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Abstract

Parkinson’s disease (PD) has had six genome-wide association studies (GWAS) conducted as well as several gene expression
studies. However, only variants in MAPT and SNCA have been consistently replicated. To improve the utility of these
approaches, we applied pathway analyses integrating both GWAS and gene expression. The top 5000 SNPs (p,0.01) from a
joint analysis of three existing PD GWAS were identified and each assigned to a gene. For gene expression, rather than the
traditional comparison of one anatomical region between sets of patients and controls, we identified differentially
expressed genes between adjacent Braak regions in each individual and adjusted using average control expression profiles.
Over-represented pathways were calculated using a hyper-geometric statistical comparison. An integrated, systems meta-
analysis of the over-represented pathways combined the expression and GWAS results using a Fisher’s combined
probability test. Four of the top seven pathways from each approach were identical. The top three pathways in the meta-
analysis, with their corrected p-values, were axonal guidance (p = 2.8E-07), focal adhesion (p = 7.7E-06) and calcium signaling
(p = 2.9E-05). These results support that a systems biology (pathway) approach will provide additional insight into the
genetic etiology of PD and that these pathways have both biological and statistical support to be important in PD.
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Introduction

Parkinson’s disease [PD (OMIM 168600)] is a complex

neurodegenerative disease thought to be due to interactions

between genetic susceptibility and environmental stressors. Several

genome-wide association studies (GWAS) on PD have been

performed recently [1–5], but only two genes have demonstrated

statistical significance and replication across data sets: the

Microtubule-Associated Protein Tau (MAPT) and a-synuclein

(SNCA). However, many genes have been replicated in these

datasets, but after correcting for multiple testing, have not reached

genome-wide significance. Thus, additional approaches are

needed to maximize the existing genetic data to identify genes

and pathways important in developing PD.

A criticism of many of the current GWAS analytical approaches

is that they focus primarily on the most significant SNPs occurring

in an analysis [6], and that this may not incorporate known

biological information that could increase their value. One way to

utilize biological information is a pathway-analysis approach,

based on the realization that complex diseases are likely affected

by many genes contributing in a common pathway [2,7–10].

Another source of genetic data for research in complex genetic

disease has been gene expression [11–13]. But interpretation of

these gene expression results, especially in complex diseases, has

potential difficulties. For one, disease risk may well be conferred

through means other than gene expression changes, and thus

genetic variation important to disease risk may not affect gene

expression directly, and not be detected through such studies.

Another often cited criticism is that many of the differentially

expressed genes between patients and controls may actually be

secondary to degenerative changes in patients, and thus have little

contribution to the actual disease process.

The classical experimental method employed in gene expres-

sion analyses has been to analyze a group of disease cases versus a

group of controls. One flaw of this design is that individual sample

variations that are secondary to sample handling, agonal state and

other general factors can mask or introduce error in the analysis,

as the model lacks an internal reference for these effects on gene

expression. Further, individuals in late-onset disorders like PD will

likely be at different stages of neurodegeneration at death, and

thus pooling different brain regions that may be differentially

affected from these individuals will introduce more error in the

analyses.

We hypothesize that by combining a pathway approach for

both GWAS and gene expression we can address many of these

concerns and identify those pathways important in the pathogen-

esis of PD. To reduce error in gene expression, we identified

differentially expressed genes between different brain tissues
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involved in PD in a single individual, rather than comparing

average gene expression results from the same anatomical tissue in

groups of cases and controls. We then used these data to identify

pathways, which were significantly over-represented by differen-

tially expressed genes. Further, a pathway analysis was performed

to identify pathways over-represented in the GWAS data.

Convincingly, out of 205 potential human pathways listed in the

Kyoto Encyclopedia of Genes and Genomes (KEGG), four of the

top seven most significant pathways from each approach were

identical and meta-analysis demonstrated 10 pathways to be

highly significant. These shared pathways from both gene

expression and GWAS therefore have both biological and genetic

support for their importance in the pathogenesis of PD.

Results

Gene Expression Analysis
Both control and patient subtractions gave a large number of

differentially expressed genes between different tissue regions. In

controls, this represents the normal functional variation between

brain regions. Thus, the average control values were subtracted

from each patient sample, normalizing the subtraction results.

After the subtraction of the control ratios, a large number of genes

remained differentially expressed between subtraction pairs. These

were used in the subsequent pathway analysis. 6759 genes are

differentially expressed and 42 over-represented pathways were

identified (significance level: p#0.05) (Figure 1).

Figure 1. The Venn diagram shows 25 and 42 over-represented pathways in the GWAS (green) and the expression PD (pink) studies
respectively. Twelve over-represented pathways common to both PD studies are also shown (yellow). The pathway’s rank in the meta-analysis is
provided in parenthesis.
doi:10.1371/journal.pone.0016917.g001
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GWAS pathway analysis
Twenty-five over-represented pathways at significance level

p#0.05 (Figure 1) were seen in the 5000 SNPs. The 10 most

statistically significant over-represented pathways are shown in

Table 1. A total of 12 over-represented pathways are common to

both the GWAS and the gene expression PD studies (Figure 1).

The list of over-represented pathways common for the two PD

studies (GWAS or gene expression) does not change if the gene

expression data are considered as two sub groups (up–regulated

and down-regulated) or merged into a single group (of differen-

tially expressed genes). Additionally, four of the top seven over-

represented pathways from each approach (Table 1) were

identical; these are: calcium signaling, axon guidance, focal

adhesion and adherens junction.

Meta-Analysis of Over-represented Pathways in PD
A meta-analysis of over-represented pathways was developed

and performed to identify statistical significance in the combined

GWAS and gene expression PD study. For the gene expression

data, the up–regulated and down-regulated genes are merged into

a single class of differentially expressed genes. The top 20 over-

represented pathways from the meta-analyses of over-represented

pathways are shown in Table 2.

Discussion

The pathways identified by integrating GWAS and gene

expression data reported here have both statistical and biological

support to be involved in PD. This further suggests that many of

the changes seen in gene expression studies are not due to

secondary, non-specific changes, but rather have direct influence

on the pathogenesis of the disease. It also demonstrates that the

pathways derived from the GWAS have biological support. The

convergence of these two greatly reduces the risk that these

pathways are biased by size of the significant gene, with larger

genes having greater chance of having a significant SNP [14].

O’Dushlaine [15] examined the effect of the number of genes in a

pathway towards significance, but didn’t see any correlation.

Supporting this are recent studies of pathway analyses in other

disorders such as Diabetes and Inflammatory diseases [14,16],

where little overlap was seen between these pathways and those

reported here. Had the size of the pathway been a prominent

factor, more overlap would be expected. Elbers et al. [14]

examined this possibility as well, but only found it to be a problem

with two of the pathway classification tools they tested, neither

which was utilized in this analysis.

Previously, a SNP ratio test (SRT) has been developed to assess

enrichment of significant associations from GWAS in context of

KEGG pathways [15]. One difference between the SRT method

[15] and the method described here is with respect to the mapping

of SNPs to genes. In our study, the mappings of SNPs to genes are

obtained using a window of 20 Kbp on either side of the SNP. The

genes identified within the window are added to the gene list of

interest. Using the criterion, if no gene was identified for the SNP

in question then the two neighboring genes, irrespective of

distance separation between the SNP and gene, are added to the

gene list of interest. In the O’Dushlaine et al. study [15], the

mappings of SNPs to genes are obtained by parsing the db SNP

Table 1. The top ten over-represented pathways from (a) the
GWAS PD study and (b) the gene expression PD study.

(a) GWAS P value

Melanogenesis 6.51E-05

Axon guidance 8.05E-05

Cell adhesion molecules (CAMs) 9.62E-05

Neuroactive ligand-receptor interaction 3.70E-04

Adherens junction 6.95E-04

Focal Adhesion 8.56E-04

Calcium Signalling pathway 1.94E-03

Pentose and glucuronate interconversions 7.06E-03

Starch and sucrose metabolism 7.90E-03

Drug metabolism - cytochrome P450 8.11E-03

(b) Gene expression

Axon guidance 7.00E-07

Focal adhesion 2.11E-06

Calcium signaling pathway 3.70E-06

Renal cell carcinoma 9.18E-06

Regulation of actin cytoskeleton 2.24E-05

Adherens junction 9.64E-05

ErbB signaling pathway 1.03E-04

Type I diabetes mellitus 1.13E-04

Long-term potentiation 4.37E-04

Non-small cell lung cancer 4.84E-04

The pathways are presented in the decreasing order of significance.
doi:10.1371/journal.pone.0016917.t001

Table 2. The top twenty over-represented pathways
determined by the meta-analysis combining the GWAS and
the gene expression PD studies.

GWAS and Gene Expression Meta_P-value
Corrected
P-values

Axon guidance 1.39E-09 2.79E-07

Focal adhesion 3.82E-08 7.68E-06

Calcium signaling pathway 1.42E-07 2.85E-05

Cell adhesion molecules (CAMs) 1.04E-06 2.09E-04

Adherens junction 1.18E-06 2.37E-04

Renal cell carcinoma 2.70E-06 5.43E-04

Regulation of actin cytoskeleton 1.35E-05 2.71E-03

Non-small cell lung cancer 8.40E-05 1.69E-02

Melanogenesis 9.59E-05 1.93E-02

ErbB signaling pathway 1.15E-04 2.31E-02

Long-term potentiation 2.62E-04 5.27E-02

Glioma 2.71E-04 5.44E-02

Type I diabetes mellitus 3.53E-04 7.10E-02

Pancreatic cancer 6.28E-04 1.26E-01

Phosphatidylinositol signaling system 6.98E-04 1.40E-01

Neuroactive ligand-receptor interaction 1.31E-03 2.63E-01

Complement and coagulation cascades 1.39E-03 2.79E-01

Heparan sulfate biosynthesis 1.62E-03 3.25E-01

MAPK signaling pathway 1.71E-03 3.43E-01

Endometrial cancer 2.86E-03 5.75E-01

The over-represented pathways are presented in rank order.
doi:10.1371/journal.pone.0016917.t002
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table b129_SNPContigLocusid_36_3.bcp to include SNPs less

than 2 Kbp from the 59 of the gene and less than 0.5 Kbp 39 from

the end of the gene.

One reason we chose our method was that variants regulating

transcript expression or transcriptional control are likely to be

important in complex disease, and to date many associated SNPs

in these disorders have been located in ‘‘gene deserts’’ or non-

coding regions. While there have been no systematic studies to

investigate the affect of upstream and downstream analysis for

the cause and the effect of genetic variation, one study has shown

that 95% of genetic variation affecting transcript levels is within

20 Kbp of the transcript start and end sites [17] and therefore

provides support for our use of 20 Kbp radii for mapping SNPs

to genes. Furthermore, it is likely that SNPs located in gene

deserts may coincide with enhancers and silencers, thereby

providing a rationale to search beyond the 20 Kbp to attach a

SNP to gene when protein coding genes are absent within the

initial 20 Kbp search. Studies using conserved non-coding

elements (CNEs) and in-vivo GFP enhancer assays have shown

that the majority of CNEs are located in gene deserts and are

likely to up-regulate effector genes of up to 250 Kbp away. Many

of the CNEs have a larger distance of separation from the target

genes (.1 Mbp) [18–22]. Targets for these enhancers are

enriched for the regulation of transcriptional control or

developmental genes [19,20], many of which have been

identified in these pathways. It is likely the methods used here

to map SNPs to genes will be valuable to establish evolutionary

significance of long range cis-regulation and trans-regulation in

complex diseases [17,20,22–26].

We believe that the measurement of gene expression compared

between different CNS regions affected by PD within the same

person helps adjust for factors such as agonal state, postmortem

interval and other environmental effects that affect RNA quality.

By using differences between anatomical regions from the same

patient, we create an internal reference for these effects. Further,

this methodology should be more sensitive to identifying

expression changes in individuals at different stages of disease

that would be ‘‘washed out’’ by the traditional analysis of groups of

cases versus controls.

In this study, we used Fisher’s combined probability test to

combine the results of pathway analysis in a large GWAS dataset

and a smaller expression dataset. One limitation of this approach

is that it gives equal weight to the results from each dataset. While

this does not seem to be a big concern in the current study given

the concordant results in the two datasets, it may not be optimal

for other studies attempting to follow a similar approach with

more disparate results (and heterogeneous independent data sets).

In such cases, weighting each dataset’s contribution by a quality

score, effect size, or variance on the test statistic might be desirable

and can be accomplished by employing more complex methods

that accommodate such weights.

Both melanoma and melanogenesis pathways were identified in

the GWAS data as significant pathways (Figure 1), and the

melanogenesis pathway was ranked ninth in the meta-analysis

(corrected p-value = 1.9E-02). This seems biologically intuitive, as

melanin, tyrosine and their biosynthesis (Figure 2) are tightly tied

to the production of dopamine, the neurotransmitter deficient in

PD. Interestingly, other investigators have suggested that common

genetic determinants exist in the causal pathway to melanoma and

PD [27–29]. It seems also intuitive that much of this pathway is

lost in the gene expression analyses due to the destruction of

substantia nigra, and therefore is not prominent in the gene

expression results, though several genes in the pathway are found

significant in the expression analysis.

What is striking is that none of the SNPs in the melanogenesis

pathway (Figure 2) have been strongly implicated in current

association studies. This is because no one SNP or gene in these

pathways has met the stringent criteria of genome-wide statistical

significance despite multiple GWAS studies. The idea of focusing

on single gene or SNP effects when examining a disease is derived

from the very successful research over the past 30 years on

Mendelian (single gene) disorders. But, as seen here, the origin of

complex disease is really that of the cumulative effect on genes

functioning together in pathways. The data reported here support

the thoughts of other authors that pathway analysis is the more

appropriate analysis when looking for genes involved in these

diseases [6]. We would suggest that pathway analysis becomes part

of every approach to gene discovery in complex disease. It seems

likely, based on the concordance seen here by the three GWAS

studies in Edwards et al. [1] and the gene expression data, that

pathway analyses are more likely to replicate across GWAS studies

than single gene analyses.

It is interesting that the other well known Mendelian PD genes

(SCNA, PARKIN, DJ1, and PINK1) are not directly included in

any of the identified significant pathways. There are several

potential reasons for this finding. It may reflect the lack of

knowledge about the regular function of these genes. Or it is

possible that Mendelian mutations leading to PD are unique

genetic initiation points for PD, and while very insightful to the

general mechanisms that can lead to PD, are not involved in

directly in the pathways whose genetic variability contribute to

susceptibility to ‘‘idiopathic’’ PD.

Axon guidance was one of the top over-represented pathways,

and is important for brain development, dopaminergic axonal

maintenance, regeneration and target recognition. In 2005,

Maraganore et al. [30] published a tiered association study on

PD and identified a SNP in semaphoring 5A (SEMA5A) as the

most significant association. While this has not been replicated in

subsequent studies, as SEMA5A is important in axon guidance,

they examined SNPs in other genes in this pathway to attempt to

utilize these SNPs to predict outcome in patients. They found

support for additional axonal guidance pathway genes to be

associated with PD, and using the dataset from Papapetropoulos

et al. [11] found more differential expression than they expected for

45 genes in the axonal guidance pathway, using only data from the

substantia nigra and striatum. Wang et al. [31] using a different,

smaller GWAS dataset, also found it to be the only significant

pathway. Sutherland et al. [32] did a meta-analysis of reports of

gene expression studies in PD, excluding the data utilized here,

and also found axon guidance to be one of the major pathways

over-represented, as did Bossers et al. in a recent gene expression

study [33].

Focal adhesions (FA) are specialized regions where the cell

interacts with the extra cellular matrix (ECM). One primary

function of FA is linking the actin cytoskeletal network to the

transmembrane integrins (KEGG). Other FA are involved in

signaling between the cell and the ECM, as well as helping

regulate phosphorylation of molecules like MAPT, and influencing

receptors for growth factors. Errors in the interaction between the

ECM/FA can lead to a form of apoptosis called anoikis [34].

Caltagarone et al. [35] has suggested that errors in the FA/integrin

signaling pathway, in response to oxidative stress and fibillary Ab,

is one of the key pathways in inducing cell death in Alzheimer

disease (AD).

Adherens Junction (AJ) proteins are involved in the cell-cell

adhesions. In tissues such as skin, they are involved in maintaining

cell contact during external stress such as movement [36].

Cadherins are core AJ proteins and interact with microtubules

Pathways in Parkinson’s Disease
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and actin filaments. In the brain, AJ proteins are involved in

maintaining the blood-brain barrier (BBB). Interestingly, one of

the primary regulators of AJ in the BBB is calcium [37]. Changes

in BBB have been reported in normal aging [38], and several

studies have suggested changes in BBB exist in PD patients

[39,40].

The calcium signaling pathway (Figure 3) has an important role

in regulating a great variety of neuronal processes, as mentioned

above. Its high rank in the meta-analysis fits well with the recent

work that has shown the SNGRA dopamine neurons have an

unusual reliance on voltage-dependent L-type Ca2+ channels in

autonomous pace-making. This suggests that the mitochondrial

stress created by sustained Ca2+ entry could be responsible for

their selective vulnerability, rather than simply a late stage

consequence [41,42]. This hypothesis is also consistent with the

centrality of mitochondria in prevailing models of pathogenesis in

PD, as it serves as one of the primary sources of Ca++ buffering.

Deficiency of one known PD gene, PINK1, has been reported to

cause mitochondrial accumulation of calcium, resulting in

mitochondrial calcium overload [43].

Recently, Satake et al. [44] reported an association reaching

genome-wide significance of BST1 with PD in a Japanese

population. Interestingly, BST1 (CD157) is closely related to

CD38, which is one of the genes in the calcium pathway, and did

demonstrate significance in our GWAS data as well (Figure 3).

These two ectoenzymes and surface receptors utilize NAD+ and

are located within 50 kb of each other on 4p15. It is possible that a

common variation affecting both genes is in linkage disequilibrium

with the different SNPs in each population.

The mitogen-activated protein kinases (MAPKs) are a major set

of metabolic reactions and thus it is not too surprising they appear

to play a central role in biological cross-talk of the various

identified pathways (Figures 4 & 5). MAPKs are serine-threonine

kinases that mediate intracellular signaling associated with a host

Figure 2. KEGG pathway for melanogenesis. Similar to a gene expression array, those significant genes in the GWAS study are green, those in
the expression study are pink and those that are significant in both are yellow.
doi:10.1371/journal.pone.0016917.g002
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of cellular activities that include cell proliferation, differentiation,

survival, death and transformation [45]. Mammals express at least

four distinctly regulated groups of MAPKs: the extracellular

signal-related kinases (ERK)-1/2, c-Jun N-terminal kinases

(JNK1/2/3), p38 proteins (p38 alpha/beta/gamma/delta) and

ERK5. The MAPT gene (tau) is one of the most replicated

associations with risk for PD, and is in the MAPK pathway which

is activated by ERK (MAPK1). Both JNK and ERK have been

shown to contribute directly to mitochondrial dysfunction by

suppressing oxidative respiration when activated by various

models of PD [46]. Parkin has been reported to directly inhibit

JNK activation via ubiquitination of JNK pathway mediators [47].

While PD is one of the most common movement disorders, the

molecular mechanisms underlying neuronal degeneration in PD

are still unclear [48]. By converging independent genomic

datasets, we have identified pathways that have both biological

function and genetic support to be important in PD. As pathways,

they should be more replicable between datasets than single SNPs.

Our data strongly supports the concept that complex diseases

should be evaluated as pathway diseases and that the failure of

GWAS studies to identify and replicate significant SNPs may

reflect the conceptual failure of the genetics field to move beyond

single-SNP analytic strategies.

Most of the pathways identified here have not been extensively

studied in PD to date. It is interesting that the pathways from the

meta-analysis suggest that it is the genes involved in the cells

signaling and structural interactions with its environment whose

genetic variation seems to have the most effect on susceptibility to

PD. While it could be argued that the identification of these

pathways are secondary changes due to cell loss, the convergence

of the GWAS data on the same pathways argues strongly against

this. This seems to lead one in a different direction than much of

the current PD research based on specific single gene mutations.

These pathways are important to how the cells react to stress and

one another, and are also important in developmental aspects of

the CNS as well. They raise the interesting concept that perhaps

all of us are exposed to the initiating events or stresses that give rise

to PD, and it is the cumulative genetic makeup of these and other

similar pathways in each individual that strongly contributes to

whether we develop PD or not.

Materials and Methods

Gene Expression Samples
For the gene expression analysis, we utilized the Affymetrix Plus

2.0 microarray data set of Papapetropoulos et al. [11]. In this study,

22 PD patients and 23 controls were collected through the

University of Miami Brain Bank (D. C. Mash, Director). Twenty-

one different brain regions from each individual were isolated and

gene expression was performed. All patients met UK PD Society

Brain Bank diagnostic criteria and controls were clinically normal

and had no evidence of neurodegeneration upon autopsy. The

average age of controls was 78 years; PD cases were 74 years. The

six anatomical regions used by Braak et al to determine their

neuropathic stages of PD [49] provide a convenient method for

identifying multiple anatomical regions of the brain involved in the

Figure 3. KEGG pathway for calcium signaling. Similar to a gene expression array, those genes with significant expression in the GWAS study
are green, those in the expression study are pink and those that are significant in both are yellow.
doi:10.1371/journal.pone.0016917.g003
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neurodegeneration of PD. To perform our analysis, we required

all patients to have the same anatomical regions available for the

analysis. But Papapetropoulos et al. did not perform gene

expression analysis on many of the 21 anatomical brain regions

isolated per person due to poor quality mRNA of those specific

tissues. Thus, we sorted the raw gene expression data per patient

per brain region to maximize the availability of samples for our

analysis. No individuals had gene expression data available on

tissue lying in all six "Braak" regions. Seven patients and four

controls had gene expression data on five of the six anatomical

regions and these were used for the analysis. The five brain regions

representing the Braak stages were: the dorsal IX/X motor

nucleus (DMV) for Stage 1, locus ceruleus (LCER) for Stage 2,

substantia nigra (SNGRA) for Stage 3, putamen (PTMN) for Stage

4, and the insula (INSLA) for Stage 5. The general outline of the

methodology is shown in Figure 6. As shown, the differential

expression was measured between anatomically adjacent tissues

within the same individual first. Thus, subtraction LCER vs.

DMV was calculated by taking the expression value of each gene

in DMV and subtracting it from the expression value in LCER.

The process was repeated for each stage, ending up with four

subtractions per individual: LCER vs. DMV, SNGRA vs. LCER,

PTMN vs. SNGRA, and INSLA vs. PTMN.

Gene Expression Analysis
The raw data were normalized using the GCRMA algorithm in

GeneSpring (Agilent Technologies, Santa Barbara, CA). Statistical

tests, fold change calculations, hierarchical clustering of the data,

and annotations were all performed in GeneSpring GX7.3.1. The

data were then imported to Excel for further manipulations.

For each patient or control individual, genes that were

significantly differentially expressed with a Benjamini q-value

of ,0.05 [50] were then taken into a subtraction analysis. Ratios

were then selected at each stage with respect to the stage previous

to it. Thus, subtraction LCER vs. DMV was calculated by taking

the expression value of each gene in DMV and subtracting it

from the expression value in LCER. The subtractions were

performed using data manipulation tools in Excel. The process

was repeated for each stage, ending up with four subtractions:

LCER vs. DMV, SNGRA vs. LCER, PTMN vs. SNGRA, and

INSLA vs. PTMN. The four controls were treated as replicates

and the average expression profile for each subtraction of the

control data was calculated. This analysis was done to allow us to

discount the control expression profiles from the patient data,

without making any assumptions as to which controls would be

matched to which patients. The average control expression

profile per brain region was then subtracted from the corre-

Figure 4. KEGG pathway for MAPK. Similar to a gene expression array, those genes that are significant in the GWAS study are green, those in the
expression study are pink and those that are significant in both are yellow.
doi:10.1371/journal.pone.0016917.g004
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sponding brain region expression profile of each patient

(Figure 6). Statistically-determined differentially expressed genes

(Benjamini p-value of ,0.05) at each transitional stage were

selected for further analysis. Within each subtraction, genes of

values (fold change differential) $1.6 are considered to have been

up regulated between the two brain regions. Similarly, if the

Figure 5. Cross-talk amongst over-represented pathways in PD. The links are defined by the LinkDB function from the KEGG website. The top
ten over-represented pathways from the GWAS and expression studies (Table 1) plus the top twenty over-represented pathways from the meta-
analysis (Table 2) are shown. The insulin signaling pathway, linking the MAPK signaling with the starch and sucrose metabolism, is also shown. Three
pathways (drug metabolism - cytochrome P450, heparan sulfate biosynthesis and type 1 diabetes mellitus shown with gray thatched background)
did not cross talk with the other top pathways over-represented in this study. The pathway’s rank in the meta-analysis is provided in parenthesis. The
pathways unique to the GWAS PD study are green, those unique to the expression PD study are pink and the pathways common to both expression
and GWAS PD studies are yellow.
doi:10.1371/journal.pone.0016917.g005

Pathways in Parkinson’s Disease
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differential value was #21.6, that gene was down regulated in

the later Braak stage than in the earlier Braak stage. Note that

since there is no replication per se, each individual is unique and

each brain region is unique per individual, using standard t-tests

or one-way ANOVAs for comparison of gene expression is not

applicable to this data set. The lists of differentially expressed

Figure 6. Conversion of Gene Expression and GWAS Pathways. For gene expression analysis, differentially expressed genes between
adjacent tissues affected in PD were identified in each individual and adjusted using average control expression profiles. Three subtractions were
used to identify genes of interest in PD. The first subtraction between two adjacent tissues relates to a given PD patient (eg CASE N). The second
subtraction is in controls, where a similar subtraction as above is performed, and then averaged over the four controls for the two given adjacent
tissues. This is denoted as CONTROLAVG. To establish if gene X is of interest in PD between two adjacent tissues, the CONTROLAVG was subtracted
from the first subtraction for each patient. An overview of the GWAS PD study is shown. Pathway analysis was performed on each of the GWAS and
gene expression PD gene sets derived. Two types of convergence were performed. First, significantly over represented pathways common in both
studies were identified (Figure 1). Second, a meta-analysis was carried out to combine the results obtained from the gene expression and the GWAS
PD pathway analyses (Table 2). DMV = dorsal motor nucleus, LCER = locus ceruleus, SNGRA = substantia nigra, PTMN = putamen, INSLA = insula.
doi:10.1371/journal.pone.0016917.g006
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genes were generated and passed through GOstats for pathway

analysis.

GWAS sample Analysis: Mapping SNPs to genes
We used data from a previous study [1], which is a joint analysis

of three PD GWAS datasets imputed up to the Illumina 610

genotyping chip (1752 PD cases and 1745 controls). To focus on

the most significant pathways, 5,000 SNPs with the most

significant association (p,0.01) were used in this analysis. To

map SNPs to genes, we used the chromosome and position of the

SNP, and located the genes within a window 20 Kbp upstream

and downstream of the SNP. The annotations for mapping the

SNPs to the genes were from dbSNP version 129 and the

ENSEMBL database (homo_sapiens_variation_50_361; homo_

sapiens_core_50_361; homo_sapiens_registry_50_361) [51]. The

annotations for human genome assembly version 36.1 were used.

If these top SNPs contained multiple SNPs for the same gene, the

gene was only counted once, so linkage disequilibrium would not

be a factor. If there were no genes found in a+/220 Kbp window,

the closest gene on each side of the SNP were both included. A

PERL script (snps2Genes.pl) was developed and used to perform

the above analysis. A query list (comprising 2619 genes) for

pathway analysis was derived from the top 5000 SNPs. The

reference gene list was obtained from the joint analysis dataset [1]

with combined sample generated genotypes at 495,715 SNPs after

imputation (and sample SNP quality control filters). These SNPs

were used as the reference data set and the SNP to gene mapping

protocol was used to map SNPs to genes; 18,810 unique genes

were established as the reference gene list. Only protein coding

genes were considered for the query and reference.

Pathway Analysis
GOstats [52], a Bioconductor package written in R, was used to

examine the pathways in KEGG [53–55]. The org.HS.eg.db

package was used to assign KEGG pathway annotations to Entrez

gene identifiers. Over-represented pathways for given gene lists

were calculated using a classical hyper-geometric statistical

comparison of a query gene list against a reference gene list using

GOstats. The GOstats method was applied to the expression and

the GWAS data independently. For the pathway analysis of

expression data, the query gene lists are the differentially expressed

genes. The differentially expressed genes were used to compare

against a reference set of 21,218 genes on the microarray chip used

in Papapetropoulos et al. (hgu133plus2). Up-regulated genes were

considered separately from down regulated genes unless otherwise

stated. For the pathway analysis of GWAS data, the query gene list

was derived from SNPs with p-values #0.01, (5000 SNPs) and the

reference gene list was obtained from the GWAS (see previous

section). A PERL script (genes2ORPathways.pl) was developed

and used to search for over-represented pathways in query gene

lists relative to the reference gene lists. While there are 343

pathways currently in KEGG pathway database only 205 were

relevant to the human genome [55].

Meta-analysis of over-represented pathways
A meta-analysis of the pathway results from GOstats was

performed using the Fisher’s combined probability test. As the

method requires independent tests, we did the meta-analysis on

the GWAS pathway analysis and a pathway analysis based on a

gene list of differentially expressed genes. P-values are combined

by adding the -2ln (p-value) for the two tests for a pathway. This

value follows a chi-square distribution which was used to

determine the combined p-value.
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