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Abstract

Background: Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes
activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze
expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to
identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC.

Methodology/Principal Findings: We noted coordinated promoter demethylation and simultaneous transcriptional
upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters
demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with
upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers
and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic
cells, and transformed NIH3T3 cells.

Conclusions/Significance: Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs in
aerodigestive cancers, and BORIS is implicated in the coordinated promoter demethylation and reactivation of
epigenetically silenced genes in human cancers.
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Introduction

Epigenetic alterations in promoter methylation and histone

acetylation have been associated with cancer-specific expression

differences in human malignancies.

Methylation has been primarily considered as a mechanism of

tumor suppressor gene (TSG) inactivation, and comprehensive

whole-genome profiling approaches to promoter hypermethyla-

tion have identified multiple novel putative TSGs silenced by

promoter hypermethylation.

Indirect evidence supports a role for hypomethylation in tumor

development. Global genomic hypomethylation has been report-

ed in almost all solid tumors [1–3]. Mice with functional

disruption of DNA methyltransferase 1 (DNMT1) function

demonstrate significant genomic hypomethylation in all tissues

and develop aggressive T-cell lymphomas with chromosomal

instability [4]. In solid human tumors, meta-analysis shows

an overall correlation between global hypomethylation and

advanced tumor stage[3].

To date, only sporadic examples of promoter hypomethylation

associated with unmasked expression of putative oncogenes have

been reported, including: R-Ras in gastric cancer [5], c-Neu in

transgenic mouse models [6], the Hox11 proto-oncogene in

leukemia [7], BCL-2 gene hypomethylation and high-level

expression in B-cell chronic lymphocytic lymphomas [8], demeth-

ylation in MMTV/N-rasN transgenic mice [9], and rare

activation of two RAS family members in colon cancer and small

cell lung cancer [10]. These observations demonstrate that proto-

oncogenes with tissue-specific or developmentally restricted

expression—i.e., during early growth, differentiation, or gameto-

genesis—may be inappropriately re-expressed in cancers via

epigenetic alteration, including demethylation.
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HNSCC is useful as a solid tumor model system, due to the

established role of epigenetic changes in its pathogenesis [11], as

well as the availability of normal, minimally transformed cell lines

for use in gene discovery strategies [12]. Using pharmacologic

demethylation in normal, minimally-transformed oral keratinocyte

cell lines combined with Cancer Outlier Profile Analysis (COPA)

in primary tissues as a discovery approach, we were able to define

a set of candidate proto-oncogenes that undergo aberrant

demethylation and increased expression in primary human

tumors.

Functional data and prior published observations suggest that

expression of these genes is associated with tumor promotion.

Additional analyses demonstrated promoter homology and

coordinated upregulation in individual tumors for subsets of these

target genes (proto-oncogenes). We were able to broaden these

observations to a variety of solid tumor types and implicate a key

transcription factor, BORIS, in coordinated epigenetic activation

of proto-oncogenes. These data indicate that aberrant demethyl-

ation of multiple, physiologically repressed proto-oncogenes occurs

in a coordinated fashion in individual tumors from multiple solid

tumor types.

Results

Integrative Discovery of Epigenetically Unmasked Genes
in HNSCC

We hypothesized that normal cell lines contain methylated

genes that are typically repressed in normal tissues, but that these

genes can be re-expressed by pharmacologic manipulation. A

subset of these genes would include candidate proto-oncogenes

activated by demethylation in human cancers that could be further

selected on the basis of primary tumor expression array analysis

using integrative methods. We chose to adapt prior methods of

epigenetic screening using 5-aza/TSA treatment that have been

found to be successful in defining candidate tumor suppressor

genes. Two TERT-transformed normal oral keratinocyte cell lines

were treated with 5 mM 5-aza deoxycytidine for four days and

Trichostatin A for one day prior to harvesting total RNA for

expression array analysis using dChip [12,13].

Concurrently, we performed a comparative epigenetic ap-

proach utilizing Cancer Outlier Profiling Analysis (COPA) using

49 primary HNSCC and 19 normal mucosal tissues assayed for

mRNA expression on the Affymetrix U133A mRNA expression

microarray platform (16,383 probe sets) compiled from prior work

and public sources of expression (oncomine.org). COPA is

particularly useful to determine differences in expression for

particular genes in subsets of primary tumor samples, with

improved performance compared to statistical tools that rely on

median or average expression difference between two datasets

[14]. We calculated COPA at the 90th percentile for our final

rankings of all 16,383 features of the arrays, as this resulted in the

most pronounced differences in expression with our sample size.

Statistical significance of the expression differences in the COPA

diagrams were measured by Mann-Whitney U test (Figure 1B).

We determined gene ranks in two ways: 1) COPA ranking at the

90th percentile of upregulation in primary tumor tissue versus

normal tissue expression and 2) upfold regulation after pharma-

cologic demethylation after dChip normalization in cell lines.

An integrative rank product was calculated (Figure 1A). Using a

significance threshold (a= 0.005) and subsequent random permu-

tation of our rank-lists, we identified 106 genes that were

significantly differentially upregulated based on epigenetic screen-

ing and tissue microarray expression (Table S1). We empirically

selected the top scoring 26 genes for further analyses. Seventeen of

26 genes containing promoter-associated CpG islands utilizing the

MethPrimer software were selected for further studies[15].

In a separate parallel analysis to account for possible activated

proto-oncogenes not included in the U133A platform, we analyzed

32,500 genes in the U133plus2 platform ranked on the sole basis of

5-aza/TSA upfold regulation in our normalized cell lines that

were not included in primary tumor expression array analysis. We

identified 46 target genes with .2-fold upregulation at 90%

confidence interval and an average difference value expression

over baseline greater than 50. Among these, 30 were confirmed to

have CpG islands (Table S2).

Validation of tumor specific promoter demethylation of
target genes

CpG islands in the promoter region of the 47 selected gene

targets with CpG islands were bisulfite sequenced in normal

mucosal samples from patients without a cancer diagnosis to

confirm epigenetic silencing in mature upper aerodigestive tract

mucosa (Tables S1 & S2). Only 18/47 promoter regions demon-

strated complete methylation at all sequenced CpG sites in all

normal tissues. These targets were subsequently bisulfite se-

quenced in 10 primary HNSCC to assay for the presence of

hypomethylation. (Figure 2A). Of these targets, 9/18 showed

demethylation (see Table 1) in tumor tissues in greater than 30%

of the samples, including TKTL1 (4/10, p,0.05), H19 (6/10,

p,0.05), MAGEA2 (5/10, p,0.05), MAGEA3/6 (5/10, p,0.05),

MAGEA4 (5/10, p,0.05), MAGEA11 (5/10, p,0.05), GPR17 (3/

10, p,0.10), GRIN1 (6/10, p,0.05), C19ORF28 (5/10, p,0.05),

(chi-squared). To confirm transcriptional upregulation of target

genes with 5-aza/TSA treatment in our cell line system (seen in

Figure S1), we performed quantitative RT-PCR on 5-aza/TSA-

treated normal cells compared to mock-treated cells for these nine

genes (Figure 1C). Each gene demonstrated significant upregula-

tion by 5-aza/TSA treatment in at least one cell line supporting

functional gene regulation by promoter hypomethylation. Using

the initial cohort of 10 primary tumors, we performed a

preliminary analysis to determine the relationship of promoter

hypomethylation to expression. QRT-PCR expression with the

bisulfite sequencing of the respective promoter below is shown in

Figure 2b–j. We employed the Mann-Whitney U test to compare

QRT-PCR expression of the methylated and unmethylated

groups. Three genes had statistically significant increased

expression in the unmethylated group: MAGEA2 (p = 0.007),

MAGEA3/6 (p = 0.007), MAGEA11 (p = 0.05). Possible associations

between expression and promoter methylation status in this small

cohort were also suggested for TKTL1 (p = 0.06), MAGEA4

(p = 0.09), C19ORF28 (p = 0.09), GRIN1 (p = 0.06), yet H19

(p = 0.7) but GPR17 (p = 0.38) did not show this association.

Functional validation of candidate genes
We then performed transient transfections to evaluate and/or

confirm growth-promoting effects of these nine targets that show

tumor-specific promoter hypomethylation. Although H19 codes

for a nontranslated RNA transcript, the H19 product appears to

induce growth in lung and breast cancer cell lines [16] and may

induce drug resistance in hepato-cellular carcinoma [17].

Figure 3A shows results obtained by transient transfection of an

H19 construct into OKF6-Tert-1R cells. At four days, there was a

41.4% (615%) increase in growth over the transfected empty

vector. The MAGE family consists of related family members that

are known to be upregulated in a variety of tumor types[18], but

have recently been implicated in inducing transcriptional repro-

gramming in tumor cells[19]. MAGEA2 induced a 72.7% (626%)

increase in growth at day three (Figure 3B). MAGEA4 transfection

Coordinated Unmasking in HNSCC
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induced a 203% (617%) increase in growth (Figure 3D).

Functional growth differences were tested, but not found for

C19ORF28.

In Figure 3C, TKTL1 induced a 50.1% (638%) increase in

growth at day four. Enhanced expression of TKTL1 has recently

been implicated in the conversion of cells to aerobic, glycolytic

metabolism as well as increased proliferation in colon cancer cells

[20–25]. TKTL1 is independently associated with poor survival in

laryngeal carcinoma, colon and urothelial cancers, as well as

distant metastasis in ovarian carcinoma [22,23,26] To further

confirm TKTL1 as a candidate proto-oncogene in HNSCC, we

performed adherent colony focus assays in TKTL1 low-

expressing HNSCC cell lines JHU-011 and JHU-028, and found

significant growth increase in both cell lines (Figure 4 A,B). We

then employed shRNA constructs in a TKTL1 high-expressing

cell line UM-22B in anchorage independent growth assays, and

noted a dramatic decrease in size and number of colonies (Figure 4

C,D) compared to mock transfected cells.

Candidate proto-oncogene expression and promoter
demethylation in other human cancer types

To determine if candidate proto-oncogene expression was

altered in a broader range of tumor types, we analyzed expression

data available through the expO datasets for 1041 human tumors

of all histologies [27]. Data was first median-expression normal-

ized by each array and subsequently by median normalization by

probe set feature across the 1041 tumors from many cancer types

including lung and urothelial, but not HNSCC. We chose a subset

of these tumors, non-small cell lung cancer (NSCLC), lymphoma,

melanoma, pancreatic cancer, prostate cancers, and urothelial

cancers, for presentation (Figure 5A–D). H19 was significantly

upregulated in NSCLC (p = 0.008) and in urothelial cancer

(p = 0.0013), as calculated by Mann-Whitney U test comparing

array-normalized expression in tumor type to all other tumors. We

noted significantly increased expression of MAGEA2 in NSCLC

(p = 0.005) but not in urothelial cancers (p = 0.18). TKTL1 also

showed overexpression in NSCLC (p = 0.05), but not urothelial

Figure 1. Integrative epigenetic screening strategy and strategy for validation of targets. (a) Initially, minimally-transformed cell lines
were treated with 5-aza-deoxycytidine and TSA to unmask epigenetically silenced genes. In order to correlate epigenetic unmasking with meaningful
upregulated cancer-specific genes, we performed a comparative epigenetic approach with Cancer Outlier Profiling Analysis (COPA) using 49 tumors
and 19 normal tissues that had been characterized on the Affymetrix U133A mRNA expression microarray platform. Genes (by probeset) were ranked
first by degree of upfold regulation with 5-aza/TSA treatment and second by COPA upregulation at the 90th percentile. The product of these ranks
was used to rank all targets and a significance threshold (a= 0.005) was chosen resulting in 106 genes of which the top 26 genes were evaluated. In
order to not exclude genes outside the U133A platform, we also considered all other genes in the U133 Plus 2.0 platform on the sole basis of 5-aza/
TSA upfold regulation. Genes were subsequently screened by presence of CpG islands using MethPrimer and all genes were validated by bisulfite
sequencing of tumor and normal tissues, and QRT-PCR of cell lines and primary tumors. Of the integrative targets 7/26 passed our validation, while 2/
46 of the non-integrative targets passed. Functional experiments were then conducted on these genes. (b) Representative COPA graph of MAGEA3
demonstrating the statistical approach to finding candidate overexpressed oncogenes. Difference in tumor (n = 49) versus normal (n = 19) expression
was significant, p value,0.001 measured by Mann-Whitney U test. (c) Promoter demethylation causes transcriptional upregulation. Upregulation
after treatment with 5-aza/TSA is shown in cell lines as measured by QRT-PCR. The ratio of 5-aza/TSA treated expression to baseline is shown for
C19ORF28, H19, TKLT1, GPR17, GRIN1, MAGEA2, MAGEA3/6, MAGEA4, MAGEA11. Each gene demonstrated significant upregulation by 5-aza/TSA
treatment in at least one cell-line. Error bars show SE.
doi:10.1371/journal.pone.0004961.g001
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cancer (p = 0.55), and MAGEA4 was overexpressed in NSCLC

(p = 0.04), but not significantly so in urothelial cancer (p = 0.12). In

order to confirm target-specific demethylation noted in primary

tumors, we devised a rapid, quantitative assay for specifically

measuring non-methylated promoters, which we termed Quanti-

tative Unmethylation-Specific PCR (QUMSP). Twenty-five

HNSCC tumors and 11 upper aerodigestive mucosal samples

were assayed for promoter demethylation (Figure 3E). Tumor-

specific demethylation was found in GRIN1 (p = 0.005), MAGEA11

(p = 0.001), and MAGEA2 (p = 0.002). We performed a similar

analysis using a separate, independent cohort of 13 NSCLC

samples with 14 lung samples from patients without neoplastic

disease and confirmed promoter hypomethylation in target genes.

Significant differences at Æ,0.05 in QUMSP were found in H19

(p = 0.02), MAGEA11 (p = 0.03), MAGEA2 (p = 0.005), and MA-

GEA3/6 (p = 0.02). See Figure 3F.

Aberrant expression of candidate proto-oncogenes
occurs in a coordinated fashion in individual primary
tumors

During these analyses, we quickly noted that transcriptional

upregulation via promoter hypomethylation tended to occur

synchronously in a subset of tumors. In our cohort of 49 primary

HNSCC assayed via expression array analysis, we constructed a

matrix of Pearson’s correlation coefficients between the expression

levels of each target (Figure 6A). For our nine target genes,

significant clustering of increased expression was noted within the

MAGEA family of genes. H19 was not included because of its

absence on the U133A platform. A separate cluster of associated

overexpression was noted for TKTL1, GRIN1, and GPR17. From

NSCLC expression data derived from the expO datasets we

created similar matrices to examine correlations between individ-

ual genes. We noted that MAGEA family expression and H19

expression showed highly significant correlations in individual

NSCLC (see Figure 6B). In contrast, there were no target-target

correlations for NSCLC expression of the other cluster (TKTL1,

GRIN1, and GPR17) that exhibited coordinated expression in

HNSCC.

Expression patterns correlate with promoter homology
for promoter demethylated target genes

We then wanted to determine if promoter homology was

associated with the linked expression of the two proto-oncogene

clusters. We subsequently used the European Bioinformatics

Institute’s ClustalW tool (Figure 6C) for phylogram analysis after

multiple sequence alignment of the respective promoters. To

confirm homology quantitatively, we used EMBL-EBI’s Promo-

terWise comparison tool which found significant pair-wise areas of

promoter homology in GPR17, GRIN1, and TKTL1. As expected

from earlier studies, the MAGE-A family clustered together, as the

MAGE-A family members and H19 are known to have consensus-

binding sites for methylation-sensitive binding factors CTCF and

CTCFL/BORIS. In addition, this second group of GRIN1, GPR17,

and TKTL1 clustered together by sequence homology.

Finally, we wanted to see if the degree of promoter

hypomethylation was correlated in individual tumors. For both

primary HNSCC (Figure 6D) and NSCLC (Figure 6E), multiple

significant correlations between methylation status were found

between targets, but methylation status did not cluster in groups

defined by the MAGE-A family/H19 expression cluster or by the

TKTL1, GRIN1, GPR17 cluster. Rather, there were significant

correlations between all identified candidate proto-oncogenes.

Hypomethylation, therefore, appeared to occur in a related

fashion in individual tumors for all target genes, but the

concurrent expression of genes within the two clusters was

associated with promoter homology rather than methylation

Table 1.

Accession Symbol Description

COPA Score
(Tumor 90th COPA
percentile/Normal
90th)

Upregulated
with 5-Aza
(fold change)

Methylated in
Normal Upper
Aerodigestive
Tissue

Unmethylated
in HNSCC
Tumor Tissue

NM_021731 C19ORF28 Chromosome 19 ORF 28 N/A 3.7 Y Y

AL575306 H19 H19 Maternally imprinted N/A 9.0 Y Y

Z49258 TKL1 TKL1-transketolase-like 2.5 189.0 Y Y

NM_005356 GPR17 G protein-coupled receptor 17 15.9 2.8 Y Y

NM_007327 GRIN1 GRIN1-NMDA receptor 1 isoform
NR1-3 precursor

5.1 16.4 Y Y

U82671 MAGE A2 Melanoma Antigen Family A2 160.0 2.0 Y Y

BC000340 MAGE A3 Melanoma Antigen Family A3 57.6 2.9 Y Y

AW438674 MAGE A4 Melanoma Antigen Family A4 39.6 18.0 Y Y

BC003408 MAGE A11 Melanoma Antigen Family A11 19.8 2.7 Y Y

doi:10.1371/journal.pone.0004961.t001

Figure 2. Promoter methylation status in primary tissues. (a) Shown are the bisulfite sequencing results in 10 tumors and 10 normals for:
TKTL1 (4/10, p,0.05), H19 (6/10, p,0.05), MAGEA2 (5/10, p,0.05), MAGEA3/6 (5/10, p,0.05), MAGEA4 (5/10, p,0.05), MAGEA11 (5/10, p,0.05), GPR17
(3/10, p,0.10), GRIN1 (6/10, p,0.05), C19ORF28 (5/10, p,0.05). (b–j) QRT-PCR expression with the bisulfite sequencing of the respective promoter
below (white is unmethylated, grey is methylated). Significance was measured by comparison of expression of methylated to unmethylated by Mann-
Whitney U test. Significance was found in MAGEA2 (p = 0.007), MAGEA3/6 (p = 0.007), MAGEA11 (p = 0.05). Strong associations between expression
and promoter methylation status were also found for TKTL1 (p = 0.06), MAGEA4 (p = 0.09), C19ORF28 (p = 0.09), GRIN1 (p = 0.06). H19 (p = 0.7) and
GPR17 (p = 0.38) did not show associations between bisulfite sequencing and expression in this cohort. Error bars depict standard error.
doi:10.1371/journal.pone.0004961.g002
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Figure 3. Transient transfection of target genes in minimally transformed oral keratinocytes. (a) Transient transfection of an H19
construct into OKF6-Tert-1R cells (at day 4, 41.4%615% growth increase). (b) Transient transfection of an MAGEA2 construct into OKF6-Tert-1R cells
(at day 3, 72.7%626% growth increase). (c) Transient transfection of an TKTL1 construct into OKF6-Tert-1R cells(at day 4, 50.1%638% growth
increase). (d) Transient transfection of MAGEA4 construct into OKF6-Tert-1R cells (at day 4, 203%617% growth increase). For (e) we developed a
quantitative assay for measuring unmethylated promoters, termed Quantitative Unmethylation-Specific PCR (QUMSP). QUMSP percentage of
C19ORF28, GRIN1, H19, MAGEA11, MAGEA2, MAGEA3/6, GPR17, and TKTL1 was conducted in a separate cohort of head and neck cancer patients using
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status. This implied that specific transcriptional factors may be

involved in the regulation of epigenetic unmasking and/or

transcriptional activation based on promoter homology among

these candidate proto-oncogenes.

BORIS expression is associated with proto-oncogene
activation in primary tumors, induces promoter
demethylation, candidate proto-oncogene expression,
and cell transformation

The obvious presence of several MAGE genes among our

targets prompted us to study upstream regulatory pathways of

known cancer-testis antigens. BORIS and CTCF are a unique

cognate pair of transcriptional factors involved in epigenetic

regulation that share an identical DNA-binding domain. BORIS is

transcriptionally silenced in most normal tissues, but expressed in

normal embryonic, germ cell, and cancer tissues. We determined if

expression of BORIS correlated with candidate proto-oncogene

expression in a separate cohort of 36 primary HNSCC. Figure 7A

presents a heat map constructed from median normalized, qRT-

PCR expression data of our proto-oncogenes, sorted by BORIS

expression. In these 36 cancers, BORIS overexpression was

significantly correlated to overexpression of 6/9 proto-oncogenes

including: MAGEA3/6 (p = 0.0017), MAGEA4 (p = 0.04), MA-

GEA11 (p,0.001), GPR17 (p = 0.01), and C19ORF28 (p = 0.001).

To further examine the correlation of BORIS expression with our

target genes in solid cancers, we analyzed the expO dataset data

for 1041 human tumors of a wide variety of tissue sources and

histologies. Significant positive correlation of BORIS expression

with expression of each of our nine proto-oncogenes was noted:

GRIN1 (p,0.001), C19ORF28 (p,0.001), H19 (p,0.001), MA-

GEA11 (p,0.001), MAGEA2 (p,0.001), MAGEA3/6 (p = 0.003),

Figure 4. TKTL1 transient transfection and transcriptional repression with shRNA. (a) TKTL1 forced overexpression via transient
transfection in background low expressing JHU-011 cells induces increased anchorage dependent colony formation and (b) TKTL1 shRNA in high-
expressing FaDu cell line induces growth inhibition. (c) Anchorage independent growth of UM-22B cells is significantly inhibited by TKTL1 shRNA (d),
with decrease in colony size. (* = p,0.01, ** = p,0.001, chi square).
doi:10.1371/journal.pone.0004961.g004

25 tumors and 11 upper aerodigestive mucosal samples to assay promoter demethylation. Statistically significant differences were found in GRIN1,
MAGEA11, MAGEA2. Next promoter demethylation was considered as a cause of mRNA expression increases seen in the expO dataset. (f) shows the
QUMSP results for an independent cohort of 14 lung normals and 13 lung tumor patients. Significant differences in QUMSP were found in H19,
MAGEA11, MAGEA2, and MAGEA3/6.
doi:10.1371/journal.pone.0004961.g003
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Figure 5. Overexpression and demethylation in other human cancers. The expO dataset repository was mined for tumor tissue gene
expression measured by the Affymetrix U133 Plus 2.0 mRNA expression platform. Initially data was median-normalized by expression array and each
gene was median normalized for this figure. Only the subsets of non small cell lung cancer, lymphoma, melanoma, pancreas cancer, and urothelial
cancer are displayed. (a) shows the expression of H19 in these cancers. (b) MAGEA2 expression, (c) TKTL1 expression, and (d) MAGEA4. Statistical
significance was measured in each tumor type by comparing gene expression in the tumor type to expression in all the remaining 1041 samples.
Tumor types without p values did not approach statistical significance. Lung and urothelial showed significant expression overlap.
doi:10.1371/journal.pone.0004961.g005
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Figure 6. Gene expression and demethylation correlation. (a) Shows the gene expression correlation p-value matrix for the coexpression for
each gene pair across all tumors. This comparison shows the correlation of each gene pair in 49 head and neck tumors. (b) Gene pair expression p-
value correlation matrix for 80 NSCLC. Of note C19ORF28 is not tiled on this array platform. (c) Analysis of promoter regions for the genes. Shown is a

Coordinated Unmasking in HNSCC
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MAGE4 (p,0.001), TKTL1 (p,0.001), GPR17 (p,0.001), (Figure

S2). Although BORIS transcripts are usually undetectable in

normal cells, we determined that 59% of all tumors have a BORIS

level that exceeds the median expression of all genes, and 90% of

tumors have a BORIS expression level .25% of median

expression value for all genes, indicating that aberrant BORIS

expression is a common event in human cancer.

To explore the functional and epigenetic effects of BORIS,

tetracycline inducible pBIG2i-BORIS constructs were transiently

transfected into NIH-3T3 and OKF6-Tert1R cell lines in the

presence of doxycycline, resulting in increased adherent cell

growth in wild type, BORIS non-expressing NIH3T3, and OKF6-

Tert1R cell lines. 3T3 cells had a 77%634% growth increase at

day three. OKF6 cell lines had a 161%678% growth increase at

day three (Figure 7B). Importantly, these effects were seen when

levels of BORIS expression was regulated to be similar to the levels

found in primary tumors.

This effect was not seen with increased concentrations of

doxycycline that induced high levels of BORIS transcripts. An

analysis of transcripts showed that expression of seven of nine

target genes was significantly increased in OKF6-Tert1R cell

expressing BORIS (Figure 7E). To test if BORIS expressed at low

levels might contribute to transformation, we studied NIH3T3

cells for anchorage independent growth. After 12 days, significant

numbers of colonies (30+/23) were observed in tests of BORIS-

expressing cells but not in cells transfected with a control plasmid

(Figure 7C).

Finally, to test the possibility that BORIS may be associated

with epigenetic alterations as well as transcriptional upregulation

of our target genes, we quantitatively assayed for methylation

status of our candidate proto-oncogenes after BORIS transfection

and noted that six out of nine targets (C19 ORF28, GPR17,

GRIN1, MAGEA2, MAGEA3/6, and MAGE11) showed a

greater than 100% increase in demethylated promoter as early

as 48 hours after induction of BORIS (Figure 7D).

Discussion

The data presented above indicate that HNSCC and NSCLC

undergo activation of candidate proto-oncogenes with associated

demethylation in a coordinated fashion in individual tumors. We

were able to demonstrate transformation-associated effects of

BORIS expressed ectopically in BORIS-negative cell lines as well

as growth effects with individual target genes that have been

shown to be epigenetically activated and expressed by BORIS.

However, this does not rule out the contribution of as yet

unidentified genes to BORIS related effects or a cooperative effect

between identified target genes. The lack of direct correlation of

demethylation of promoter and increased expression in some of

these targets (Figure 2) may simply be a reflection of the small

cohort used to test this association in HNSCC, but may also be

due to alternate mechanisms of transcriptional control of these

genes other than promoter methylation status, including other

promoters, repressors, or mediators (e.g. BORIS). Cancer testes

antigens include four of our genes, MAGE A2, A3/6, A4, A11, are

part of the melanoma antigen family A (MAGE-A) family of genes

initially discovered as targets for immunotherapy due to their near

exclusive tumor-specific expression, but the MAGE-A family plays

a functional role in cancer development [28]. MAGEA2 binds to

p53-responsive promoters and leads to assembly of a p53/

MAGEA2/HDAC3 protein complex, resulting in transcriptional

silencing of genes ordinarily activated by p53 because of histone

deacetylation. Additionally, different MAGE-A family members

can repress downstream targets of p53, and studies have also linked

MAGE-A family overexpression to chemo-resistance[29,30], and

MAGE family members have been shown to increase cell growth

and inactivate TSG activity [31,32]. Recently, MAGEA has been

shown to repress p53-dependent apoptosis, and has been associated

with resistance to taxanes and alkylating agents in gastric cancer

[33,34]. We found these MAGE family members to show significant

expression in a correlated fashion in HNSCC and NSCLC, and to

reexpress in cell lines treated with 5-aza-deoxycytidine. In primary

tissue some targets expression level was directly correlated to

promoter methylation status.

We found that expression of the MAGE-A family and

expression of H19 appeared to be significantly related in our

primary tumors, supported by data indicating that these targets are

controlled by common methylation-specific transcription factors

[35,36]. H19 forms half of the best-studied example of imprinted-

gene regulation, the IGF2/H19 locus. IGF2 (insulin-like growth

factor 2) is expressed uniquely from the parental allele achieved by

monoallelic methylation of the imprinting control region (ICR) at

11p15.5 [37]. Aberrant hypomethylation at this locus is one cause

of Silver-Russell syndrome—a disease of asymmetry or hemihy-

pertrophy associated with increased risk of malignancies including

craniopharyngioma, testicular seminoma, hepatocellular carcino-

ma, and Wilms tumor [38]. Additionally, several cases of familial

Beckwith-Wiedemann syndrome (BWS), with and without Wilms’

tumors, have been shown to be caused by microdeletions of the

methylation-specific CTCF binding sites in the H19 ICR, a rare

familial cancer syndrome linked to epigenetics [39–41]. H19 and

the MAGE family members showed significant correlation in this

expression and demethylated promoter status in HNSCC and

NSCLC.

Other identified proto-oncogenes in this report have been

implicated recently in tumorigenesis. TKTL1 protein expression is

correlated to worse outcome in patients with invasive colon and

urothelial tumors, and investigators hypothesize that enhanced

TKTL1 expression in tumors increases oxygen-independent

glucose usage [22]. In addition, over-expression of TKTL1 has

since been validated as a potential biomarker and treatment target

in breast cancer [20]. GPR17 and GRIN1 have not been implicated

in carcinogenesis to date. Although we were unable to demon-

strate growth promoting effects of C19ORF28, this does not

exclude the possibility that overexpression of this and any of our

other targets may contribute to a malignant phenotype in other

cell backgrounds, or via other mechanisms—i.e., motility,

invasion, angiogenesis, or apoptosis resistance—or that it may

cooperate with other identified targets to produce phenotypic

effects.

The epigenetic reactivation of TKTL1, H19, MAGEA2,

MAGEA3/6, MAGEA4, MAGEA11, GPR17, GRIN1, and

C19ORF28, genes located at diverse chromosomal loci, occurs

simultaneously in individual primary tumors from multiple tumor

types. This concurrent genome-wide, promoter-specific hypo-

methylation that results in derepression of many potential

oncogenes raises the possibility of a demethylator phenotype

analogous to the CpG island methylator phenotype (CIMP)

phylogram of our promoters of interest based on ClustalW analysis after multiple sequence alignment. The region of significant homology is shown
after sequence alignment and E statistics from EMBL-EBI’s PromoterWise comparison. (d) Promoter hypomethylation (QUMSP) correlation p-value
matrix for HNSCC (25 tumors). (e) Promoter hypomethylation (QUMSP) correlation p-value matrix for NSCLC (13 tumors).
doi:10.1371/journal.pone.0004961.g006
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Figure 7. BORIS transfection studies. (a) BORIS expression correlates with expression of target genes in HNSCC (QRT-PR) heat map (Pearson
correlation) (b) Transient transfection of BORIS construct into NIH-3T3 and OKF6-Tert1R cell lines. BORIS overexpression resulted in increased cell
growth in the 3T3 cell line (at day 3, 77%634% growth increase) and in the OKF6-Tert1R cell line (at day 3, 161%678% growth increase). Cell growth
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initially noted in colon cancer [42,43]. Many proto-oncogenes are

members of the cancer testes antigen family which are ordinarily

repressed via epigenetic mechanisms during development. An

attractive hypothesis is that this phenomenon represents the

coordinated, but pathologic reversal of developmental epigenetic

regulatory patterns in cancer cells. The validity of our whole-

genome integrative approach to screening for epigenetically-

activated genes associated with malignancy is, in fact, confirmed

by the appearance of H19 and the MAGE-A family members

which have been reported to be controlled by epigenetic activation

and show silencing in normal cells. Two separate groups among

our nine genes showed statistically significant correlations for

patterns of expression: 1) MAGEA family members with H19 and

2) TKTL1, GPR17, and GRIN. We were also able to define these

groups according to promoter homology, implicating the partic-

ipation of promoter-specific binding activity in the coordinated

expression of each of these groups and suggesting the existence of

additional common transcriptional activators that recognize the

specific demethylated promoter sequences of these genes. The

strict correlation of BORIS expression with aberrant expression of

multiple growth-promoting proto-oncogenes in a variety of solid

tumors reinforces the postulated role for BORIS as a key

participant in aberrant demethylation and transcriptional activa-

tion of putative oncogenes. This concept is supported by cell line

experiments demonstrating that BORIS expression by itself is

sufficient to simultaneously demethylate and activate the tran-

scription of these genes. However, some reports have shown

melanoma tissue samples that express MAGE-A1 in the absence of

BORIS activation, suggesting that BORIS is not an obligate factor

for activation of these genes [44]. It is of great interest to define the

factors with which BORIS cooperates to induce these epigenetic

and expression changes. Recently, a role for BORIS in histone

demethylation and chromatin remodeling has been demonstrated

[45]. Moreover, regardless of mechanism, our data provide strong

evidence for consideration of BORIS as a dominant controlling

factor for facilitating epigenetic alterations associated with

coordinated demethylation and reactivation of target genes that

are of high value as potential therapeutic and diagnostic targets for

NSCLC, HNSCC, and other tumors.

This simultaneous reactivation of multiple targets provides a

significant challenge to the understanding of the collective, and

perhaps cooperative, effects of this phenomenon in cell transfor-

mation. In particular, single targets may depend on concurrent

activation of, and interaction with, other family members for

oncogenic effect. Other investigators have found some evidence of

coordination of cancer testes antigen family expression and the

possibility of direct interactions [46,47]. In addition, we selected

only the top 26/106 possible targets identified after integrative

analysis in a single solid tumor type for further analysis. We would

expect that future studies of the remaining genes, as well as use of

normal cell lines and tumors derived from other tissues in an

integrative approach, will allow for discovery of additional, novel,

epigenetically-controlled genes that may also act collaboratively to

induce malignant transformation.

Due to lack of primary tumor data on a larger array platform

we also used a nonintegrative approach, which resulted in ultimate

validation of 4.3% of the targets (2/46) compared to the

integrative results that produced a 27% hit rate (7/26), reflecting

a higher ability to validate targets in primary tumor when these

data are included in initial discovery strategies. Additional analysis

of other targets that are significantly differentially regulated may

also yield additional epigenetically derepressed targets. Finally,

these data have therapeutic implications for demethylation

therapy and targeting of therapy. The active investigation of

pharmacologic demethylating agents as therapy for malignancy

based on reversal of silencing of tumor suppressor genes may have

unintended effects. It is possible that in certain tissues this may

result in reactivation of developmentally repressed proto-oncogene

targets, with the unintended effect of promoting late, second

primary tumors [48]. However, modulation of a pathway that

involves the coordinated derepression of a series of growth-

promoting proto-oncogene candidates and a key transcriptional

effector, BORIS, may provide a significant opportunity for

directed therapeutic intervention that simultaneously targets

multiple oncogenic pathways.

Materials and Methods

Histopathology
All samples were analyzed by the Pathology department at

Johns Hopkins Hospital. Tissues were obtained via Johns Hopkins

Institutional Review Board approved protocols under JHM IRB

Protocol #92-07-21-01, ‘‘Detection of Genetic Alterations in

Head and Neck Tumors.’’ Normal samples were microdissected

and DNA prepared from the mucosa. Tumor samples were

confirmed to be head and neck squamous cell carcinoma and

subsequently microdissected to separate tumor from stromal

elements to yield at least 80% tumor cells. Tissue DNA was

extracted as described below.

5Aza-dC and TSA Treatment of Cells
These in vitro techniques employ treatment of cultured cells with

5-aza-deoxycytidine (a cytosine analog which cannot be methyl-

ated) with or without Trichostatin A (a histone deacetylase

inhibitor) and subsequent expression array analysis with validation

of tumor suppressor gene targets [13]. We treated HNSCC cell

lines with 5Aza-dC and/or TSA as described previously. Briefly,

cells were split to low density (16106 cells/T-75 flask) 24 hours

before treatment. Stock solutions of 5Aza-dC (Sigma, St. Louis,

MO) and TSA (Sigma) were dissolved in DMSO (Sigma) and

100% ethanol, respectively. Cells were treated with 5 mM 5-Aza-

deoxycytidine for 5 days and 300 nM TSA for last 24 hours.

Baseline expression was established by mock-treated cells with the

same volume of DMSO or ethanol. Two normal oral keratinocyte

cell lines (OKF6-Tert1 and OKF6-Tert1R, immortalized with

hTert, a generous gift from J. Rheinwald, Harvard), were treated

in duplicate by 5-azadeoxycytidine/trichostatin A.

Oligonucleotide microarray analysis and QRT-PCR
analysis

Total cellular RNA was isolated using the RNeasy kit (Qiagen,

Valencia, CA) according to the manufacturer’s instructions. We

carried out oligonucleotide microarray analysis using the Gene-

Chip U133plus2 Affymetrix expression microarray (Affymetrix,

Santa Clara, CA). Samples were converted to labeled, fragmented,

over baseline calculated by dividing values by day 1’s Calcein signal. (c) Anchorage independent growth was assayed after transfection with empty
vector (EV), CTCF, and BORIS at various concentrations of doxycycline, with representative colony (below). (d) QUMSP of nine targets of interest after
transfection with empty vector (untreated) and BORIS construct (treated) in presence of 0.0625 mg/mL of doxycycline. (e) Fold increase Quantitiative
RT-PCR of nine targets of interest after BORIS transfection normalized to values after transfection with empty vector.
doi:10.1371/journal.pone.0004961.g007
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cRNA per the Affymetrix protocol for use on the expression

microarray. Signal intensity and statistical significance was

established for each transcript using dChip version 2005. Two-

fold increase based on the 90% confidence interval of the result

and expression minus baseline .50 was used as the statistical

cutoff value after 5Aza-dC and/or TSA treatment to identify

upregulated candidate genes.

Public datasets
The public databases used in this study were the University of

California Santa Cruz (UCSC) Human Genome reference

sequence and the annotation database from the May 2004 freeze

(hg17). Fifty-six HNSCC expression microarrays were obtained

from public datasets from Oncomine (Oncomine.org, Ann Arbor,

Michigan). Fourteen expression microarrays that our laboratory

had previously studied from the same platform were incorporated

and all microarrays were normalized for COPA analysis. We also

utilized the expO datasets (1185 tumors on the Affymetrix

U133plus2 mRNA expression platform) available online as part

of the Gene Expression Omnibus (GEO/NCBI) and kindly

provided by the International Genomics Consortium. This data

is publicly available online as part of the Gene Expression

Omnibus (GEO/NCBI), produced by the International Genomics

Consortium. This analysis utilized expression array data for

47,000+ genes measured in 1041 human tumors of various

histologies.

Cancer outlier profile analysis (COPA)
Heterogeneous patterns of proto-oncogene activation have been

noted, and traditional approaches such as determining average

fold differences, t-tests, and other techniques may fail to define

significant alterations in expression for specific genes in high-

throughput array approaches [14]. We applied COPA to our

cohort of 68 tissues (49 tumors, 19 normals), with each gene

expression data set containing 14,500 probe sets. Briefly, gene

expression values are median centered, setting each gene’s median

expression value to zero. The median absolute deviation (MAD) is

calculated and scaled to 1 by dividing each gene expression value

by its MAD. Of note, median and MAD were used for

transformation as opposed to mean and standard deviation so

that outlier expression values do not unduly influence the

distribution estimates, and are thus preserved post-normalization.

Finally, the 75th, 90th, and 95th percentiles of the transformed

expression values are calculated for each gene and then genes are

rank-ordered by their percentile scores, providing a prioritized list

of outlier profiles. For the purposes of our rank-list, the 90th

percentile was chosen based on sample-size analysis (49 tumors, 19

normals). For details of the method refer to Tomlins et. al.[14].

Integrative epigenetics
We ranked target genes from the Affymetrix U133A mRNA

expression microarray platform by COPA upregulation at the 90th

percentile (from 49 tumors and 19 normal tissues). The U133A

microarray platform (Affymetrix, Santa Clara California) has

approximately 14,500 probe sets. A second rank list was produced

by ranking genes in descending order of the degree of upfold

regulation upon 5-aza/TSA treatment. These two sources of

information (gene set demonstrating upregulation with 5-aza) and

COPA score were combined by using a rank product. These two

rankings were combined to rank all targets and permutation of the

data was used to establish significance with a threshold of

Æ = 0.005. This resulted in 106 genes deemed significant. The

top 26 of these targets were comprehensively evaluated. Presence

of CpG islands in these genes was determined by MethPrimer. In

order to not exclude genes outside the U133A platform, we also

considered all other genes in the U133plus2 platform on the sole

basis of 5-aza/TSA upfold regulation. For all genes which did not

have tissue mRNA expression array information amenable to

COPA analysis, we considered only statistically significant

reexpression after 5-aza treatment. 46 genes were studied that

had an experimental versus baseline expression (E/B) .2.0, based

on the 90% confidence interval and E-B .50. All genes were then

studied for the presence of CpG islands in promoters or the first

intron. Initially, an in silico approach was used to confirm the

presence of a CpG island using the UCSC genome browser which

relies on GC content of .50%, .200 bp, .0.6 observed to

expected CG’s.

DNA extraction
Samples were centrifuged and digested in a solution of detergent

(sodium dodecylsulfate) and proteinase K, for removal of proteins

bound to the DNA. Samples were first purified and desalted with

phenol/chloroform extraction. Digested sample was subjected

twice to ethanol precipitation, and subsequently resuspended in

500 mL of LoTE (EDTA 2.5 mM and Tris-HCl 10 mM, p 7.5)

and stored at 280uC.

Bisulfite treatment
DNA from salivary rinses was subjected to bisulfite treatment, as

described previously[49]. In short, 2 mg of genomic DNA was

denatured in 0.2 M NaOH for 30 minutes at 50uC. This

denatured DNA was then diluted into 500 mL of a solution of

10 mM hydroquinone and 3 M sodium bisulfite. This was

incubated for 3 hours at 70uC. After the DNA sample was

purified with a sepharose column (Wizard DNA Clean-Up

System; Promega, Madison, WI). Eluted DNA was treated with

0.3 M of NaOH for 10 minutes at room temperature, and

precipitated with ethanol. This bisulfite-modified DNA was

subsequently resuspended in 120 mL of LoTE (EDTA 2.5 mM

and Tris-HCl 10 mM) and stored at 280uC.

Bisulfite Sequencing
Bisulfite sequence analysis was performed to check the methylation

status in primary tumors and normal tissues, as well as cell lines.

Bisulfite-treated DNA was amplified using primers designed by

MethPrimer to span areas of CpG islands in the promoter or first

intron [15]. Primer sequences were designed to not have CG

dinucleotides (see Table S3). Detailed primer sequences and PCR

conditions are available upon request. The PCR products were gel-

purified using the QIAquick Gel Extraction Kit (Qiagen), according to

the manufacturer’s instructions. Each amplified DNA sample was

applied with nested primers to the Applied Biosystems 3700 DNA

analyzer using BD terminator dye (Applied Biosystems, Foster City,

CA). Of note, due to significant sequence homology of MAGEA3 and

MAGEA6, differential sequencing of these genes could not be

performed, data are reported for consensus sequence as MAGEA3/6.

QUMSP
To selectively amplify demethylated promoter regions in genes

of interest, probe and primers were designed using data from

bisulfite sequencing of primary tumors which are complementary

only to bisulfite-converted sequences known to be demethylated

in tumor. Probe and primer combinations were validated using

in vitro methylated and demethylated controls, sequences are pro-

vided online at http://www.hopkinsmedicine.org/headneckcancer/

headneckinfo.html.
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qRT-PCR
Total RNA was measured and adjusted to the same amount for

each cell line, and then cDNA synthesis was performed using

oligo-dT with the SuperScript First- Strand Synthesis kit

(Invitrogen). The final cDNA products were used as the templates

for subsequent PCR with primers designed specifically for each

candidate gene. GAPDH was examined to ensure accurate relative

quantitation in QRT-PCR. Detailed PCR conditions and primer

sequences are available upon request. QRT-PCR heat maps were

generated after median-normalization and log-transformation.

Heat maps were generated using an Excel.

Transfection of human expression vectors
Full-length ORF cDNAs of MAGEA2B, MAGEA4, H19, TKTL1

in pCMV-SPORT6 were obtained for transient transfections. Cell

lines were plated at 26105/well using 6-well plates and transfected

with either empty vector or gene of interest using the FuGene 6

Transfection Reagent (Roche, Basel, Switzerland) according to the

manufacturer’s protocol. Calcein florescence was measured by the

Spectramax M2e 96-well fluorescence plate reader Molecular

Devices (Sunnyvale, California). Live cells are distinguished by the

presence of ubiquitous intracellular esterase activity, determined

by the enzymatic conversion of the virtually nonfluorescent cell-

permeable calcein AM to the intensely fluorescent calcein. The

polyanionic calcein dye is well retained within live cells, producing

an intense uniform green fluorescence (excitation/emission

,495 nm/515 nm). Transfection efficiency was determined with

GFP plasmids and was approximately 50% in OKF6 cells.

Transgene expression determined by qRT-PCR. BORIS expres-

sion plasmid pBIG2i-BORIS was used for BORIS transfections

[50].

Anchorage-independent growth assay
Soft agar assays were conducted after transfection of cells with

mammalian expression vectors. Cells were counted and approx-

imately 5000 were added into each 6-well plate. The bottom layer

was composed of 0.5% agar, DMEM+10% FBS, plus additives,

while the cells were suspended in a top layer of 0.35% agar,

DMEM+10% FBS, plus additives. BORIS Inducible promoter

constructs were incubated in the presence of low doxycycline

(0.01 mg/ml). Soft agar assays were incubated at 37 degrees for 2

weeks.

Statistical analysis
The QUMSP data was analyzed using a Wilcoxon-Mann-

Whitney rank test. The p-values were corrected using the

Benjamini-Hochberg procedure [51], and significance was defined

as pcorr,0.05. We looked for similarities in the methylation

patterns between genes by performing an analysis of correlations

between QUMSP readings on the genes across all samples. We

used 1000 permutations of the samples to establish significance,

with a= 0.05. For the expression data, we log-transformed the

normalized data and performed correlation analysis across all

samples between each of the genes in the study. Significance was

determined by assuming a normal distribution in the log-

transformed expression levels and applying Student’s t-distribution

with an alpha of 0.05. All analyses were performed using Matlab.

Comparisons of promoter homology were done with European

Bioinformatics Institute’s ClustalW sequence alignment and

phylogram software and the PromoterWise application. Pearson

Product Moment Correlation (Pearson’s correlation), reflecting the

degree of linear relationship between two variables were calculated

with Matlab.

Supporting Information

Figure S1 Upfold regulation of mRNA expression in treated

minimally-transformed cell lines measured by Affymetrix U133

Plus 2.0.

Found at: doi:10.1371/journal.pone.0004961.s001 (0.05 MB TIF)

Figure S2 BORIS correlates with gene expression in all cancers

(using the expO cohort of 1041 human cancers of various tumor

sites and histologies). Shown are microarray median-normalized

expression of our targets compared to BORIS expression in 1041

human cancers.

Found at: doi:10.1371/journal.pone.0004961.s002 (0.03 MB TIF)

Table S1 106 genes differentially upregulated based on

epigenetic screening and tissue microarray expression.

Found at: doi:10.1371/journal.pone.0004961.s003 (0.04 MB

XLS)

Table S2 Target genes ranked on 5-aza/TSA upfold regulation

in our normalized cell lines.

Found at: doi:10.1371/journal.pone.0004961.s004 (0.02 MB

XLS)

Table S3 Primer sequences.

Found at: doi:10.1371/journal.pone.0004961.s005 (0.02 MB

XLS)
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