Since histone acetylation is associated with gene activation, and

SREBP-2 induces CCR7 expression, we examined whether

changes in histone acetylation would affect CCR7 expression.

Treatment with histone deacetylase inhibitor trichostatin A (TSA)

resulted in the upregulation of CCR7 mRNA (Figure S3),

suggesting that expression of CCR7 is repressed by HDACs and

that SREBP-2 can overcome this inhibition, which is a common

mechanism employed by transcription factors to induce gene

expression.

To test the impact of HDACs on the induction of CCR7 by

SREBP-2, luciferase assays were performed in RAW264.7 cells co-

transfected with expression plasmids for HDACs 1 through 8,

along with an SREBP-2 expression plasmid, and the -850 bp

CCR7 promoter-luciferase construct. Only HDAC6 and HDAC7

were shown to decrease the SREBP2-dependent CCR7 promoter

activity (Figure 6A). This suggests that CCR7 promoter is

repressed by HDAC6 and/or HDAC7, and that this repression

in potentially relieved by SREBP-2.

To characterize the changes in chromatin organization and the

factors recruited to the CCR7 regulatory region upon statin

treatment, we performed chromatin immunoprecipitation assays

(ChIP) for modified histones, SREBP-2 and various HDAC

(HDAC6 & 7) and HAT (p300) coregulatory proteins. RAW264.7

cells were treated with rosuvastatin or DMSO, and acetylation

levels of histone H3 and H4 at the promoter region of the CCR7

gene were assessed. Interestingly, rosuvastatin treatment promoted

acetylation of histone H3 and H4, marks of transcriptional

activation, at the promoter regions of the CCR7 gene (Figure 6B).

We were able to demonstrate that rosuvastatin treatment of

RAW264.7 cells led to the eviction of HDAC6 and HDAC7, and

recruitment of SREBP-2 and p300 (Figure 6C). These data

establish SREBP-2 as promoting CCR7 transcription, as well as

suggest the mechanism by which statins influence this process.

Figure 4. Statins Induce SREBP and CCR7 expression. RAW264.7 macrophage cells were treated with 5 mM statins for the times indicated, and
expression of SREBP-1a (A), SREBP-1c (B), SREBP-2 (C), and CCR7 (D) were determined by RT-PCR. The experiments were repeated 3 times with similar
results. The symbol * indicates statistical significance, p,0.05.
doi:10.1371/journal.pone.0028534.g004

Statins Induce CCR7 and Athrosclerosis Regression
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Discussion

Statins are potent inhibitors of cholesterol biosynthesis, and

through the SREBP transcriptional factors they stimulate

expression of many target genes, including that of the LDL

receptor. In clinical trials, statins are beneficial in the primary and

secondary prevention of coronary heart disease (reviewed in [1]). It

has been suggested that there are a number of benefits to the

arterial wall beyond LDL lowering[20]. Indeed, recent studies

indicate that some of the cholesterol-independent or ‘‘pleiotropic’’

effects of statins involve improving endothelial function, enhancing

the stability of atherosclerotic plaques, decreasing oxidative stress

and inflammation, as well as inhibiting the thrombogenic response

[22]. In this report, we describe another effect of statins, namely,

their promotion of the depletion of CD68+ cells from plaques in a

CCR7 dependent fashion.

We have previously reported that CCR7 was induced in plaque

CD68+ cells and that it was functionally required for their

emigration to regional and local lymph nodes when the

hyperlipidemic plasma environment of the apoE-/- mouse was

normalized [12]. Here we have also found CCR7 function to be

required for the effects of the statins on regression. There was

some reduction in plasma cholesterol levels associated with statin

treatment, though as noted earlier, they were still above the level

that causes atherosclerosis progression [7,17]. Still, this may have

been sufficient to stimulate SREBP processing in the plaque

CD68+ cells, or the effects of the statins on cellular sterol status in

the plaque were more pronounced than the plasma levels of non-

HDL cholesterol indicate. Certainly, in studies in vitro, the statins

appeared to directly regulate CCR7 gene expression, not only via

SREBPs (particularly SREBP-2) through the SRE, but also

through chromatin remodeling.

Given the ability of statins to induce CD68+ cell emigration

from mouse plaques, an obvious question is why these potent

regulators of SRE-dependent transcription have not been more

effective in promoting plaque regression in clinical trials. At best,

after 2 years of intensive therapy reduced plaque volume by less

than 1% when assessed by intravascular ultrasound (IVUS) [5].

Note that IVUS is sensitive to plaque size, not composition. If in

the clinical studies there was enrichment of the plaque collagen as

in the statin-treated mice, a real possibility is that IVUS would not

have detected a change because it was the composition, not the

size, of the plaques that was modified. Improved imaging

techniques will be needed to resolve this issue in clinical studies.

Figure 5. Statins regulate CCR7 expression through modulating SREBP-2. A) Luciferase assays were performed in RAW264.7 cells co-
transfected with expression plasmids for SREBP-2 and a series of CCR7 reporter constructs in the absence (DMSO) and presence of rosuvastatin
treatment. Relative luciferase units (RLU) normalized to b-galactosidase activity are shown. B) The consensus SRE-binding site in the -0.32 kb CCR7-
luciferase reporter was mutated as indicated. COS7 cells were co-transfected with an empty vector (pCDNA3) or mature SREBP-2, along with either
the wild type or mutated SRE-reporter construct and RLU measured as above. C) RAW264.7 cells were transfected with an SREBP-2 expression plasmid
or control empty vector control, and expression of CCR7 was determined by RT-PCR. D) SREBP-2 and E) CCR7 mRNA expression was measured by RT-
PCR after siRNA knockdown with a scrambled siRNA control or a specific siRNA against SREBP-2 in the absence and presence of 5 mM rosuvastatin.
The symbol * indicates statistical significance, p,0.05.
doi:10.1371/journal.pone.0028534.g005

Statins Induce CCR7 and Athrosclerosis Regression
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Another possibility for the apparent discrepancy between the

present and clinical results is that the SRE pathway remains more

down-regulated in human CD68+ plaque cells, even with LDL

lowering, and that an increase in HDL is necessary. This would be

consistent with the meta-analysis that showed the optimal setting

for clinical regression was when LDL was lowered and HDL was

raised [23], and that even with lowered LDL, patients with low

HDL were not protected from coronary artery disease risk

Our findings indicate that the mechanism of SREBP-2-

dependent induction of CCR7 by rosuvastatin is mediated in part

by the removal of the Class II HDACs, HDAC6 and HDAC7

from the CCR7 promoter. And although we only examined

rosuvastatin in these mechanistic studies since it produced a more

robust induction of CCR7 compared to atorvastatin, we would

expect that atorvastatin would use the same mechanism of

regulating CCR7 expression. Corepressor HDACs are thought

to repress transcription by associating with gene promoters and are

replaced by stimulating coactivator HATs (e.g. p300) for

subsequent activation upon signal transduction, which is what

we observe upon CCR7 induction by statins through SREBP-2.

HDAC7 appears to be upregulated in mouse models of

atherosclerosis [24], consistent with the very low expression of

CCR7 in CD68+ cells from atherosclerotic plaques [12]. HDAC6

is largely a cytoplasm enzyme that acetylates and modulates alpha-

tubulin and Hsp90, however a portion of HDAC6 also resides in

the nucleus and has been shown to be bound to chromatin,

deacetylase histone N-terminal tails, and repress gene expression

(reviewed in [25]). Given the role of cytoplasmic HDAC6 in cell

migration via changes in the cytoskeleton [26], it is tempting to

speculate that dismissal of HDAC6 from nuclear chromatin upon

statin treatment could increase cytoplasmic pools of HDAC6,

thereby coupling the induction of CCR7 expression by statins with

cell migration. Although HDAC7 mice are embryonic lethal [27],

HADC6 deficient mice are viable and fertile [28], and it will be

interesting to see in future studies if regression of atherosclerosis is

impaired in HDAC6 deficient mice upon statin treatment.

Taken together, our findings indicate that statins, in addition to

their traditionally considered effects on atherosclerosis by

retarding plaque progression through lowering LDL-C, may also

have additional clinical benefits by accelerating plaque regression

through enhancing CCR7 expression and emigration of CD68+
macrophages [29]. Importantly, the beneficial effects would have

been missed if changes in plaque size had been the sole criterion of

success.

Materials and Methods

Experimental Design & Animals
The NYU School of Medicine Institutional Animal Care and

Utilization Advisory Committee approved all animal procedures.

Protocol Number: 081003-02 Title: Molecular Regulation of

Atherosclerosis Regression; Approval date: 11/18/10. Four to

five-weeks old apoE-/- mice (n = 60) were weaned onto 0.15%

cholesterol and 21% fat Western-type diet (WD; Research Diets,

Inc) for 16 weeks to develop atherosclerotic lesions. Fifteen mice

were sacrificed for baseline analysis and the remaining forty-five

were divided into three groups: The first group continued on the

western diet, the second and third groups, respectively, were fed

Figure 6. Statins induce acetylation of histones H3 and H4, with the dismissal of HDACs and recruitment of SREBP-2 and p300 to
CCR7. Luciferase assays were performed in RAW264.7 cells co-transfected with HDAC expression plasmids, the SREBP-2 expression plasmid, and the
CCR7 promoter-luciferase construct. B) RAW 264.7 cells were treated with 5 mM rosuvastatin and the recruitment of acetylated histone H3 and H4 at
the promoter region of the CCR7 gene was assessed by ChIP assays (C). RAW264.7 cells were mock treated or treated with 5 mM rosuvastatin. ChIP
assays of the CCR7 promoter were performed using antibodies against HDAC6, HDAC7, SREBP-2 and p300 in RAW264.7 cells either mock treated or
treated with rosuvastatin. % Input values represent the mean 6 SEM.
doi:10.1371/journal.pone.0028534.g006

Statins Induce CCR7 and Athrosclerosis Regression
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western diets containing atorvastatin and rosuvastatin for 4 weeks

at concentrations of 0.016 g per kg diet for rosuvastatin and 0.01 g

per kg diet for atorvastatin. This yields 2.4 mg/kg mouse per day

for rosuvastatin, and 1.5 mg/kg mouse per day for atorvastatin,

assuming a 30 g mouse consuming 5 g food/day. The Ccr7-/-

mice [14] (from S. Lira, Mount Sinai School of Medicine, with

permission from M. Lipp, Max Delbrück Center for Molecular

Medicine) were crossed with apoE-/-mice to generate Ccr7-/-/

apoE-/- double-knockout mice. At 4 weeks of age, mice were

placed on WD for 16 weeks, and then switched to either WD-

containing atorvastatin or rosuvastatin at the concentrations

described above for 4 weeks. At this point, analyses were

performed as described below.

Lipid and Lipoprotein Analyses
Blood samples were obtained from the retro-orbital plexus of

the various strains of mice studied. Plasma total cholesterol levels

were determined by colorimetric enzymatic assays that was

adapted to 96-well plate formats (Infinity Total Cholesterol

Reagent or Infinity Triglyceride Reagent, Sigma). Plasma HDL

cholesterol was determined by precipitating non–HDL cholesterol

(Wako Diagnostic) and then assaying the remaining HDL

cholesterol by means of the Infinity Total Cholesterol Reagent.

Labeling of Blood Monocytes
For selective labeling of Ly-6Chi (CCR2 positive) and Ly-6Clow

monocytes, we used the protocols as described in [19,30].

Fluorescent beads in the plaque were counted in a blinded fashion.

Tissue Processing
Mice were sacrificed and the portion of hearts containing the

proximal aorta (aortic root) was collected and processed for frozen

blocks as previously described [12]. Frozen serial sections were cut

at 6-mm thickness and mounted on positively charged slides (Color

Frost Plus; Fisher Scientific).

Histology, Immunohistochemistry, and Morphometric
Analyses

Every fifth slide from the serial sections was stained with CD68

antibody as previously described [31] and used for morphometric

analysis and as a guiding slide for laser capture microdissection

(see below). The intimal and CD68-immunostained areas were

quantified by computer-aided morphometric analysis (Image Pro

Plus 3.0 software; Media Cybernetics, Silver Spring, MD)

performed on digitized microscopic images. In order to assess

cholesteryl ester content, slides were stained with oil-red-O as

previously described [32]. Collagen content was assessed by Sirius

Red staining [33]. MCP-1 immunostaining was performed using a

biotin-linked anti-mouse MCP-1 antibody (BioLegend- cat

#505908,) and visualized using the VECTASTAINH ABC-AP

system coupled with the Vector Red substrate (Vector labs) and

imaged under a Ziess confocal fluorescent microscope.

Laser Capture Microdissection and RNA Extraction
For laser capture microdisssection (LCM), all reagents were

maintained and all procedures were performed under RNase-free

conditions. Tissue sections were stained with hematoxylin & eosin

according to a quick staining protocol. Briefly, sections were fixed

in 70% ethanol for 1 min, washed in H2O, stained with Mayer’s

hematoxylin (VWR Scientific) for 1 min, washed in H2O,

incubated in PBS (to develop blue color) for 15 sec, washed in

H2O, partially dehydrated in 70% followed by 95% ethanol,

stained in eosin Y (VWR Scientific) for 5 sec, washed in 95%

ethanol, and completely dehydrated in 100% ethanol (30 sec),

xylene (30 sec) and xylene (5 min). After air-drying for 10 min,

foam cells could be identified under a microscope and be verified

by the CD68 staining on the guiding slides. Captured tissues from

3,5 animals from the same treatment group and time point were

pooled, and RNA was extracted using the QIAGEN micro RNA

kit with on-column DNase I treatment following the manufactur-

er’s instruction. The concentration of RNA was determined by the

Ribogreen RNA Quantitation kit (Molecular Probes), and the

RNA quality verified with the Agilent 2100 Bioanalyzer.

Quantitative Real-Time (RT)-PCR
RNA abundances were determined by RT-PCR using 100pg of

total RNA. Concentrations of total RNA were measured by

spectrophotometry (Nanodrop ND-100 spectrophotometer from

Biolabs). Reverse Transcriptase PCR was performed on samples

using the iScript cDNA Synthesis kit (Bio Rad), per manufacturer’s

protocol.

The mRNA levels of CCR7, SREBP-1a, SREBP-1c and

SREBP-2 were normalized against 18S rRNA. The primer and

probe sequences used are the same as described either in the

following references [34,35] or were: SREBP1a: 59-GCGCC-

ATGGACGAGCTG-39 and 59-TTGGCACCTGGGCTGCT-

39; SREBP1c: 59-GGAGCCATGGATTGCACATT-39, and 59-

GCTTCCAGAGAGGAGGCCAG-39; SREBP2: 59-CCCTTG-

ACTTCCTTGCTGCA-39, and 59-GCGTGAGTGTGGGCGA-

ATC-39. For the laser-captured CD68+ cell data, the results are

from two independent samples, each one representing a pool of

foam cell RNA from three animals.

Cell Culture and Treatments
RAW264.7 cells were obtained from ATCC and maintained in

Dulbecco’s modified Eagle’s medium with 10% FBS. In the time

course experiment, cells were treated with serum-free media

containing DMSO or one of the following: rosuvastatin (Astra-

Zeneca); lovastatin (Sigma); atorvastatin (Pfizer). All statins were

used at a final concentration of 5 mM. Cells were harvested for

total RNA using Trizol (Sigma) according to the manufacturer’s

instructions at 1, 3, 6, and 24 hours post treatment. In the siRNA

experiment, RAW264.7 cells were treated with 5 mM of

rosuvastatin and harvested for total RNA using Trizol (Invitrogen)

according to the manufacturer’s instructions.

Transfections and Luciferase Assays
Full length and mature forms of mouse SREBP-1a, -1c and -2

expression plasmids were kindly provided by Dr. Timothy

Osborne (University of California, Irvine, California) [36]. siRNAs

for SREBP-2 and Control siRNA were purchased from Thermo

Fisher, and transfected according to the manufacturer’s instruc-

tions. Seventy-two hours after transfection, luciferase activity was

assessed and normalized for cotransfection efficiency by b-

galactosidase activity. The endogenous gene expression was

determined by qRT-PCR.

RAW264.7 cells were transfected by electroporation (Amaxa),

using the manufacturer’s instructions. COS7 cells were transfected

with Lipofectamine 2000 (Invitrogen) as described in Rayner et al

[37]. The CCR7-lucfierase reporter constructs have been

previously described[15]. The mutations in the SRE were

generated using the Multi-site-Quickchange kit (Stratagene)

according to the manufacturer’s protocol using the following

oligonucleotides: forward 59-CCC GAG CCT CAG CCT ATC

TGT CCC CTC AGC A-39; reverse 59-TGC TGA GGG GAC

AGA TAG GCT GAG GCT CGG G-39. The mutations were

confirmed by sequencing. In addition to the substitutions, a single
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nucleotide deletion was also introduced that further disrupted the

SRE. At 24h post transfection, cells were lysed with Passive Lysis

Buffer (Promega) as per the manufacturer’s instructions. The

Luciferase Reporter Assay System (Promega) and the LMax

microplate reader luminometer were used to determine luciferase

activity.

Chromatin immunoprecipitation (ChIP) Assays
ChIP assays were performed as previously described [38].

RAW264.7 cells were plated 24 hours before the treatment of

rosuvastatin for 1h. Then the cells were fixed with 1%

formaldehyde for 10 min at 37uC to cross-link protein-DNA and

protein-protein interactions within intact chromatin. The cross-

linked chromatin was sonicated to shear chromatin fragments to

200–400 bps. Chromatin-protein complexes were immunoprecip-

itated with antibodies against acetyl histone H3 (Millipore; 06-

599), and H4 (Millipore; 12-344), SREBP-2 (Santa Cruz

Biotechnology; sc-13552), p300 (Santa Cruz Biotechnology; sc-

584), HDAC6 and 7 (Cell Signaling Technology; 2162 and 2882).

The salmon sperm DNA/protein A agarose was added. The

antibody was excluded from the immunoprecipitation reaction as

negative control. Samples were then washed, reverse cross-linked,

purified, and subjected to Real-time PCR to assess the association

of these transcription factors on the SRE-containing promoter

region of the CCR7 gene.

Statistics
All data are expressed as average 6 SEM. For lesion

morphometry, the number of animals in each condition is

indicated in the figure legends. For RNA analysis, two pooled

samples were used for each condition. PRISM software (Graph-

Pad, San Diego) was used to analyze differences between samples

by one-way ANOVA with the Bonferroni post-test for differences

between selected pairs of samples. P values of ,0.05 were

considered significant.

Supporting Information

Figure S1 Organization of the CCR7 gene and location
of predicted sterol response elements (SRE). To identify

potential binding sites for transcription factors that may be

important in the regulation of CCR7 gene expression, 6 Kb of the

human and mouse CCR7 upstream regulatory regions were

analyzed by MatInspector (Bioinformatics. 2005; 21:2933-42).

This revealed a conserved sterol responsive element (SRE), in both

human and mouse CCR7.

(PDF)

Figure S2 Expression of SREBP-2 in atherosclerotic
plaques. Aortic arches from 20-week western diet fed donor

apoE-/- were transplanted into wild type (EKO-WT; regression

conditions) (A) or apoE-/- (EKO-EKO; progression conditions)

recipients. At 3 days post-transplant the grafts were harvested.

Serial aortic cryosections were immunostained for SREBP-2. No

staining above background is evident in the presence of the

secondary antibody alone (not shown). The striped green

background signal is due to autofluorescence from the internal

elastic lamina from the medial layer of the artery.

(PDF)

Figure S3 The histone deacetylase inhibitor trichostatin
A (TSA) induces CCR7 mRNA expression. RAW macro-

phages were incubated for 24h in medium with 1% FBS and

DMSO vehicle or 20ng/ml TSA for 24 h. Transcripts were

analyzed by real time Q-PCR. Values indicate expression of

CCR7 normalized to cyclophilin and levels are presented as fold

induction relative to the expression in DMSO-treated cells, which

was arbitrarily set to 1.

(PDF)
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