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Abstract

Background: The advent of various high-throughput experimental techniques for measuring molecular interactions has
enabled the systematic study of biological interactions on a global scale. Since biological processes are carried out by
elaborate collaborations of numerous molecules that give rise to a complex network of molecular interactions, comparative
analysis of these biological networks can bring important insights into the functional organization and regulatory
mechanisms of biological systems.

Methodology/Principal Findings: In this paper, we present an effective framework for identifying common interaction
patterns in the biological networks of different organisms based on hidden Markov models (HMMs). Given two or more
networks, our method efficiently finds the top k matching paths in the respective networks, where the matching paths may
contain a flexible number of consecutive insertions and deletions.

Conclusions/Significance: Based on several protein-protein interaction (PPI) networks obtained from the Database of
Interacting Proteins (DIP) and other public databases, we demonstrate that our method is able to detect biologically
significant pathways that are conserved across different organisms. Our algorithm has a polynomial complexity that grows
linearly with the size of the aligned paths. This enables the search for very long paths with more than 10 nodes within a few
minutes on a desktop computer. The software program that implements this algorithm is available upon request from the
authors.
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Introduction

Recent advances in high-throughput experimental techniques

for measuring molecular interactions [1–4] have enabled the

systematic study of biological interactions on a global scale for an

increasing number of organisms [5]. Genome-scale interaction

networks provide invaluable resources for investigating the

functional organization of cells and understanding their regulatory

mechanisms. Biological networks can be conveniently represented

as graphs, in which the nodes represent the basic entities in a given

network and the edges indicate the interactions between them.

Network alignment provides an effective means for comparing the

networks of different organisms by aligning these graphs and

finding their common substructures. This can facilitate the

discovery of conserved functional modules and ultimately help

us study their functions and the detailed molecular mechanisms

that contribute to these functions. For this reason, there have been

growing efforts to develop efficient network alignment algorithms

that can effectively detect conserved interaction patterns in various

biological networks, including protein-protein interaction (PPI)

networks [6–20], metabolic networks [7,12,21], gene regulatory

networks [22], and signal transduction networks [23]. It has been

demonstrated that network alignment algorithms can detect many

known biological pathways and also make statistically significant

predictions of novel pathways.

Network alignment can be broadly divided into two categories,

namely, global alignment, which tries to find the best coherent

mapping between nodes in different networks that covers all

nodes; and local alignment, which simply tries to detect significant

common substructures in the given networks. Typically, the global

network alignment problem is formulated as a graph matching

problem whose goal is to find the optimal alignment that

maximizes a global objective function that simultaneously

measures the similarity between the constituent nodes and also

between their interaction patterns. This optimization problem can

be solved by a number of techniques, such as integer programming

[24], spectral clustering [16,17], and message passing [20]. To

cope with the high complexity of the global alignment problem,

many algorithms incorporate heuristic techniques, such as greedy

extension of high scoring subnetwork alignments and progressive

construction of multiple network alignments [9,15,17,19].

There are also many local network alignment algorithms, where

examples include PathBLAST [6], NetworkBLAST [10], QPath

[11], PathMatch and GraphMatch [12], just to name a few. These
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algorithms can effectively find conserved substructures with

relatively small sizes, but many of them suffer from high

computational complexity that makes it difficult to find larger

substructures. Furthermore, many algorithms have limited flexi-

bility of handling node insertions and deletions and/or rely on

randomized heuristics that may not necessarily yield optimal

results. In [18], we introduced an effective framework for local

network alignment based on hidden Markov models (HMMs) that

can effectively overcome many of these issues. The HMM

framework can naturally integrate both the ‘‘node similarity’’

(typically estimated by sequence similarity) and the ‘‘interaction

reliability’’ into the scoring scheme for comparing aligned paths,

and it can deal with a large class of path isomorphism. Based on

the HMM-based framework, we devised an efficient algorithm

that can find the optimal homologous pathway for a given query

pathway in a PPI network, whose complexity is linear with respect

to the network size and the query length, making it applicable to

search for long pathways. It was demonstrated that the algorithm

can accurately detect homologous pathways that are biologically

significant. However, the algorithm in [18] was mainly developed

for querying pathways in a target network, hence it cannot be

directly used for local alignment of general networks.

In this paper, we extend the HMM-based framework proposed

in [18] to make it applicable for local alignment of general

biological networks. Especially, we focus on the problem of

identifying similar pathways that are conserved across two or more

biological networks. Based on HMMs, we propose a general

probabilistic framework for scoring pathway alignments and

present an efficient search algorithm that can find the top k
alignments of homologous pathways with the highest scores. The

algorithm has polynomial complexity which increases linearly with

the length of the aligned pathways as well as the number of

interactions in each network. The aligned pathways in a predicted

alignment may contain flexible number of consecutive insertions

and/or deletions. By combining the high-scoring pathway

alignments that overlap with another, we can also detect conserved

subnetworks with a general structure. Note that the algorithm can

be also used for network querying, by designating one network as

the query and another network as the target network.

Methods

In this section, we present an algorithm for solving the local

network alignment problem based on HMMs. For simplicity, we

first focus on the problem of aligning two networks, which can be

formally defined as follows: Given two biological networks G1 and

G2 and a specified length L, find the most similar pair (p,q) of

linear paths, where p belongs to the network G1 and q belongs to

G2, and each of them have L nodes. As we show later, the pairwise

network alignment algorithm can be easily extended for aligning

multiple networks in a straightforward manner.

Pairwise Network Alignment
Let G1~(U,D) be a graph representing a biological network.

We assume that G1 has a set U~fu1,u2, . . . ,uN1
g of N1 nodes,

representing the entities in the network, and a set D~fdijg of M1

edges, where dij represents the interaction (binding or regulation)

between ui and uj . When the network G1 is undirected, we assume

that both dij and dji are present in the set D for simplicity. For

example, when G1 represents a PPI network, ui corresponds to a

protein, and the edge between ui and uj indicates that these

proteins can bind to each other. For a pair (ui,uj) of interacting

nodes such that dij[D, we define their interaction reliability as

w1(ui,uj). Similarly, let G2~(V,E) be another graph with N2 nodes

and M2 edges, representing a different biological network. We

denote the interaction reliability between two nodes vi and vj in

the graph G2 as w2(vi,vj). Finally, we denote the similarity between

two nodes ui[G1 and vj[G2 in the respective networks as h(ui,vj),
which may be derived using the sequence similarity between two

biological entities represented by two nodes as in our experiments.

Our goal is to find the best matching pair of paths

p~p1p2 . . . pL (pi[U) and q~q1q2 . . . qL (qi[V) in the respective

networks that maximizes a predefined pathway alignment score

S(p,q). In order to obtain meaningful results, the alignment score

S(p,q) should sensibly integrate the similarity score h(pi,qi)
between aligned nodes pi and qi (1ƒiƒL), the interaction

reliability scores w1(pi,piz1) between pi and piz1 (1ƒiƒL{1)

and w2(qj ,qjz1) between qj and qjz1 (1ƒjƒL{1), and the

penalty for any gaps in the alignment.

Figure 1C illustrates an example of an alignment between two

similar paths p and q, where p belongs to G1 and q belongs to G2 as

shown in Fig. 1A. The dashed lines in Fig. 1A that connect two

nodes ui and vj indicate that there exist significant similarities

between the connected nodes. In the example shown in Figure 1C,

the optimal alignment that maximizes the alignment score S(p,q)
has two gaps at q3 and p5. Note that ‘‘insertions’’ and ‘‘deletions’’

are relative terms, and an insertion in p (e.g., p5) can be viewed as

a deletion in the aligned path q, and similarly, an insertion in q
(e.g., q3) can be viewed as a deletion in p.

Network Representation by HMM
To define the alignment score S(p,q), we adopt the hidden

Markov model (HMM) formalism. We begin by constructing two

HMMs based on the network graphs G1 and G2. Let us first focus

on the construction of HMM for G1. Each node ui[U in G1

corresponds to a hidden state in the HMM. For convenience, we

represent this hidden state using the same notation ui. For each

edge dij[D in the graph G1, we add an edge from state ui to state uj

in the HMM. The resulting HMM has an identical structure as the

network graph G1. The HMM for G2 can be constructed in a

similar way. Figure 2A illustrates the HMMs that correspond to

the network graphs shown in Fig. 1A. In order to find the best

matching pairs of paths in the given networks, we define the

concept of a ‘‘virtual’’ path s~s1s2 . . . sL that contains L nodes, as

shown in Fig. 1B. A node si in the virtual path can be viewed as a

symbol that is emitted by a pair of hidden states pi and qi in the

respective HMMs. From this point of view, the two HMMs can be

regarded as generative models that jointly produce (or ‘‘emit’’) the

virtual path s, and the underlying state sequence for s will be a pair

of state sequences p and q in the respective HMMs. Therefore, the

concept of a virtual path can naturally couple a path in G1 with

another in G2, providing a convenient framework for identifying

conserved pathways in the original biological networks.

The described HMM-based network representation allows us to

naturally integrate the interaction reliability scores and the node

similarity scores into an effective probabilistic framework. We

first define two mappings f1 : w1(um,un).t1(unjum) and

f2 : w2(vm,vn).t2(vnjvm), which convert the interaction reliability

scores w1(um,un) and w2(vm,vn) between two nodes in G1 and G2 to

the following transition probabilities

P(pi~unjpi{1~um)~t1(unjum)~f1(w1(um,un)) ð1Þ

P(qi~vnjqi{1~vm)~t2(vnjvm)~f2(w2(vm,vn)) ð2Þ

between the corresponding hidden states in the constructed HMMs.

Pathway Alignment with HMMs
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The mapping f1 is defined so that (i) t1(unjum)~0 for dmn 6 [D, (ii)P
n t1(unjum)~1 for all m, and (iii) t1(un1jum)wt1(un2jum) for

w1(um,un1)ww1(um,un2). Similarly, the mapping f2 follows the same

constraints: (i) t2(vnjvm)~0 for emn 6 [E, (ii)
P

n t2(vnjvm)~1 for all

m, and (iii) t2(vn1jvm)wt2(vn2jvm) for w2(vm,vn1)ww2(vm,vn2). To

specify the emission probability of a virtual symbol si at a pair of

hidden states in the two HMMs, we define another mapping

g : h(um,vn).e(um,vn) that converts the node similarity score

h(um,vn) to the following ‘‘pairing’’ probability

P(pi~um,qi~vn)~e(um,vn)~g(h(um,vn)), ð3Þ

where (pi,qi)~(um,vn) is the pair of underlying hidden states for si.

The mapping g is defined so that (i)
PN1

m~1

PN2

n~1 e(um,vn)~1 for all

possible pairs of (um,vn), and (ii) e(um1,vn1)we(um2,vn2) for

h(um1,vn1)wh(um2,vn2).

Ungapped Alignment
Based on the HMM framework, the problem of finding the best

matching pair of paths is transformed into the problem of finding

the optimal pair of state sequences in the two HMMs that jointly

maximize the observation probability of the virtual path s. In an

ungapped pathway alignment, the underlying state pair (pi,qi) of a

virtual symbol si directly corresponds to a pair of aligned nodes in

the original networks. We can find the optimal pair of paths in

polynomial time by using a dynamic programming algorithm

defined in the following, which is conceptually similar to the

Viterbi algorithm. We first define c(t,j,‘) as the log-probability of

the most probable pair of paths for a subsequence bss~s1 . . . st of

length t (ƒL), where the underlying states for the virtual symbol st

are pt~uj and qt~v‘. The log-probability c(t,j,‘) can be

recursively computed as follows:

c(t,j,‘)~ max
i,k

c(t{1,i,k)zlog t1(uj jui)zlog t2(v‘jvk)zlog e(uj ,v‘)
� �

: ð4Þ

We repeat the above iterations until t~L. At the end of the

iterations, the maximum log-probability of the virtual path s is

given by:

log P(p�,q�)~ max
p,q

log P(p,q)½ �~ max
j,‘

c(L,j,‘), ð5Þ

where fp�,q�g~ arg maxp,q½log P(p,q)� is the optimal pair of

state sequences that correspond to the best matching paths in the

original biological networks. Once we have computed

Figure 1. Network representation and alignment. (A) Example of two undirected biological networks G1 and G2 . (B) A virtual path s that
corresponds to the alignment of best matching paths. (C) The top-scoring alignment between two similar paths p (in G1) and q (in G2).
doi:10.1371/journal.pone.0008070.g001

Figure 2. Hidden Markov models for network alignment. (A) Ungapped hidden Markov models (HMMs) for finding the best matching pair of
paths. The dots next to the hidden states represent all possible symbols corresponding to virtual nodes in s that can be emitted. (B) Modified HMMs
that allow insertions and deletions. For simplicity, changes to the HMMs are shown only for the nodes u1 , u6 , and u8 in G1 ; v1 , v2 , v3 , and v6 in G2.
doi:10.1371/journal.pone.0008070.g002

Pathway Alignment with HMMs
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log P(p�,q�), it is straightforward to find fp�,q�g by tracing the

recursive equations that led to the maximum log-probability

log P(p�,q�). Although the above algorithm only finds the top-

scoring pair of paths, we can easily extend it to find the top k pairs

simply by replacing the max operator by an operator that finds the

k largest scores.

The computational complexity of the above algorithm is

O(kLM1M2) for finding the top k pairs of matching paths, where

L is the length of the aligned paths that we want to find, M1 is the

number of edges in G1, and M2 is the number of edges in G2. Note

that the complexity is linear with respect to all the parameters k,

L, M1, and M2.

The log-probability S(p,q)~ log P(p,q) can serve as a good

alignment score for the paths p and q that effectively combines

node similarity and interaction reliability. In principle, we can

also use non-stochastic emission (pairing) scores sem(uj ,v‘) and

transition scores s1
tr(uj jui) and s2

tr(v‘jvk) in the recursive equation

(4), in place of the log-probabilities log e(uj ,v‘), log t1(uj jui), and

log t2(v‘jvk), respectively. This will yield a non-stochastic

pathway alignment score instead of an observation pro-

bability.

As we can see, the concept of the ‘‘virtual’’ path provides an

intuitive way of coupling states in two different HMMs. In fact, by

taking a closer look at the recursive equation (4), the proposed

alignment algorithm can also be viewed as a Markovian walk on a

product graph, whose nodes consist of all possible pairs of hidden

states in the respective HMMs and the edges between these nodes

are determined by the connectivity (or transition probability)

between the corresponding states in the HMMs. The algorithm

searches for the optimal path (or the top-k paths) in the product

graph that yields the highest score based on the parameters of the

given HMMs.

Alignment with Gaps
To accommodate gaps in the aligned paths p and q, we modify

the previous HMMs as follows. First, we add an accompanying

state ~uum for every state um in G1, and similarly, we add an

accompanying state ~vvn for every state vn in G2. Next, we add an

outgoing edge from each state to the corresponding accompanying

state. In addition to this, we also add outgoing edges from the

accompanying state to all the neighboring states of the original

state. To be more precise, ~uum will have an outgoing edge to every

uk[U(m)~fukjdmk[Dg, and ~vvn will have an outgoing edge to

every v‘[V(n)~fv‘jen‘[Eg. By varying the transition probabilities

t1(~uumjum) and t2(~vvnjvn), we can control the probabilities of having

insertions and/or deletions, and thereby control the ‘‘gap

penalties’’ in a pathway alignment. We adjust the outgoing

transition probability from um so that t1(~uumjum)z
P

uk
t(ukjum)~

1; and for the outgoing transition probability from vn so that

t1(~vvnjvn)z
P

v‘
t(v‘jvn)~1. We can also control the probabilities

of having consecutive insertions or deletions by adjusting the

probabilities t1(~uumj~uum) and t2(~vvnj~vvn) for making self-transitions at

either ~uum or ~vvn. The outgoing transition probabilities t1(ukj~uum)
from an accompanying state ~uum are chosen so that they are

proportional to t1(ukjum) and satisfy t1(~uumj~uum)z
P

uk
t1(ukj~uum)~

1. The transition probabilities in G2 can be chosen in a similar

manner. The structures of the modified HMMs are depicted in

Fig. 2B. Note that, in a gapped alignment, the matching paths (or

state sequences) p and q will still contain L nodes each, and the

only difference from an ungapped alignment is that the paths may

now contain one or more accompanying nodes which represent

gaps. The proposed framework does not impose any restriction on

the number of gaps and their locations in the pathway alignment.

In order to find the optimal pair of paths (and their alignment)

that maximize the pathway alignment score, we can apply the

same dynamic programming algorithm described in the previous

section. The retrieved paths can contain any of the hidden states uj

(1ƒjƒ2N1) and v‘ (1ƒ‘ƒ2N2) in the modified HMMs, where

we define umzN1
~
D

~uum and vnzN2
~
D

~vvn for notational conve-

nience. The optimal paths fp�,q�g~ arg maxp,q½log P(p,q)� is the

best matching pair of paths from two networks, and they may now

contain insertions and/or deletions. As before, if we want to find

the top k pairs instead of a single top-scoring pair, we can simply

replace the max operator by an operator that finds the k largest

scores. Note that the computational complexity of the algorithm is

O(4kLM1M2), which is still linear with respect to all the

parameters.

Extension to Multiple Networks
It is straightforward to extend the described pairwise network

alignment algorithm for aligning multiple networks. Without loss

of generality, we only consider the extension to the alignment of

three networks. Given three network graphs G1, G2, and G3, we

construct the corresponding HMMs based on their structures. We

again use the concept of virtual paths, and now we assume that a

virtual path s is jointly emitted by these three HMMs. The

emission of a virtual symbol si is now governed by a pairing

probability e(uj ,v‘,xn) of three hidden states uj , v‘, and xn that

belong to the HMMs that correspond to G1, G2, and G3,

respectively. We can find the best matching paths based on the

following recursive equation:

c(t,j,‘,n)~ max
i,k,m

c(t{1,i,k,m)z log t1(uj jui)z log t2(v‘ jvk )z log t3(xn jxm)z log e(uj ,v‘ ,xn)
� �

, ð6Þ

where e(uj ,v‘,xn)!e(uj ,v‘)e(v‘,xn)e(uj ,xn) is assumed for simplic-

ity. We repeat the above iterations until we reach t~L and

compute the maximum log-probability as follows:

log P(p�,q�,r�)~ max
p,q,r

log P(p,q,r)½ �~ max
j,‘,n

c(L,j,‘,n), ð7Þ

where fp�,q�,r�g~ arg maxq,q,r½log P(p,q,r)� corresponds to the

set of best matching paths in the three networks.

Implementation of the Alignment Algorithm
It should be noted that although we fix the length of the virtual

path to L, we can in fact find any top-scoring alignment with a

shorter length L
0
ƒL, since we store all the alignment scores for

shorter alignments while running the dynamic programming

algorithm. The recursive equations in (4) and (6) do not restrict

multiple occurrence of the same node in the final pathway

alignment. However, when it is desirable to avoid such multiple

occurrence, we can easily incorporate a ‘‘look-back’’ step into each

iteration in order to prevent adding a node that is already included

in the (intermediate) alignment. As this requires tracing the

intermediate optimal (or top k) alignment, the computational

complexity of the recursive equations (4) and (6) with a ‘‘look-

back’’ step will be increased in proportion to the length of the

intermediate alignment.

In order to obtain more general subnetwork alignments, not just

alignments of linear paths, we can combine the overlapping paths

among the top k retrieved pairs of paths. The edges that are

already contained in the constructed subnetwork alignment (which

correspond to the conserved molecular interactions in the

biological networks) are then removed from the HMMs, and we

run the dynamic programming algorithm again to find another

Pathway Alignment with HMMs
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subnetwork alignment that does not overlap with the retrieved

subnetworks. By repeating this ‘‘search and peel-off’’ process, we

can effectively find diverse subnetwork regions that are conserved

in the given networks.

The memory complexity of the proposed algorithm is

O(kLN1N2 . . . NB) for finding the top k pathway alignments for

B networks. Although the required amount of memory increases

only linearly with respect to each parameter, it can still make the

algorithm infeasible when we want to align multiple number of

large networks. To overcome this problem, we may assign non-

zero pairing probabilities e(:) to a set of nodes (in the respective

networks) only if every pair in this set has considerable node

similarity that exceeds a certain threshold. Assuming that there are

T sets of nodes that satisfy this condition, we only need to consider

these T possible node alignments, in which case the overall

memory complexity reduces to O(kLT). Since T is often much

smaller than N1N2 . . . NB, this scheme can save significant amount

of memory, thereby making the algorithm feasible.

Results

To demonstrate the effectiveness of the HMM-based network

alignment algorithm, we carried out the following experiments.

First, we used our algorithm to align two pairs of small synthetic

networks that were used to validate the network alignment

algorithm proposed in [24]. Second, we used the proposed

algorithm for finding putative pathways in the fruit fly PPI network

that look similar to known human pathways. Finally, we applied

the algorithm for aligning microbial PPI networks to assess its

ability to find conserved functional modules.

Aligning Synthetic Networks
To illustrate the potential capability of aligning different types of

molecular networks, we first tested our algorithm using two small

synthetic examples, which include a pair of undirected networks

and another pair of directed networks. These examples were

obtained from the tutorial files in the PathBLAST plugin of

software Cytopscape (version 1.1, http://www.cytoscape.org/

plugins1.php) and they were used for the validation of a network

alignment algorithm called MNAligner [24].
HMM parameterization. For aligning the synthetic

networks, we parameterized the HMMs as follows. We set the

transition scores str(unjum) directly based on the ‘‘adjacent

matrices’’ given in [24], which contain the interaction scores

between two nodes in the respective networks. Every interaction

score takes a value between 0 and 1, hence we can view it as the

‘‘interaction probability’’. We took the logarithm of this

interaction probability as the transition score str(unjum). When

there is no interaction between two nodes, we have

str(unjum)~{?. This keeps the HMM from making a direct

transition from a state um to a non-relevant state un, thereby

preventing the inclusion of irrelevant protein interactions that do

not have any biological support in the network. Similarly, we

obtained the emission scores sem(um,vn) by taking the logarithm of

the similarity scores between nodes given by the ‘‘similarity

matrices’’ in [24]. The adjacent matrices and the similarity scores

for the two examples can be found in the Supporting Information

S1.

Example 1: Aligning undirected networks. We first used

our algorithm for aligning a pair of undirected networks. To compare

the alignment results with the results obtained by MNAligner [24], we

looked for the top 500 alignments without gaps, where the length of

the virtual path was set to L~3. By incorporating ‘‘look-back’’ steps

into our dynamic programming algorithm, we restricted the multiple

occurrence of the same node pair in the obtained pathway alignment.

The top-scoring pathway alignment obtained from our algorithm was

AjQQ<CjBB<F jHH, which is identical to the optimal alignment

identified by both PathBLAST [6] and MNAligner [24]. Unlike

PathBLAST, the proposed HMM-based algorithm and the

MNAligner both keep the natural order of the nodes in the original

networks. We also noticed that the paths A<C<F and

QQ<BB<HH can be aligned with several other potential similar

paths in the corresponding networks from the top 500 aligned results.

After removing the interactions included in the top-scoring

alignment, we searched for the next top-scoring alignment. This

returned the alignment JjWW<I jDD<LjOO, which was also

ranked as the second best alignment by MNAligner [24]. Repeat-

ing the experiment after removing this alignment returned

BjMM<DjCC<EjZZ as the third best alignment. This is

different from the alignment HjAA<GjNN<BjCC that was

found by MNAligner, which got a lower score in our experiment.

We noted that the alignment HjAA<GjNN<BjCC is not as

significant as the three alignments that we found, as H<G<B can

be aligned with many other paths with the same alignment score.

By repeating the above experiments and combining the pathway

alignment results, we obtained the global network alignment illustrated

in Fig. 3A, where a bold line represents that the corresponding edges in

the respective networks are matched, whereas a thin line indicates a

mismatch. These results show that the HMM-based method can

effectively identify the top matching paths in different undirected

networks, and it yields better results with higher alignment scores

integrating both node similarity and interaction probability compared

to PathBLAST and MNAligner for this purpose.

Figure 3. The alignment results for synthetic networks. (A) Undirected networks; (B) Directed networks.
doi:10.1371/journal.pone.0008070.g003
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Example 2: Aligning directed networks. Without any

modification, our algorithm can also be used for aligning

directed networks. We demonstrate this by using the second

example that contains a pair of small directed networks. In this

experiment, we set the length of the virtual path to L~6, which is

the length of the longest path in these two networks. As there are

fewer legitimate paths in these networks, we only looked for the

top 20 aligned pairs of paths. The obtained pathway alignments

were combined to get the global network alignment shown in

Fig. 3B. The alignment results were similar to those obtained by

MNAligner [24], except that we found fewer aligned nodes and

edges. This is natural since there exist only a few similar pairs of

nodes in the given networks (see Supporting Information S1) and

as our algorithm focuses on finding the best local alignments

instead of a global alignment. Note that, unlike PathBLAST,

which finds path alignments based on several heuristics, the

proposed algorithm can find the mathematically optimal path

alignment for the given networks.

Aligning Annotated Pathways with PPI Networks
HMM parameterization. The proposed algorithm can also

be used for identifying putative pathways in a new biological

network, which look similar to known pathways. To demonstrate

this, we used our algorithm to search for human signaling

pathways in the fruit fly PPI network. In order to compare the

search results with those of the network querying algorithm in

[18], the HMMs were parameterized according to the non-

stochastic scoring scheme in [18] as we describe in the following.

The transition score str(unjum) was set to str(unjum)~ log (1)~0 in

the presence of interaction between the proteins that correspond to

un and um, and it was set to str(unjum)~ log (0)~{? in the

absence of any interaction. To allow gaps in alignments, the

transition score from a state um to its accompanying state ~uum was

set to str(~uumjum)~0, and we set the self-transition score at ~uum to

str(~uumj~uum)~0 to allow consecutive gaps. Furthermore, the score

for making a transition from ~uum to a regular state un was set to

str(unj~uum)~0 for un[U(m)~funjdmn[Dg and str(unj~uum)~{? for

un 6 [U(m). The emission score sem(um,vn) for two proteins um and

vn in different networks (where the query network is simply a linear

path in this case) was computed based on their sequence similarity.

For each protein pair (um,vn), we computed its E-value using the

PRSS routine in the FASTA package [25,26], which is known to

yield more accurate E-values compared to BLASTP [27]. We

regarded a protein pair (um,vn) as a ‘‘match’’ if its E-value

Ev(um,vn) was below a threshold lth. Otherwise, we regarded the

pair as a ‘‘mismatch’’, which implies that the proteins do not bear

significant similarity. Based on this criterion, we set the emission

score sem(um,vn) as follows:

sem(um,vn)~
{ log10 Ev(um,vn), if Ev(um,vn)ƒlth

{D, otherwise:

�
ð8Þ

The value D can be viewed as the mismatch penalty, and is

selected so that {D%{ log10 lth. We set the insertion and

deletion penalty also to {D. Finally, since two accompanying

states cannot be paired with each other, we set sem(~uum,~vvn)~{?.
Querying human pathways in the fruit fly PPI

network. We first obtained the PPI network of Drosophila

melanogaster from the Database of Interacting Proteins (DIP) [28]

and constructed the ‘‘target HMM’’. Then we constructed a

‘‘query HMM’’ for the human hedgehog signaling pathway and

another query HMM based on the human MAP kinase pathway.

When constructing the query HMMs, we regarded each signaling

pathway as a ‘‘directed network’’ with a linear structure, instead of

a ‘‘sequence of proteins’’ as in [18]. The similarity threshold was

set to lth~0:5 and the gap penalty was set to D~12, as in [18].

The constructed query HMMs were then used to search for

matching paths in the target HMM. Despite the generality and the

different implementation of the proposed algorithm, the top

pathways retrieved by the proposed algorithm agree with the

predictions in [18], which is the direct consequence of the

mathematical optimality of both methods. For the human

hedgehog signaling pathway lhh–Ptch–Smo–Stk36–Gli, the top-

scoring pathway in the D. melanogaster network agreed well with the

putative D. melanogaster hedgehog signaling pathway reported in the

KEGG database [29]. In fact, the best aligned path in the fruit fly

network contained shh–ptc–Smo–fu–ci, which is identical to the

core portion of the putative fly hedgehog signaling pathway

( http://www. genome. jp/dbget-bin /get_ pathway?org_name =

dme&mapno = 04340) in the KEGG database [29]. The query

result of the human MAP kinase pathway Egfr–drk–Sos–Ras85D–

ph1–Mekk1–ERKA was also biologically significant, and the seven

proteins in the retrieved pathway matched exactly with the proteins in

the putative fruit fly MAP kinase pathway (http://www.genome.jp/

dbget-bin/get_pathway?org_name = map&mapno = 04010) reported

in KEGG. These results compare favorably to the results obtained by

one of the state-of-the-art algorithms [11], where they found two

identical proteins in the putative fly hedgehog signaling pathway and

five proteins in the putative fly MAPK pathway.

Aligning Microbial PPI Networks
In order to validate the accuracy of our algorithm for predicting

functional modules that are conserved in different organisms, we

performed additional experiments using three microbial PPI

networks obtained from [9]. In our experiments, we performed

a pairwise alignment between the E. coli and the C. crescentus

networks as well as a pairwise alignment between the E. coli and

the S. typhimurium networks. We assessed the accuracy of our

algorithm based on the consistency of the KEGG ortholog (KO) group

annotations [29] of the aligned proteins. In order to measure the

consistency of KO group annotations, we computed the specificity

of the predictions based on a similar methodology that was used in

[14]. To compute this measure, we first remove all the aligned

protein pairs that do not have complete KO annotations, and then

compute the total number of annotated protein pairs. An

annotated protein pair is regarded as being correct if both proteins

have the same KO group annotations, and incorrect if the

annotations do not agree. The specificity is defined as the ratio

of the number of ‘‘correct’’ protein pairs among all annotated

protein pairs.

For this experiment, the parameters of the HMMs have been

chosen as follows. First, the transition scores str(unjum) have been

obtained by taking the logarithm of the protein interaction

probabilities in the microbial networks, which had been assigned

by the SRINI algorithm [30]. The emission scores sem(um,vn) have

been computed based on the sequence similarity between the

proteins um and vn, as in the previous section, where the protein

similarities have been estimated based on the BLASTP hit scores

between protein pairs provided in [9].

Based on the constructed HMMs, we used our algorithm to find

the top-scoring pathway alignment with gaps. At each iteration,

we looked for the top aligned pair of paths, stored the alignment,

and removed the interactions included in the alignment from the

respective networks for the next iteration. By repeating this

iteration, we found 200 high-scoring path alignments. This

experiment has been repeated with varying virtual path length:

L~6, 12, 18, 24, and 30. In all our experiments, we disallowed

multiple occurrence of identical protein pairs and set the gap/
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mismatch penalty to D~1:0. For each experiment, we computed

the cumulative specificity for the top k alignments, which is given

by

csk~

Pk
i~1 cc

iPk
i~1 ca

i

, ð9Þ

where cc
i is the total number of correctly aligned protein pairs in

the top i alignments, and ca
i is the total number of annotated

protein pairs also in the top i alignments. The result from the

pairwise alignment of the E. coli and the C. crescentus networks is

shown in Fig. 4A, and the result from the alignment of the E. coli

and the S. typhimurium networks is shown in Fig. 4B. As we can see

in both Fig. 4A and Fig. 4B, the cumulative specificity csk

generally decreases when we increase the alignment length L. This

is expected since the algorithm tends to recruit more protein pairs

in the alignment if we increase L. Furthermore, csk generally

decreases if we increase k. This is natural, since alignments with

lower scores correspond to less conserved pathways with larger

variations. Although it is difficult to directly compare our results

with those reported in [14], it is still worth to note that the

cumulative specificity (for the top 200 alignments) of the proposed

HMM-based algorithm is higher than the specificity of the

alignment algorithm Græmlin 2.0 [14], for both pairwise network

alignments. These results clearly indicate that our HMM-based

algorithm can produce accurate network alignments that are

biologically meaningful.

Further analysis of the predicted alignments led to a number of

interesting observations. For example, the alignment of E. coli and

C. crescentus networks and the alignment of E. coli and S. typhimurium

networks both detected conserved DNA replication modules. The

module contained components of the primosome (dnaA, gyrA,

gyrB), subunits of topoisomerase IV (parC, parE), and a subunit of

DNA polymerase III (dnaN). These protein families are all known

to be involved in DNA replication. We also found other interesting

conserved modules, which include both large and small subunits of

ribosomal protein complexes (rplA, rplB, rplC, rplE, rplK, rplP;

and rpsA, rpsB, rpsC, rpsE, rpsG, rpsK); DNA-directed RNA

polymerase complex containing rpoA, rpoB, rpoC, and other

subunits; the citrate cycle (TCA cycle) containing 2-oxoglutarate

dehydrogenase E1 component (sucA, sucB) and succinyl-CoA

synthetase (sucC, sucD); NADH dehydrogenase I (nuoA, nuoB,

nuoC, nuoF, nuoH, nuoI, nuoL, nuoM), which is a part of the

oxidative phosphorylation pathway; nitrate reductase 1 (with

narG, narH, narI, and narJ); and a portion of the bacterial

secretion system (with secA, secD, secY).

Discussion

In this paper, we proposed an HMM-based network alignment

algorithm that can be used for finding conserved pathways in two

or more biological networks. The HMM framework and the

proposed alignment algorithm has a number of important

advantages compared to other existing local network alignment

algorithms. First of all, despite its generality, the proposed

algorithm is very simple and efficient. In fact, the alignment

algorithm based on the proposed HMM framework is a variant of

the Viterbi algorithm. As a result, it has a very low polynomial

computational complexity, which grows only linearly with respect

to the length of the identified pathways and the number of edges in

each network. This makes it possible to find conserved pathways

with more than 10 nodes in networks with thousands of nodes and

tens of thousands of interactions within a few minutes on a

personal computer. Furthermore, the HMM-based framework can

handle a large class of path isomorphism, which allows us to find

pathway alignments with any number of gaps (node insertions and

deletions) at arbitrary locations. In addition to this, the proposed

framework is very flexible in choosing the scoring scheme for

pathway alignments, where different penalties can be used for

mismatches, insertions and deletions. We can also assign different

penalties for gap opening and gap extension, which can be

convenient when comparing networks that are remotely related to

each other. Another important advantage of the proposed

framework is that it allows us to use an efficient dynamic

programming algorithm for finding the mathematically optimal

alignment. Considering that many available algorithms rely on

heuristics that cannot guarantee the optimality of the obtained

solutions, this is certainly a significant merit of the HMM-based

approach. Although the mathematical optimality does not

Figure 4. Functional specificity for microbial network alignment. The cumulative specificity of the top 200 aligned pathways obtained from
(A) the pairwise alignment between E. coli and C. crescentus networks; and (B) the pairwise alignment between E. coli and S. typhimurium networks.
doi:10.1371/journal.pone.0008070.g004
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guarantee the biological significance of the obtained solution, it

can certainly lead to more accurate predictions if combined with a

realistic scoring scheme for assessing pathway homology. As

demonstrated in our experiments, the proposed algorithm yields

accurate and biologically meaningful results both for querying

known pathways in the network of another organism and also for

finding conserved functional modules in the networks of different

organisms. Finally, the HMM-based framework presented in this

paper can be extended for aligning multiple networks. While many

current multiple network alignment algorithms adopt a progressive

approach for comparing multiple networks [9,14–17], our HMM-

based framework provides a potential way to simultaneously align

multiple networks to find the optimal set of conserved pathways

with maximum alignment score.

For future research, we plan to evaluate the performance of our

HMM-based algorithm more extensively by investigating the

consistency of the predicted alignments based on other available

functional annotations, including the gene ontology (GO)

annotations [31]. It would be also beneficial to develop a more

elaborate scoring scheme that integrates additional information,

such as the GO annotations and the KO group annotations, to

obtain more reliable alignment results. Finally, we are currently

working on simultaneous multiple network alignment based on the

HMM framework, where the goal is to construct a scalable

multiple alignment algorithm that yields network alignments with

higher fidelity.

Supporting Information

Supporting Information S1

Found at: doi:10.1371/journal.pone.0008070.s001 (0.06 MB

PDF)
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