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Abstract

We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse
populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS) formed by crossing four
inbred strains (HS4) and a heterogeneous stock (HS-CC) formed from the inbred strain founders of the Collaborative Cross
(CC). All three selections were successful, with large differences in haloperidol response emerging within three generations.
Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly;
importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-
expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar
phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant
differences in allelic content between the selected lines concurrent with large changes in transcript connectivity.
Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without
large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level,
with the same modules but not the same transcripts affected across the three selections.
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Introduction

Haloperidol is a member of a class of drugs denoted as ‘‘typical’’

or first-generation antipshychotics since their adoption as psycho-

sis treatments. A number of locomotory side effects, including

dyskinesia, complicate their use in humans. Mice injected with

haloperidol develop catalepsy (rigid, fixed body position) and this

response is considered a model for human locomotory distur-

bances. Mouse inbred strains differ widely in their response to

haloperidol, signaling a strong genetic component for this trait; a

number of associated genetic loci have been previously detected in

mouse crosses [1]. Additionally, a number of studies implicate the

striatal dopaminergic system in the cataleptic response [2,3].

We have examined the striatal gene-expression covariance

structure in animals that were selectively bred from a heteroge-

neous stock (HS) for haloperidol response and non-response [4].

Crossing the C57BL/6J (B6), DBA/2J (D2), BALB/cJ (C) and LP/

J (LP) inbred mouse strains formed the HS founder population.

This HS cross, denoted as HS4, is of intermediate genetic

complexity [5]. After three generations of selection, the responsive

and non-responsive lines differed more than 30-fold in the

haloperidol-induced catalepsy ED50. The lines also differed in

their response to structurally dissimilar D2 dopamine receptor

antagonist, raclopride, strongly suggesting that the basis for

selection was pharmacodynamic and not pharmacokinetic. Selec-

tion produced only modest changes in striatal gene expression

despite the use of large populations (N = .40/line). In contrast,

applying Weighted Gene Coexpression Network Analysis

(WGCNA) [6] to the microarray data revealed significant changes

in gene connectivity, most notably in a module enriched in genes

associated with cell signaling and behavior. Previous studies have

highlighted the genetic influences on trait variability, which can be

distinct from influence on average trait values [7]. Gene

coexpression networks are constructed on the basis of gene or

transcript joint variability; genetic effects on variability will

therefore translate into changes in the coexpression network

structure. The adoption of graph/network techniques and

terminology to the analysis of high-throughput biological data

offers a distinct advantage: highly dimensional interactions can be

efficiently summarized and related to specific biological or disease

states. These approaches have been successfully applied in several

recent studies [4,8,9,10,11]. There is, however, a potential

confound in applying these techniques to data generated from

selectively bred animals. Selection gives rise to numerous genetic

loci that segregate between the lines; genetic drift and random

allele fixation confound the functional interpretation of these loci,

including their downstream effects on network connectivity. One

strategy for dealing with genetic drift is to have at least a second

independent selection and determine if the same association

appears [12]. If the association is simply stochastic, replication is
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highly unlikely. In the current study, we employed a somewhat

different strategy. In addition to independent catalepsy selections,

we have also varied the genetic background. Two different

founder populations were used; one was an F2 intercross formed

from the B6 and D2 strains, and the other was the HS-CC that

was formed from the eight founder strains of the Collaborative

Cross (CC). Using single nucleotide polymorphisms (SNPs) as a

surrogate for genetic diversity, the F2 intercross is 50% less diverse

than the HS4, and the HS-CC is three times more diverse [5].

Previously, we have shown [13] that striatal network structure in

the three founder populations displays significant preservation;

here, we evaluate whether selection produces changes in gene

coexpression independent of genetic background. The focus is on

detection and statistical evaluation of changes in coexpression

patterns, which we denote as module disruption. It is important to

note that module preservation and module disruption are related

and complementary concepts and they can both hold for a given

module. Even though modules might be highly preserved across

biological conditions, this does not preclude the emergence of

subtle changes in network structure that are not enough to render

the module non-preserved, but nevertheless are statistically

significant and, potentially, biologically meaningful. To detect

these changes, we adapted the module preservation procedures

outlined in [14]. To examine this issue, the key strategy was the

creation of a consensus gene network, using the gene expression

data from all three selections.

Materials and Methods

Ethics Statement
All animal care, breeding and testing procedures were approved

by the Laboratory Animal Users Committees at the Veterans

Affairs Medical Center, Portland, OR, and at the Oregon Health

& Science University, Portland, OR.

Animal breeding and selection
The formation of the HS colonies was described previously [15].

Haloperidol response phenotyping followed the procedure out-

lined in [1,4]. On day 1, all animals were administered 4 mg/kg

intraperitoneally of haloperidol, and the catalepsy response, which

consists of remaining in a fixed rearing posture for 30 seconds, was

measured after 15 minutes. Based on this response, the animals

were categorized as haloperidol responders (R) and non-respond-

ers (NR). After a week, the R animals were administered 1 mg/kg

of haloperidol, and the NR animals were administered 7 mg/kg of

haloperidol; the second test produced two additional categories:

very-responsive and very non-responsive animals. Breeding sixteen

families of very-responsive and very-nonresponsive animals

produced the first selection generation; three additional breeding

generations resulted in the High (responsive) and the Low (non-

responsive) selected lines. Additional details and the general

strategy for short-term selective breeding is found in [12].

Gene-expression data processing
Our data pre-processing steps closely follow procedures

described previously [13]. Gene-expression data for the High

and Low selected lines were obtained from the striatum using the

Illumina WG 8.2 array exactly as described by the manufacturer.

The dissection of the striatum and the details of sample

preparation for hybridization are found in [15]. Data were

imported into the R application environment (http://www.r-

project.org), and outlier samples were removed. Probes not

expressed above background (p,0.01) in at least a quarter of

the samples were removed. For each probe, we computed the

coefficient of variability (CV) and we selected for network

construction the top 50% most variable probes. The intersection

of these probes across the three datasets resulted in 6755 probes.

The data were quantile normalized. Microarray datasets are

publicly available in the Gene Expression Omnibus database [16]

under accession number GSE37755.

Quantification of genetic variability and genetic
differences

F2 and HS4 selected lines were genotyped using a panel of 768

SNPs previously described [15]. The HS-CC samples were

genotyped using the Mouse Universal Genotyping Array, which

uses 7851 SNP markers distributed over the mouse genome

(http://www.neogen.com/GeneSeek/SNP_Illumina.html). Ge-

nome-wide genetic differences were analyzed following the

AMOVA procedure [17]. Each genome was encoded as a long

vector with entries of 0, 1 or 2 reflecting marker allelic content;

pairwise ‘‘manhattan’’ distances were computed between these

vectors. Subsequently, between versus within groups (High or Low

selections) distances were evaluated in a manner similar to the

classic analysis of variance approach. The genome-wide pairwise

distances were visualized using the multidimensional scaling

procedure available in the R application environment.

Coexpression network construction and validation
We constructed the coexpression network using the WGCNA

approach [6,18]. First, the absolute value of the Pearson

correlation coefficient between all transcript pairs across samples

was computed, resulting in a correlation matrix. The Pearson

correlation matrix was subsequently transformed into an adjacen-

cy matrix (A) using a power function. The connection strength aij

between transcripts xi and xj then becomes aij = |corr(xi, xj )|b;

b= 10 was selected in accordance to the scale-free topology

criterion [6]. To detect modules or groups of coexpressed

transcripts, the adjacency matrix was clustered using the ‘‘dynamic

tree cut’’ algorithm [19]; this procedure takes advantage of the

internal structure of the dendrogram in cutting the branches and

identifying modules. We validated module membership by a

permutation procedure, checking whether average module adja-

cency is higher than average adjacency of random groups of

transcripts. For the detection of TFBSs in the upstream regions of

module genes, we used the Promoter Analysis and Interaction

Network Tool (PAINT) [20]; once the TFBSs for each gene were

collected we used Fisher’s exact test followed by FDR adjustment

to test for overrepresentation of each module TFBS against the

whole network.

Differential network analysis and detection of module
disruption

Recent work [14] has introduced a comprehensive and powerful

method for evaluation of preservation of network properties. For

any collection of network nodes of interest (module), preservation

statistics are created by comparing network/module statistics

against similar values compiled from randomly selected groups of

nodes. Broadly speaking, bootstrapping or random selection is

performed over network nodes. In the current application, the goal

is to detect significant changes in network structure. To detect

these changes, we adapted the module preservation procedures

outlined above. In essence, we create separate networks corre-

sponding to the two biological conditions; differences between

these networks are evaluated against changes that could occur by

chance. An empirical distribution of random changes was

generated by constructing a set of networks (N = 200) using a

Brain Gene Coexpression Changes in Catalepsy
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mixture of samples from both biological conditions. Bootstrapping

was performed over samples as opposed to network nodes. This

procedure is feasible in our dataset because the samples

corresponding to the High and Low lines originate from the same

tissue and were processed together as part of the same experiment.

We computed network preservation statistics, exactly as defined in

[14], Equations 1–20, for pairs of networks from this empirical

distribution. The network statistics used here include intramodular

connectivity (kIM), total network eigengene connectivity (kMEAll),

module eigengene connectivity (kME), clustering coefficient

(clusterCoeff) and maximum adjacency ratio (MAR). These

quantities apply to individual nodes; for a given module the

values for all nodes are arranged in a vector. Vectors originating

from two different networks are correlated, resulting in cor.kIM,

cor.kMEAll, cor.kME, cor.clusterCoeff and cor.MAR; cor.ADJ is

obtained from matrix correlation of the adjacency matrices. High

correlation values correspond to strong preservation. Furthermore,

the statistical significance of preservation or disruption values can

be quantified using a Z score [14]: Za~
obsa{ma

sa

, where obsa

corresponds to preservation for a given network statistic and

module, ma and sa correspond to mean and standard deviation of

preservation values, in our case generated from the empirical

distribution of preservation values between mixed-sample net-

works. While for module preservation the Z scores are positive,

signifying that modules are more preserved than random groups of

nodes, disruption Z scores are often negative. The negative Z

values result from the fact that preservation between two networks

corresponding to different biological conditions is lower than

preservation between two networks created using a mixture of

samples: often obsa is smaller than ma. Following [14], we consider

Z scores lower than -2 disrupted.

Inference of ancestral allele origin and allelic imbalance
The HS-CC dense genotype data, which included genotypes of

the eight parental strains, was used to infer the probability of each

ancestral allele for each combination of genomic interval and each

individual. We used a dynamic programming algorithm available

as part the R package HAPPY [21]. The alleles with highest

probability for each sample/interval were arranged in a contin-

gency table and imbalance was evaluated using Fisher’s exact test;

the collection of p-values were subsequently adjusted using the

FDR procedure [22].

Results

Selection of High and Low haloperidol-responsive lines
Procedures for testing and selecting mice have been described

previously [1,4]. Briefly, equal numbers of males and females

(,200 total) from the founder populations (F2, HS4 and HS-CC)

were phenotyped for haloperidol response using a two-step process

that resulted in assigning animals to one of four groups; ‘‘1’’ was

the least responsive, and ‘‘4’’ was the most responsive. Breeding

pairs were selected from the most extreme response groups. The

selection and breeding were continued for two additional

generations; in the third generation, parents were bred for three

rounds to produce progeny for gene expression. As illustrated in

Figures 1 (A–C), all three selections produced significant pheno-

typic segregation.

Genome-wide differences between selected lines
The F2 and HS4 founders and their respective selected lines

were genotyped using a SNP panel described elsewhere [15]. A

denser genotyping platform was used for the HS-CC (see

Methods). Each genome was encoded as a long vector with

entries corresponding to allelic content, allowing computation of

genome-wide genetic pairwise distances between samples. Genetic

analysis used the Analysis of Molecular Variance (AMOVA)

approach [17]; see Methods. As illustrated in Figure 1 D–F,

pairwise distance variability was higher in the founder animals

compared with the selected lines, reflecting allele fixation and loss

of genetic variability. Additionally, the individual samples from the

selected lines clustered together, indicating that selection results in

two genetically distinct populations (AMOVA F-test p,10-5).

Gene-expression differences between selected lines
Differential striatal gene expression for the three pairs of

selected lines was calculated using the eBayes modified t-statistic

available in Bioconductor (www.bioconductor.org) and further

adjusted using the False Discovery Rate (FDR) [23]. Among the

high variability transcripts used in the analysis, the number of

differentially expressed transcripts (FDR,0.1) was significantly

higher in the HS-CC compared with the F2 and HS4 selections

(445 versus 113 and 33, respectively). There were no differentially

expressed transcripts common to all three selections. The gene

transcripts showing a significant differential effect are found in

Dataset S1, in File S1.

Construction, validation and annotation of the
coexpression networks

We constructed gene coexpression networks following the

WGCNA procedure [13,18]. We denoted as the network the

collection of all transcripts (network nodes) together with the

connection strength between them (edge weights). Transcript

expression levels were correlated across samples, giving an initial

estimate of the network adjacency; subsequently, this value was

raised at a power b, resulting in a more robust approximation of

the connection strength between transcripts [18]. In the current

study, b= 10 was used. For a node, network connectivity is

defined as the sum of all its network connection strengths; an

approximately exponential distribution of node connectivity

defines a scale-free network structure [24]. Intramodular connec-

tivity is related but distinct from network connectivity: for each

transcript the summation of connection strengths considers only

connections within a module. To facilitate an unbiased compar-

ison of network structure, we constructed a ‘‘consensus’’ network

using 6755 gene transcripts with high detection levels in all three

datasets (see Methods); the adjacency in this network was the

average adjacency across the three selections. Clustering the

network structure, followed by merging of modules with close

eigengenes, revealed 25 modules in the consensus network,

identified by arbitrary colors (Figure 2). Transcripts not assigned

to any cluster were denoted as ‘‘grey’’. Using a bootstrapping

procedure, it was verified that all modules had an average

adjacency significantly higher than what could be detected by

chance. The module sizes varied between 40 and 471 transcripts.

Gene Ontology (GO) annotation of the consensus modules

revealed association with distinct biological processes (Dataset

S2, in File S1). Two of the modules (‘‘Grey60’’ and ‘‘Pink’’) were

both enriched in gene transcripts associated with locomotor

behavior. To further explore the biological significance of the

coexpression modules, we cross-referenced the module member-

ship with known markers of distinct cell types in the murine brain

[25]. Four modules (‘‘Darkred’’, ‘‘Midnightblue’’, ‘‘Pink’’ and

‘‘Turquoise’’) were enriched with transcripts associated with

neuronal cell types, one module (‘‘Black’’) with oligodendrocytes

markers and two modules (‘‘Purple’’ and ‘‘Tan’’) with astrocyte

markers (Bonferroni corrected p,0.05). Modules were also

Brain Gene Coexpression Changes in Catalepsy
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examined for overrepresentation of transcription factor binding

sites (TFBS); the probability of enrichment was assessed using

Fisher’s exact test followed by an FDR adjustment. At FDR,0.1,

we identified 8 modules enriched with specific TFBS (Dataset S3,

in File S1). Because pairs of TFBS often contribute to gene

expression in cooperative fashion [26,27,28,29], we also searched

for modules with overrepresented TFBS pairs. Eleven such

modules were found (Dataset S4, in File S1). Because of the

degeneracy of TFBS, there are multiple transcription factors (TFs)

that can compete for TFBS; however, even taking this fairly broad

view of TFs, we were unable to align differential TF expression or

differential TF connectivity (see below) with selection-induced

changes in network structure.

Coexpression differences associated with selection
We evaluated whether selection induced significant change or

disruption in coexpression structure, using the consensus modules

as a common baseline. For each selection, two separate networks

were constructed, using the Low and High samples respectively;

examination of the intramodular connectivity values revealed that

many transcripts changed connectivity. To evaluate the statistical

significance of the observed differences, a set of networks (N = 200)

was constructed using a mixture of High and Low samples;

differences in connectivity values were used to construct an

empirical distribution of connectivity changes that can occur by

chance. Differences between the High and Low networks were

normalized against the empirical distribution. Using this proce-

dure, each transcript connectivity change between High and Low

networks was assigned a Z score; scores Z.2 were considered

significant. We found a relatively large number of transcripts

significantly changed network connectivity: 458 (7.0%), 499 (7.6%)

and 1537 (23.4%) in F2, HS4 and HS-CC populations,

respectively. However, as for differential expression, none of the

differentially connected transcripts were in common across the

three selections.

We also evaluated the collective, cumulative change in

connectivity of all transcripts within a module. As detailed in

Methods, we used an adapted version of the module preservation

procedure that is part of the WGCNA pipeline [14]. For each

module, intramodular connectivity and other network statistics

values (see Supplementary Methods, in File S2) were arranged in a

vector. Module-wide connectivity differences were evaluated by

examining the correlation values between the vectors correspond-

ing to the High and Low networks. Our analysis revealed that, for

each selection, several modules significantly (Z,-2) changed

intramodular connectivity structure: 4 modules in F2, 12 in HS4

and 21 in HS-CC; a complete listing of changes in network

statistics is available in Dataset S5, in File S1. As in differential

expression and transcript-level differential connectivity, the

changes in HS-CC were more pronounced. Importantly, three

Figure 1. Phenotypic and genetic differences between naı̈ve animals and selected lines. ‘‘Green’’, naı̈ve animals; blue, High line; red, Low
line. A–C: Top, distribution of catalepsy responses in the naı̈ve populations—high scores denote responders. Bottom, distribution of catalepsy
responses in the selected lines. The three selected populations display differences in scores, showing successful selection. D–F: Multidimensional
scaling of the genetic distances between individuals. The selected populations appear distinct from each other and closer together due to allele loss/
fixation.
doi:10.1371/journal.pone.0058951.g001
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modules changed significantly in all three selections: ‘‘Green’’,

‘‘Grey60’’ and ‘‘Pink’’ modules; the Z scores for these modules are

listed in Table 1.

Integration of genotype and coexpression in the HS-CC
data

The dense genotyping of the HS-CC samples facilitated the

integration of genetic and coexpression data. We identified

genomic regions with significant allele distribution differences

between the High and Low selected lines. By combining the

genotype data from the founder inbred lines, it was possible to

infer, for each animal, the most probable ancestral alleles for each

genomic interval [21]. The allele distribution was then arranged in

a contingency table with rows corresponding to the two selections

and columns corresponding to the ancient strain allele origin. A p-

value of significant differences was computed using Fisher’s exact

test; the p-values were then adjusted using the FDR procedure

[22]. This procedure revealed the genomic intervals with ancestry

segregating during selection (FDR,0.1); 2047 out of the 6755

network transcripts were located within these intervals. The

transcripts of highest interest 1) fell within the three modules of

interest, 2) displayed significant module connectivity changes and

Figure 2. Hierarchical clustering of gene modules and module color assignments. Top: clustering tree. Bottom: initial unmerged colors and
subsequent merged (final) module color assignments.
doi:10.1371/journal.pone.0058951.g002

Table 1. List of disruption Z scores.

Module/Cross cor.kIM cor.kME cor.kMEall cor.ADJ cor.clusterCoeff cor.MAR

Green/F2 22.15 21.71 21.42 22.43 21.09 21.15

Grey60/F2 22.51 23.08 20.85 24.28 21.53 21.43

Pink/F2 22.09 21.75 22.35 21.98 21.6 21.32

Green/HS4 22.19 21.87 20.58 22.6 22.26 23.15

Grey60/HS4 22.09 21.53 20.88 21.98 21.15 21.58

Pink/HS4 22.73 21.62 20.59 21.89 20.2 21.23

Green/HS-CC 22.98 21.32 21.16 26.83 20.92 21.25

Grey60/HS-CC 22.47 21.36 21.08 26.23 21.18 20.61

Pink/HS-CC 23.95 24.07 23.05 25.08 22.61 22.871

1Three modules (Green, Grey60 and Pink) displayed significant disruption (cor.kIM absolute value z scores above 2) in all three datasets.
doi:10.1371/journal.pone.0058951.t001
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3) were located within segregating genomic intervals. The identity

of these genes is presented in Table 2. We consider that these

transcripts offer the best evidence of direct, functional links

between selection and phenotype and the molecular level. A

number of these genes have previous association with similar

phenotypes. In the ‘‘Grey60’’ module, Myo5a, falls within the

range of a previously detected QTL for haloperidol induced

catalepsy [30]. Also in the ‘‘Grey60’’ module, Rps6ka5 has been

previously associated with dopamine processing within striatal

neurons [31]. In the ‘‘Green’’ module, Spock1 has been previously

associated with genetic effects on tyrosine hydroxylase levels within

dopaminergic neurons [32]. One of the ‘‘Pink’’ module gene

transcripts with significant allelic and connectivity changes, Bcl11b,

has been previously shown to strongly influence striatal gene

expression [33] and transcriptional dysregulation in Huntington’s

disease [34]. We selected Bcl11b to illustrate connectivity and

allelic differences in Figure 3.

Discussion

Haloperidol-induced catalepsy is an ideal phenotype for

integrative analysis of gene networks, genetic diversity and

behavior. The mechanism of drug action is well established

(blockade of D2-like dopamine receptors), the striatum is the major

target for the extra-pyramidal response and the phenotype is

highly heritable [2,3]. Differences in response among inbred

mouse strains are not due to differences in D2 receptor density, the

relative amounts of the long and short receptor isoforms or

haloperidol pharmacokinetics [3,35,36,37]. The genetic differenc-

es are not haloperidol specific; for example, the D2–D3 receptor

antagonist, raclopride, shows the same inbred strain distribution

pattern [2]; all of the selected lines differed significantly in their

response to raclopride (data not shown). However, the genetic

differences are not paralleled by differences in response to D1

receptor antagonists, e.g., SKF 23390 [37].

From a translational perspective, comparison of mouse popu-

lations with different genetic backgrounds is an essential first step.

Before any genetic or molecular mechanisms can generalize to

humans, they must be shown to be similar in genetically distinct

subpopulations of the same species. Broadly speaking, a systems-

biology approach was used to detect mechanisms that transcend a

specific genetic background. Key to this approach was the

inclusion of a selection from the genetically diverse HS-CC

founders. As noted by [5] and confirmed by genome-wide next-

generation sequencing [38], F2 intercrosses and four-way and

eight-way HS populations formed from standard mouse laboratory

strains will capture only a fraction of Mus musculus genetic diversity;

F2 and standard HS populations are actually more similar than

different. In contrast, the eight strains used to form the HS-CC,

which includes three wild-derived strains, capture approximately

90% of the available allelic diversity. However, despite the marked

difference in diversity, the basal HS-CC striatal coexpression

network is similar albeit not identical to that found in F2 and HS4

animals [13].

The WGCNA is one of several graph/network approaches for

analyzing gene coexpression structure. We recognize that other

approaches and indeed subtle variations in the implementation of

the WGCNA can yield different results [4,39]. The WGCNA

aligns strongly with two principles. The first is that coexpressed

genes are likely to share biological functions; importantly, this

principle allows putative annotation of genes and noncoding

RNAs with no known function. In our case, we used an unsigned

network [6,18], which implies that both positively and negatively

correlated genes are coexpressed and often assigned to the same

module. The second principle is that the network structure is scale-

free and follows a power law distribution; this implies that the

Table 2. Genes with connectivity and allele origin differences.

Symbol/Module
High Network Module
Connectivity Rank

Low Network Module
Connectivity Rank

zScore Connectivity
Change

Raw p value allele
differences

FDR value allele
differences

Arf3/Grey60 52 31 -2.7 8.95E-05 0.0004

Myo5a/Grey60 33 47 2.3 5.80E-17 1.08E-14

Rps6ka5/Grey60 10 36 4.9 0.0001 0.0007

Cyp2a5/Green 115 165 2.2 0.002 0.008

Hist1h4f/Green 15 127 2.6 0.0009 0.003

Nckap1l/Green 52 29 -2.002 2.60E-07 3.05E-06

Pex26/Green 119 103 -2.02 1.65E-05 0.0001

Rab40c/Green 73 16 -2.2 0.0003 0.001

Spock1/Green 116 36 -4.1 0.001 0.003

2300002D11Rik/Pink 38 71 2.4 4.74E-05 0.0002

A130092J06Rik/Pink 75 36 -2.001 0.003 0.009

Bcl11b/Pink 24 6 -2.2 6.66E-05 0.0003

Kcnab1/Pink 37 11 -2.9 3.94E-06 3.04E-05

Pde1b/Pink 2 2 -2.04 2.60E-07 3.05E-06

Pou3f1/Pink 30 83 2.6 8.63E-05 0.0004

Prosapip1/Pink 43 10 -2.5 1.27E-10 4.67E-09

Tbc1d10c/Pink 90 66 -2.02 0.002 0.008

Tmem90a/Pink 77 29 -2.4 3.79E-08 5.87E-072

2For the three modules affected by selection, a number of genes change connectivity significantly, as indicated by change in connectivity rank and z Score. The same
genes fall within genomic regions that segregate between High and Low populations.
doi:10.1371/journal.pone.0058951.t002
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network is best described by a few highly connected hub genes,

with most of the nodes sparsely connected [6]. WGCNA was used

to show that it was at the level of network structure and not

differential expression that one could discriminate the nonhuman

primate and human brain transcriptome and the regional brain

differences in the human transcriptome [40,41]. Importantly from

a translational prospective, recent work has demonstrated that

eQTL in combination with coexpression network analysis can

identify novel candidate genes related to schizophrenia [42,43].

The WGCNA has been used to dissect the transcriptome into

modules associated with specific cell types (neurons, oligodendro-

cytes, astrocytes and microglia), specific organelles and synaptic

functions [41]; our data replicated this observation. Recent work

[44] has also illustrated that the WGCNA is sufficiently sensitive to

detect behaviorally relevant differences in network structure even

among an inbred strain.

Data previously reported [4] were the first to show that selection

for a behavioral phenotype had marked effects on WGCNA

Figure 3. Bcl11b connectivity and allelic differences between High and Low selected lines – HS-CC founders. A: Bcl11b connectivity
patterns in the High network. For visual clarity, only edges involving Bcl11b are represented. Edge thickness and opacity are proportional with the
edge weight (adjacency). Node size (except Bcl11b) is proportional with modular connectivity. B: Low network Bcl11b connectivity pattern. C: Allele
distribution for Bcl11b in the naı̈ve HS-CC animals (‘‘Green’’, top) and in the High and Low selected lines (red and blue, bottom). NOD and A/J alleles
are more prevalent in the High group (blue) while NZO, B6 and A129 are more prevalent in the Low group (red). Strains: C57BL/6J (B6); A/J (A); 129S1/
SvImJ (129); NOD/LtJ (NOD); NZO/HILtJ (NZO). CAST/EiJ (CAST). PWK/PhJ (PWK), WSB/EiJ (WSB).
doi:10.1371/journal.pone.0058951.g003
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generated network structure. In this example, the HS4 was

specifically created to assess selection for haloperidol response; of

the founder strains, two (D2 and C) are haloperidol responsive and

two (B6 and LP) are non-responsive [37]. For the gene

coexpression analysis of the HS4 selected lines, the construction

of the consensus network from the responsive and non-responsive

lines was key; the data illustrated that the module showing the

most significant effects of selection was one enriched in genes

associated with intracellular signaling and locomotor behavior

(similar to the ‘‘Pink’’ module of the current study). The consensus

network used in the current study was somewhat different from

that reported [4], in that a larger number of transcripts were

included in the analysis and data were collapsed across three

different selections. An important observation [4] was that

selection had only modest effects on differential gene expression.

This point was extended in the current study and further it was

found that there was no overlap in differentially expressed genes

among the three selections. These data align with previous

observations that haloperidol-response quantitative trait loci

(QTL) are genotype dependent [1,3,30,45,46]. The consensus

network approach revealed that selection for haloperidol response,

regardless of genetic background, disrupted similar aspects of

network structure; the key disruptive features were changes in

intramodular connectivity. Three modules (‘‘Grey60’’, ‘‘Pink’’ and

‘‘Green’’) were consistently affected. But this commonality was

only detectable at the module level; connectivity changes among

individual transcripts were founder population unique. Thus,

within the striatal transcriptome the common selection element is

the gene module and not individual gene connectivity. It is of

interest to note that the specificity of the analysis was largely

generated by the F2 data; the more complex crosses recruited

additional modules such that in the HS-CC sample, nearly all of

the modules within the striatal gene network were affected.

The question arises as to whether or not the apparent

relationship between genetic diversity and the extent of module

involvement is a general rule: does selection recruit a more

complex biology in the more complex crosses? The data presented

here cannot address this issue; replicate selections from the HS4

and HS-CC populations would be needed to eliminate the effects

due to random allele fixation.

The module-centric/genotype-dependent view of selection,

heritability and behavior could be generalized to other phenotypes

and other populations under certain conditions. While publically

available and behaviorally relevant datasets are generally too small

to accurately construct gene networks, a meta-analysis approach

[44] could address this issue provided the behavior is measured

under similar conditions. It has been argued [47] that it is gene-

environmental interactions that are key to understanding the

natural variation in behavior, which is the basis of selective

breeding. Our data provide an example of holding the environ-

ment ‘‘constant’’, varying genetic background and observing

selection-induced changes in network structure. But in real-world

situations, e.g., a genome wide association study of natural

variation, neither the background nor the genotype is held

constant. Thus, the possibility of aligning phenotypic variation

with connectivity becomes more difficult.

Given this complexity and the fact that module(s) specifically

and networks generally may be the key to understanding

heritability, how best to investigate the gene-behavior relationship,

especially with a translational perspective? Here, we simply offer

one approach. Some behaviors, especially those that substantially

involve subcortical circuitry, have a large number of relevant

isomorphic animal models. With these models in hand, it is

possible to use network techniques to detect key modules; the

translational goal is to determine which genes within the key

module(s) are targets for manipulation and behavioral modifica-

tion. We argue that the inclusion of the HS-CC or a related

population such as the Diversity Outcross [48] is key to the

translational perspective. The genomic granularity and allelic

diversity allowed a reasonably accurate alignment of changes in

connectivity with specific genomic regions that segregate with

selection (Table 2). In addition and only in the HS-CC population,

there were eight transcripts with significant differential expression

and significant changes in connectivity in the key catalepsy

modules (Dataset S6, in File S1). This process significantly reduced

the number of targets identified for manipulating haloperidol

response. By definition (because they are members of a key

coexpression module), they have a role in haloperidol response.

Another target driven approach is to focus on the ‘‘hub’’ genes.

From the scale-free network perspective, hub disruption will have

the greatest affect on modular connectivity. It is not necessary that

the hub targets be genes that are affected by selection although

focusing on these genes provides insight into the causes of natural

variation. In the three selection consensus modules, there are a

number of hub genes previously shown to significantly affect

locomotor behavior and in some cases haloperidol response. In

addition to Drd2 (‘‘Pink’’), these include Rgs9, Pde10a and Chat (all

‘‘Pink’’), Tcf4 (‘‘Green’’) and Lrrk2 and Foxp2 (‘‘Grey 60’’)

[49,50,51,52,53,54,55]. It is also of interest to note that two

histone demethylases (Jmjd1a and Jmjd2b) are key hub genes

(‘‘Grey60’’ and ‘‘Pink’’, respectively), perhaps suggesting an

epigenetic strategy for modifying haloperidol response.

Overall, the data presented here argue that a systems biology

approach is needed, at least in some contexts, to investigate the

relationships between genes and behavior. The results from the

three independent selections illustrated that at the gene transcript

level, neither differential expression, nor differential connectivity

in one selection population predicted similar results in another

selection population; however at the module level, connectivity

changes did overlap. Extracting module-dependent information

requires relatively large gene expression datasets, which in turn

facilitate an accurate assessment of the covariance structure. This

assessment can be improved by substituting RNA-Seq for

microarray based strategies [56].

Supporting Information

File S1 Contains: Dataset1: Gene transcripts showing a
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annotation of the consensus modules. Dataset3: Transcription
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