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Abstract

The oral microbiome, the complex ecosystem of microbes inhabiting the human mouth, harbors several thousands of
bacterial types. The proliferation of pathogenic bacteria within the mouth gives rise to periodontitis, an inflammatory
disease known to also constitute a risk factor for cardiovascular disease. While much is known about individual species
associated with pathogenesis, the system-level mechanisms underlying the transition from health to disease are still poorly
understood. Through the sequencing of the 16S rRNA gene and of whole community DNA we provide a glimpse at the
global genetic, metabolic, and ecological changes associated with periodontitis in 15 subgingival plaque samples, four from
each of two periodontitis patients, and the remaining samples from three healthy individuals. We also demonstrate the
power of whole-metagenome sequencing approaches in characterizing the genomes of key players in the oral microbiome,
including an unculturable TM7 organism. We reveal the disease microbiome to be enriched in virulence factors, and
adapted to a parasitic lifestyle that takes advantage of the disrupted host homeostasis. Furthermore, diseased samples
share a common structure that was not found in completely healthy samples, suggesting that the disease state may occupy
a narrow region within the space of possible configurations of the oral microbiome. Our pilot study demonstrates the
power of high-throughput sequencing as a tool for understanding the role of the oral microbiome in periodontal disease.
Despite a modest level of sequencing (,2 lanes Illumina 76 bp PE) and high human DNA contamination (up to ,90%) we
were able to partially reconstruct several oral microbes and to preliminarily characterize some systems-level differences
between the healthy and diseased oral microbiomes.
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Introduction

Understanding the role of microbial communities in human

health is emerging as one of the most important and fascinating

biomedical challenges of our times [1,2,3,4]. Our body harbors an

enormous amount of microbial cells, estimated to exceed the

number of human cells by an order of magnitude [5]. These

microbes are organized into complex communities specifically

adapted to inhabit different niches of the human body, such as the

skin, and the respiratory, gastrointestinal, and urogenital tracts.

Such ecosystems carry a broad range of functions indispensable for

the wellbeing of the host [6]. At the same time, the rise of

pathogens within such communities, causing infection and

inflammation, constitutes an ongoing challenge in biomedical

research. This is especially true in light of the slow rate at which

new antibiotics are discovered [7], and the increase in the number

of microbes that can resist treatment [8,9]. In contrast to the

traditional view of individual pathogens being responsible for

disease onset, recent microbial ecosystem diversity analyses seem

to point to a new perspective in which the transition from health to

disease is attributed to a shift in the global balance of the microbial

flora rather than to the specific appearance of individual
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pathogens [10,11,12,13]. However, the mechanisms that underlie

the connection between disease or infection and the dynamics of

the host-associated ecosystems are still poorly understood.

In this work, we focus on the role of the oral microbial

ecosystem in periodontal disease. Periodontal disease is the most

common infectious disease affecting tooth-supporting structures.

Left untreated, periodontitis can lead to, or aggravate existing

systemic conditions such as cardiovascular disease, diabetes,

pulmonary diseases, and obesity [14,15,16]. In dentistry, under-

standing the changes in the oral microbiome that foretell the early

stages of periodontitis and dental caries, the most prevalent

chronic oral diseases, may allow the better diagnosis and treatment

before the appearance of the telltale clinical manifestations of these

diseases (such as tissue damage in periodontal pockets or dental

hard tissue loss). The emergence and evolution of antibiotic

resistance in periodontal pathogens has affected the therapeutic

success rates for this disease [17,18]. New approaches are urgently

needed to help regain control over periodontal disease, and

microbiome studies offer a promising new angle of attack.

Unraveling the complex interactions that define the oral micro-

biome is a fundamental, but complex component of this endeavor.

Recent developments in systems biology make it possible to

perform quantitative modeling of genome-scale metabolic net-

works for individual microbial species [19,20] and have been

recently extended to explore small microbial consortia [21,22],

possibly paving the way for future quantitative studies of the

microbiome. However, at the ecosystem level, current modeling

efforts and quantitative analyses are heavily limited by the

unavailability of relevant data. Towards this goal, increasingly

accessible metagenomic sequencing approaches hold the promise

to enable a global systemic view of the human oral microbiome

[1,4,23]. Recent advances in sequencing technology are enabling

scientists to generate billions of nucleotide bases at a fraction of the

cost per base of traditional methods [24]. This deep sequencing

has revealed an unexpectedly high diversity of the human oral

microbiome: dental plaque pooled from 98 healthy adults

comprised about 10,000 microbial phylotypes [25] - an order of

magnitude higher than the previously reported 700 oral microbial

phylotypes as identified by cultivation or traditional cloning and

sequencing [26,27]. The total diversity of the global oral

microbiome can be estimated to be around 25,000 phylotypes

[25]. To date, however, we do not know how many of these

microbes contribute to periodontal disease, what metabolic

functions are key players in the transition from health to disease,

or how common or exclusive are the oral microbiomes of

unrelated healthy individuals.

Here we combine the collection of whole-community sequenc-

ing data with a number of computational analyses to provide a

snapshot of the microbial component of periodontal disease at a

high resolution. Specifically, we collected subgingival plaque

samples from healthy and periodontally affected patients and

subjected them to 16S rDNA analysis and deep sequencing in

order to explore their microbiome. Our analyses reveal a number

of trends in genomic diversity and biological function enrichment

during disease that allow us to formulate a novel hypothesis on the

nature of periodontal disease. We also demonstrate the power of

high-throughput sequencing approaches by reconstructing an

unculturable member of the TM7 group, complementing an initial

analysis that relied on single cell genomic approaches. We also

characterize several regions of variation within one of the

dominant members of the oral cavity, Actinomyces naeslundii. This

paper describes a genomic and metabolic examination of the

differences between the healthy and diseased periodontal micro-

biome.

Results and Discussion

A Deep Look at the Oral Microbiome in Health and
Disease

Current knowledge of the composition and functional spectrum

of the human oral microbiome is limited by the difficulty to culture

the majority of microbes that populate the oral cavity. We used

deep sequencing technology to overcome this limitation, and

produce a substantial genomic data set for the human microbiome

under health and periodontal disease conditions. Specifically, we

generated 16S rDNA data from five subjects (3 periodontally

healthy [H] and 2 chronic periodontitis [P] patients, Table 1). In

addition, a total of 495,195 16S rDNA sequences were generated

with the 454 FLX sequencing technology, yielding an average of

,30,000 sequences per sample after removing low-quality

sequences (roughly 3-times more sequences per sample than

generated in a recent survey of oral microbes [28]). A total of

272,709,876 sequence reads were generated using the Illumina

GAII platform, 76 bp, paired-end run (mean library size 207 bp)

from the whole metagenome of four of the above-mentioned

subjects (H1, H2, P1, and P2; Table 1). The low quality

nucleotides were trimmed from all sequences and fragments

matching to the human genome reference (NCBI release

GRCh37.p1) were removed from further analysis. The level of

human DNA contamination varied between different samples

averaging ,87% of the sample, i.e. the oral microbiome

represents just one eighth of the entire dataset or a total of

33,681,771 (12.4%) sequences (Table 1). This level of contamina-

tion is consistent with that observed in other studies, such as the

Human Microbiome Project (manuscript in preparation). Despite

the moderate yield (in terms of fraction of microbial sequences in

the data-set) our results show that valuable biological insights can

be derived from the data, thus indicating that informative and

clinically relevant whole-metagenomic analyses of the oral

microbiota can be conducted in a cost-effective manner.

Beyond the Taxonomical View of Periodontitis
The standard view of periodontitis, largely based on traditional

microbiological approaches, associates the disease with the rise

and damaging action of a small set of well-characterized

pathogens. A first question we wanted to address using our data

is whether, and to what extent, this traditional view still holds from

the vantage point of metagenomic sequencing. Taxonomic

profiling of the samples, whether derived from targeted 16S

rRNA sequencing or from whole-metagenomic data (WGS)

(Methods and Figure 1) reveals a community dominated, on

average, by the bacterial phyla Firmicutes, Actinobacteria,

Bacteroidetes, Fusobacteria and Proteobacteria, consistent with

previous studies [28,29]. Together, these groups account for 80–

95% of the entire oral microbiome. At the genus level we identify a

total of 55 distinct genera in the 16S rDNA data and 58 distinct

genera in the WGS data that are present at an abundance of 0.1%

or higher (an additional 73 and 62 rare genera can be found in the

16S rDNA and WGS data, respectively). The most abundant

genera comprise previously characterized oral bacteria: Actinomyces,

Prevotella, Streptococcus, Fusobacterium, Leptotrichia, Corynebacterium,

Veillonella, Rothia, Capnocytophaga, Selenomonas, Treponema, and TM7

genera 1 and 5.

The TM7 division was prevalent in our samples (11 out of 15

samples contain this division at .2% abundance), averaging 5.7%

(standard deviation 7.2) of the entire population in the 16S rDNA

data (WGS-based estimates also range ,6%), and up to 26.8% in

sample P11. This division was statistically enriched in diseased

samples (p, = 0.05, Metastats [30], Figure 1). TM7 is a novel
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candidate bacterial division with no cultivated representatives, and

previous studies have shown microbes from this division to be

commonly found in the human oral flora but at relatively low

abundance, generally around 1% of the population [31,32],

though abundances as high as 8% were previously reported [6].

The high abundance of TM7 microbes present in our samples,

and their correlation with periodontal disease, indicate that the

prevalence of this poorly studied bacterial division within the oral

cavity, and its role in disease, have yet to be fully appreciated.

When comparing healthy and diseased samples we observe a

shift in the composition of the oral microbiota (Figure 1 and Table

S1), supporting the well characterized transition (p value,10215

using Fisher’s exact test) from a gram-positive dominated

community in the healthy samples, to a gram-negative dominated

community in periodontal disease [12]. On one hand, our findings

recapitulate prior results that indicate that the gram-negative

genera Selenomonas [33,34], Prevotella [35], Treponema [36], Tannerella

[36], Haemophilus [37] and Catonella [38] are significantly enriched

in periodontal disease. Further, we have found a set of gram-

positive genera that are significantly enriched in healthy samples:

Streptococcus, Actinomyces, and Granulicatella. Surprisingly, however,

neither Fusobacterium, nor Porphyromonas were found to be signifi-

cantly more abundant in the periodontal disease samples, despite

being previously implicated in this disease [12,39]. This is likely

due to the high variance in the abundance of these organisms

across our samples, as well as the small sample size which affects

our statistical power.

Clustering analysis (Figure 1) reveals sample H31 (a control) to

have a microbiota most similar to the diseased samples. This

observation prompted a careful analysis of the clinical data

collected during sampling. The data revealed some symptoms of

mild periodontal disease (such as bleeding at probing time, see

Materials and Methods for more details) that were not found in

any of the other healthy samples, indicating that the microbiota

may shift into a disease state before the full clinical symptoms of

the disease are apparent. Also note that the diseased samples

(including H31) cluster together tightly while the healthy samples

are more widely distributed. This phenomenon is discussed in

more detail below.

Taxonomic enrichment, however, cannot fully explain the

etiology of periodontal disease. All organisms that exhibit an

enrichment in either healthy or diseased samples are present in all

the samples, irrespective of disease status, i.e. the mere presence of

pathogens in the periodontal pocket is not sufficient to trigger

periodontitis. The disease might be correlated with the presence of

specific virulence factors within the genomes of particular

pathogens, or might be initiated once the abundance of one or

more pathogens crosses a specific threshold. The mechanisms that

keep pathogenic bacteria ‘in check’ during health but allow them

to bloom during disease are not yet understood. These observa-

tions support our suggestion that a full understanding of

periodontal disease requires whole-genome and whole-system

analyses.

Metabolism, Virulence Factors and Drug and Metal
Resistance as Disease Signatures

In addition to providing a taxonomic overview, our metage-

nomic sequencing data contain high-resolution functional infor-

mation. We annotated the function of genes identified in the

assembled whole-metagenome data according to the KEGG

Orthology, and used the resulting data to compare the functional

potential of the oral microbiome in health and disease. The

metabolic profiles of healthy and diseased samples differ in a

number of important ways (Figure 2). The diseased microbiome is

enriched in metabolic functions that are consistent with a parasitic

Table 1. Summary of sample information including high-quality read counts, taxonomic assignment of most abundant genus in
each sample, and level of human contamination.

Phenotype
Subject
(Tooth) Clinical 16S rDNA Dominant genus Shotgun

Human
DNA Dominant genus

# Reads Sample # Reads Sample

Periodontal
disease

1(14) advanced 51,056 P11 Prevotella 9.7M P1 68.86% Prevotella

1(19) moderate 20,149 P12 Fusobacterium

1(30) moderate 41,355 P13 Prevotella

2(30) moderate 46,444 P21 Prevotella 4.9M P2 81.98% Prevotella

Healthy 3(1) healthy 23,702 H11 Streptococcus 12.4M H1 60.61% Streptococcus

3(2) healthy 44,869 H12 Peptostreptococcus

3(3) healthy 32,405 H13 Streptococcus

3(4) healthy 56,116 H14 Leptotrichia

4(3) healthy 6,205 H21 Streptococcus 6.7M H2 89.78% Actinomyces

4(14) healthy 35,356 H22 Actinomyces

4(19) healthy 14,110 H23 Neisseria

4(30) healthy 25,662 H24 Actinomyces

5(3) early 12,295 H31 Fusobacterium NA NA NA NA

5(19) healthy 30,891 H32 Kingella

5(30) healthy 12,605 H33 Actinomyces

The clinical labels represent: ‘healthy’ – healthy periodontal pocket; ‘early’ – early periodontal disease (bleeding under probing but no attachment loss), ‘moderate’ –
moderate periodontal disease; ‘advanced’ – advanced periodontal disease. For a description of the clinical parameters used to make these determinations see Materials
and Methods. The absence of metagenomic data from subject 5 is indicated with ‘NA’ in the appropriate cells.
doi:10.1371/journal.pone.0037919.t001
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lifestyle made possible by the availability of nutrients derived from

the degradation of host tissue and from bacterial cells destroyed by

the host immune response (Table S2 for the statistical significance

of enrichment of individual processes). Among these are functions

for fatty acid metabolism and acetyl-coenzyme A degradation,

aromatic amino acid degradation, ferrodoxin oxidation, and

energy-coupling factor (ECF) class transporters. The periodontal

pocket has been previously shown to be enriched for such nutrients

in patients with periodontitis [40]. Several of these metabolic

functions have also been associated with an intracellular lifestyle

Figure 1. Relative abundance of genera in the samples estimated from 16S rDNA sequencing. * - genus significantly enriched in
cases; ˆ - genus significantly enriched in controls (p, = 0.05, Metastats [30]). Only genera with .1% abundance in at least one sample were
included. Colors reflect relative abundance from low (red) to high (white). Sample H31 (control) clusters together with the diseased samples,
consistent with clinical observations of early symptoms of periodontal disease.
doi:10.1371/journal.pone.0037919.g001
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(e.g. fatty acid metabolism [41]), or with anaerobic metabolism

(e.g. ferrodoxin oxidation, and acetyl-CoA degradation), high-

lighting the diversity of survival strategies employed by the

microbes inhabiting the periodontal pocket during disease. Also

enriched in disease are a number of virulence factors such as the

presence of conjugative transposons, type IV secretion systems,

and the biosynthesis of toxic factors (e.g. acetone, butanol, and

ethanol biosynthesis), as well as the Lipid-A of lipopolysaccharide

(LPS) biosynthesis. LPS is a group of molecules known to trigger

host immune response and inflammation and their enrichment in

disease provides a possible explanation for the systemic impact of

periodontitis on the human host.

Finally, the periodontal disease samples are enriched in a

number of functions related to drug and metal resistance (mercury,

cobalt-zinc-cadmium). Mercury resistance has been previously

characterized as a common feature of oral bacteria, even in the

absence of mercury-containing amalgam, and is frequently

associated with antibiotic resistance [42]. The role drug resistance

plays in disease is, however, unclear as antibiotic resistance factors

are present in both healthy and diseased samples.

Comparatively, only a few pathways are significantly enriched

in the healthy microbiome (or depleted in the diseased

microbiome), including pathways for fatty acid biosynthesis,

purine metabolism, and glycerol-3-phosphate metabolism. Cer-

tain fatty acids have been shown to have a protective role in

periodontal health [43,44,45] and it is possible that some of

these are synthesized by the healthy microbiota. However, most

of what is known about the role of fatty acids in periodontal

health is based on nutritional studies and the contribution of the

oral microbiota has yet to be characterized. Glycerol-3-

phosphate is a lipid metabolite that has been shown to occur

in higher concentration in periodontal disease samples [46].

Our study hints that a possible explanation for this observation

is a decrease in the ability of the disease microbiome to

metabolize this compound. Also enriched are genes related to

homoserine metabolism, possibly related to quorum sensing

functions within the healthy microbiome, as homoserine

lactones are frequently used as quorum sensing molecules in

oral bacteria [47]. The enrichment, within our healthy samples,

of the reactions downstream of homo-serine lactone pathway

may indicate a fully functioning quorum sensing system,

allowing for the communication between organisms that is the

hallmark of a healthy biofilm system. In poly-microbial biofilms

it has been shown that mutants lacking quorum-sensing

molecules, while able to construct biofilms, are unable to obtain

the correct structure and thickness [48,49]. The depletion of

pathways related to quorum sensing in our diseased samples

may indicate a possible cause of disease progression due to the

inability of the healthy microbiome to maintain a protective

biofilm.

A Systems Level Perspective on Oral Disease
The functional characterization reported above suggests that,

beyond the taxonomic details, one can identify ecosystem-level

signatures of periodontal disease consistent with its clinical

manifestations. However, from the above analysis, it is still not

clear whether these signatures reflect isolated instances of disease-

related molecular processes, or fit into a coherent picture of the

disease as a predictably different state of the whole oral microbial

flora. We addressed this question by performing additional

analyses at different levels of resolution, and found that a major

systemic change seems to be identifiable between the healthy and

diseased microbiomes. The diseased samples harbor a more

diverse microbial community (as measured by the Shannon

diversity index, Figure 3A), yet clustering analysis at the taxonomic

level (Figure 1, Figure 3B) and in terms of enzyme content

(Figure 3C), as well as pairwise comparisons of individual healthy

and diseased samples based on tetramer (subsequences of length 4)

frequencies (Figure 3D), all indicate that disease samples are more

similar to each other than the healthy samples. In other words, the

diseased state appears to be associated with a constrained and

predictable region in the space of all possible states a microbiome

can take. Thus, although the periodontal disease microbiomes are

more diverse in terms of community structure, that structure is

quite similar across different patients. In contrast, the healthy

microbiome in any individual patient has relatively lower

taxonomic diversity, but its exact composition differs significantly

across patients.

Combined with the metabolic analyses described above, these

results suggest that some systems-level changes may be

associated with periodontal disease and the transition between

health and disease. Microbial consortia in healthy individuals

(Figure 4A) may rely on a highly diverse and rapidly changing

supply of nutrients, as well as on good availability of oxygen for

respiration. The relative paucity of enriched pathways in our

healthy case analysis may reflect the diversity of metabolic

pathways represented in the community. This is also supported

by the clustering analysis of 16S rDNA data (Figure 3B) and of

enzyme frequency data (Figure 3C), which show that the

healthy data points do not tend to cluster together (Figure 4A,

bottom left inset), and is consistent with a community with a

lower taxonomic diversity (Figure 3A). On the contrary, the

metabolic functions present in the microbial flora associated

with periodontal disease (Figure 4B) seem to display a significant

enrichment in specific metabolic pathways, compatible with an

oxygen poor environment [50], and the availability of amino

acids and lipids as major carbon sources. This may reflect the

invasion of microbial pathogens (e.g. Prevotella intermedia which is

enriched in the diseased samples) into human cells (both

epithelial cells and macrophages). The disease flora is rich in

lipid degradation pathways, as well as other known virulence-

related activities, such as LPS biosynthesis. In turn, the

consistency of the intracellular environment across different

patients may explain why the disease points tend to cluster

together in the Principal Component Analysis (PCA) plots. The

ensuing picture is that the disease state is an attractor in the

space of metabolic functions, with enrichment in cytotoxic and

parasitic functions.

De Novo Assembly of Oral Microbes
The analyses we presented above have focused either exclu-

sively on organisms (16S rDNA diversity) or biological function

(metabolic analysis), thus ignoring the important link between

organisms and the functions they perform. This connection can

only be made by reconstructing partial or entire organisms from

the community through metagenomic assembly. Currently, no

practical genome assemblers exist that are specifically designed for

large-scale metagenomic assembly, thus we relied on a hybrid

assembly approach that combined de novo assembly using

SOAPdenovo [51] (assembler used in a recent metagenomic

analysis of gut microbes [52]), and alignments against a collection

of oral microbes (Methods). The results shown in Table 2

demonstrate the power of this hybrid approach, which leads to

an average of 4.4 and 2.1 times larger (in terms of N50 contig size)

assemblies than de novo assembly and comparative assembly,

respectively. Despite the relatively low level of coverage in our

data, we obtain fairly contiguous assemblies (average N50 contig

size of 3.5 Kbp), and are able to assemble up to about 50% of the

Microbiome Deep Sequencing & Periodontal Disease
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Figure 2. Metabolic pathways present in our samples. Dark blue – significantly enriched in healthy samples (p,0.05, MetaPath [84]); Dark red–
significantly enriched in diseased samples (p,0.05, MetaPath). (Figure constructed with iPath [85]).
doi:10.1371/journal.pone.0037919.g002

Microbiome Deep Sequencing & Periodontal Disease

PLoS ONE | www.plosone.org 6 June 2012 | Volume 7 | Issue 6 | e37919



total number of reads in our data-set. Furthermore, consistent with

our previous observation that the periodontal disease samples are

more diverse, the corresponding assemblies are also more

fragmented (average N50 contig size is 1.2 Kbp in diseased

samples versus 5.8 Kbp in healthy samples). In addition, a pooled

assembly of all four samples results in dramatically increased

contig sizes (max contig size is 16.9 Kbp in pooled assembly versus

7.6 Kbp in individual assemblies), indicating these samples contain

closely related organisms.

Assembly of a TM7 Genome
As described above, we detected a higher presence of TM7

organisms in our samples than previously reported in literature.

TM7 is a novel candidate bacterial phylum without cultivated

Figure 3. Systems-level analysis reveals the disease state to occupy a narrow region within the space of possible states for the
microbiome. A – Shannon diversity calculated from 16S rDNA data is significantly higher in diseased samples (community is more diverse). B –
Principal Component Analysis of the taxonomic compositions from 16S rDNA (empty symbols) and pooled WGS data (filled symbols). Disease
samples cluster together in the bottom left corner. Sample H31 (tooth with incipient periodontal disease from an otherwise healthy patient) clusters
together with the disease samples. C – Principal component analysis of the enzyme content of samples based on metagenomic sequencing. The PCA
graph shows a tighter clustering of disease samples (red) relative to the healthy ones (blue). This suggests that the disease state may be linked to a
specific metabolic configuration, and that the space of disease configurations is more constrained than the healthy one. Replicates (forward/reverse
reads from one or two instrument lanes) are shown separately as identical symbols, and exhibit minimal metabolic variation within each sample. D –
Comparison of relative frequencies of tetramers (4 bp motifs) in metagenomic reads across disease cases (in red, P1 vs. P2) and across control cases
(in blue, H1 vs. H2). Based on the relative frequencies of tetramers, disease samples are more similar to each other (points lie along the diagonal) than
controls are to each other.
doi:10.1371/journal.pone.0037919.g003
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Figure 4. Schematic representation of the putative metabolic lifestyle shifts associated with the change in microbial flora around
the tooth and gum tissue upon the transition from a healthy (A) to an advanced periodontal disease (B) state. The healthy state is
dominated by the bacterial genera Streptococcus, Fusobacterium, Actinomyces, and Corynebacterium, whereas the disease state is primarily dominated
by pathogenic genera such as Prevotella, Leptotrichia, Treponema, and Fusobacterium.
doi:10.1371/journal.pone.0037919.g004

Table 2. Assembly statistics of metagenomic shotgun reads for contigs that are . = 300 bp using (1) SOAPdenovo, (2)
comparative assembly and (3) a hybrid approach that uses MINIMUS to combine the contigs from the previous two methods.

Sample Assembly approach # Contigs Length (Mbp) Max (Kbp) N50 (bp) N90 (bp) Reads assembled

# (M) %

P1 SOAPdenovo 22,226 11.8 12.0 583 368 1.2 12.45

Comparative 26,464 16.7 16.0 1113 598 1.3 13.21

Hybrid 37,213 24.6 16.0 1829 1025 2.3 23.42

P2 SOAPdenovo 12,966 6.3 3.3 352 0 6.7 14.23

Comparative 13,841 8.5 35.2 490 0 5.7 11.69

Hybrid 21,835 12.5 37.6 647 396 10.5 21.39

H1 SOAPdenovo 45,658 3.1 22.6 3042 1648 5.0 40.20

Comparative 46,036 3.3 18.6 2437 1559 3.5 28.21

Hybrid 63,688 5.1 19.0 7567 3953 6.7 53.18

H2 SOAPdenovo 18,048 10.6 12.7 616 352 1.7 25.51

Comparative 16,107 13.6 26.8 1543 689 2.2 32.33

Hybrid 20,339 17.6 110.0 3934 1099 3.1 45.88

Pool SOAPdenovo 98,051 54.9 15.7 2035 1342 8.1 24.12

Comparative 63,506 60.1 44.6 8415 5474 8.4 24.89

Hybrid 115,718 93.4 229.8 16896 9245 13.4 39.87

‘Pool’ represents the assembly of all four samples together. N50 or N90 is defined as the contig length such that equal or longer contigs produce 50% or 90% of
10 Mbp.
doi:10.1371/journal.pone.0037919.t002
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species, and previous studies have shown its high prevalence in

human oral flora but with very low abundances [31,32]. The first

sequence of a TM7 organism (TM7a) was generated through

single-cell isolation in a microfluidic device, followed by whole

genome amplification [53]. Due to the artifacts of the whole

genome amplification approach, the resulting assembly is fairly

fragmented (row 1 in Table 3). Here we relied on a hybrid

assembly approach to reconstruct a more complete version of this

genome, using the corresponding shotgun sequences generated in

our project. Briefly, we started with the pooled assembly of all our

samples and extracted all contigs that are mapped to the

previously sequenced TM7a genome, and scaffolded these contigs

using Bambus 2 [54]. Finally, we merged our TM7 assembly with

the previously published assembly, derived from single-cell

sequencing, in order to construct the most complete (to date)

assembly of an organism from the TM7 group. The final assembly

is still highly fragmented, comprising over 1,500 contigs (Table 3),

however it contains almost 50% more sequence than the single-cell

derived assembly (2.3 Mbp versus 1.7 Mbp), and the N50 contig

size is two times larger (790 bp versus 389 bp). These results

highlight the power of combining single-cell and metagenomic

approaches when reconstructing the genomes of unculturable

organisms from metagenomic samples (Figure S1 for the

distribution of contig sizes).

In addition, this improved TM7 genome assembly allows us to

identify 703 genes that were not present in the original assembly

(Methods for details). In order to evaluate the additional

information contained in these genes, we annotated them using

the COMBREX [55] system (Table S4). The analysis revealed

several potential virulence genes including an EmrB/QacA family

drug resistance transporter gene (Gene ID: 681_1) and two phage

proteins (Gene IDs: 386_2 and 1828_4). These genes are not

necessarily omissions from the original assembly, rather they could

represent de novo insertions into the TM7 genome present in our

sample. The set of ‘novel’ TM7 genes does, however, included

several housekeeping genes (e.g., 10 ribosomal protein genes not

present in the original assembly) which should be conserved across

TM7 genomes, thereby indicating that our assembly improves

upon our current understanding of the structure of the TM7

genome in addition to revealing strain-specific genomic variants.

Genomic Variation in Actinomyces Naeslundii
Close analysis of one of the most abundant organisms in our

samples (present at 24- and 6-fold coverage in samples H2 and H1,

respectively, Table 4), a relative of Actinomyces naeslundii MG1

(sequence ID SEQF1063 in the Human Oral Microbiome

Database (HOMD) database), provides evidence for structural

variations distinguishing this strain from the reference strain

originally isolated from a patient with mild gingivitis [56]. The

average similarity between the assembled metagenomic contigs

from our project and the reference sequence is 96.2% and 95.2%

for samples H1 and H2, respectively (second and sixth ring in

Figure 5). A number of genomic deletions with respect to the

reference strain are apparent in our samples, several of which

contain potential virulence factors. These differences could be

explained by the fact that the reference genome was isolated from

a patient with gingivitis, while in our samples the Actinomyces strains

are predominantly associated with healthy samples. Most striking

is a deletion at 2120 kbp containing a putative mobile element

encoding a mercury resistance locus (including a mercury

resistance gene, a site-specific recombinase, and an integrase).

Mercury resistance is commonly found in oral bacteria, frequently

associated with antibiotic resistance [42]. Interestingly, gene set

enrichment analysis of the entire metagenomic data-set reveals an

enrichment of mercury resistance genes in the diseased samples

(Table S2), possibly due to the association of these genes with

virulence loci. Several other deletions also appear to encode

virulence factors - a drug transporter (at position 580 kbp in the

reference strain) and an alcohol dehydrogenase gene (at position

165 kbp) – further underscoring the difference between the

pathogenic reference strain and the presumably commensal

Actinomyces strains found in our samples. Another two deletions

(at positions 20 kbp, and 1010 kbp) contain genes predicted to

encode proteins involved in secretion and response regulation.

These deletions occur at slightly different locations in the two

samples we analyzed, suggesting they may be subject to rapid

evolution.

Further evidence of the adaptation of Actinomyces to the oral

environment is revealed by the analysis of single nucleotide

polymorphism (SNP) densities. In Figure 5 (rings 6 and 8) we

highlight the regions of the genome that have higher than

expected SNP densities (.2 standard deviations from the mean).

The most polymorphic regions (Table S3) correspond to genes

predicted to be involved in the adaptation of an organism to its

environment: transcriptional regulators, known to evolve rapidly

in bacteria [57,58], and ABC transporters [59]. Another highly

polymorphic region occurs within the glyceraldehyde-3-phos-

phate dehydrogenase (GAPDH) gene, a virulence-associated

protein originally identified in Streptococci, which plays an

important role in the colonization of periodontal pockets by

interacting with plaque-forming bacteria [60]. GAPDH was also

shown to mediate the interactions between Streptococci and

Table 3. Assembly statistics (calculated on contigs . = 300 bp) for HOMD TM7a reference sequences (row 1), hybrid assembly
from metagenomic shotgun reads (row 2), Bambus scaffolding of hybrid assembly (row 3), assembly from combining hybrid
assembly and the HOMD reference sequences (row 4), and Bambus scaffolding of ‘combined reference’ (row 5).

Assembly # Contigs Total Length Max Contig 3Mbp

N25 N50

HOMD TM7a reference genome 1,780 1.7Mbp 17.5 Kbp 1.9 Kbp 0.4 Kbp

Hybrid assembly 1,340 1.5Mbp 13.9 Kbp 1.8 Kbp NA

Scaffolds 874 1.6Mbp 20.9 Kbp 5.1K bp 0.5 Kbp

Combine reference 2,222 2.2Mbp 17.5 Kbp 2.9 Kbp 0.8 Kbp

Scaffolds 1,593 2.3Mbp 33.7 Kbp 7.2 Kbp 1.8 Kbp

The N25 and N50 are calculated assuming a 3 Mbp genome size.
doi:10.1371/journal.pone.0037919.t003
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Table 4. Assembly statistics (calculated on contigs . = 100 bp) for Actinomyces naeslundii MG1 in sample H1 and H2.

Reference genome Length Sample # Contigs Total length
Depth of
coverage Max Contig N50 N90

Actinomyces naeslundii
MG1

,3Mbp H1 2850 ,2.8Mbp 6.2 14.5 Kbp 1.7 Kbp 0.1 Kbp

H2 1168 ,2.9Mbp 24.3 28.6 Kbp 5.5 Kbp 0.9 Kbp

The N50 and N95 are calculated based on the MG1 genome size.
doi:10.1371/journal.pone.0037919.t004

Figure 5. Comparative analysis of the Actinomyces naeslundii MG1 reference genome (HOMD SeqID SEQF1063), and assemblies from
samples H1 and H2. Counting from outside, the first ring is the reference genome with genes annotated by colored bands: orange bands are
conserved genes; green bands are genes involved in horizontal gene transfer; yellow bands are genes with known functions; black bands are genes
with unknown functions. Only regions that are associated with genomic variations are colored and annotated. The second and sixth rings are the
assembled contigs from sample H2 and H1. The heatmaps in the third and seventh rings represent the depth of coverage of the contigs with 5K bp
window and 100 bp step for sample H2 and H1. The histograms in the fourth and eighth rings represent the scaled SNP rate with 5 Kbp window and
100 bp step for sample H2 (max = 0.08) and H1 (max = 0.03). The purple bands in the fifth ring represent regions with significantly higher theta values
than average (p, = 0.05). Image generated with Circos [86].
doi:10.1371/journal.pone.0037919.g005

Microbiome Deep Sequencing & Periodontal Disease

PLoS ONE | www.plosone.org 10 June 2012 | Volume 7 | Issue 6 | e37919



Porphyromonas gingivalis fimbriae [61,62], possibly contributing to

the colonization of the subgingival pocket by P. gingivalis. These

observations are consistent with previous findings of high-SNP

densities within genomic regions surrounding recombination

events [63].

Conclusions
Our study represents a novel step towards characterizing the

genomic composition of the microbial communities associated

with periodontal disease. We have demonstrated that the

subgingival microbiome can be effectively interrogated through

high-throughput sequencing, and that the resulting data provide

valuable insights into the molecular underpinnings of periodontal

disease.

Despite a relatively small amount of bacterial sequence data

recovered from our samples (primarily due to the high level of

human DNA contamination), a combination of comparative and

de novo assembly approaches was able to reconstruct large genomic

segments from several dominant organisms in our samples,

thereby allowing a better reconstruction of an unculturable TM7

organism (in conjunction with data generated through single cell

genomic approaches), and providing a glimpse at the genomic

variation (and possible association with virulence) within Actinomy-

ces genomes. Better assemblies were possible in samples that were

sequenced more deeply (e.g., sample H1), indicating the need to

sequence the oral environment more deeply than has been done in

this study. Furthermore, assembly quality roughly correlated with

disease status, partly confirming our observation (based on 16S

rDNA data) that diseased samples had a higher microbial

diversity. This observation also highlights a limitation of existing

assembly tools in dealing with genomic diversity, further under-

scoring the need for the development of metagenomic-specific

genome assemblers.

The analysis of the TM7 and Actinomyces genomes revealed

signatures consistent with recombination events possibly associated

with virulence factors. Lateral transfer of virulence determinants

through phages and recombination is well documented in the

bacterial world, leading to a partial separation between function

and phylogeny, thus, suggesting the need for metagenomic and

functional analyses as a complement to taxonomic surveys of host-

associated microbiota.

Taxonomic analyses of the data we generated are consistent

with a well-established community shift from a gram-positive

dominated healthy microbiome to a gram-negative dominated

diseased microbiome, which is also enriched in a number of oral

pathogens. The molecular mechanisms that underlie and cause

this transition are, however, unknown. Here we have shown that

functional information derived from whole-metagenomic data

provides a valuable complement to the taxonomic data and allows

us to develop a novel theory of periodontal disease. The healthy

state is highly regulated by the host immune system and

interactions between community members to maintain a commu-

nity dominated by few ‘‘good’’ microbes, usually gram-positive

Actinobacteria or Streptococci. The transition to periodontal

disease involves a disruption of the host-microbiome interactions

that results in a more even community structure composed by a

broad range of organisms that can thrive in the oral environment.

The presence of pathogens within this community can lead to the

clinical manifestations of periodontal disease, which in turn can

lead to additional changes in the community due to the increased

availability of nutrients released by the damaged tissue. As a result,

the periodontal disease microbiome eventually settles into a state

characterized by a diverse population of microbes adapted to a

parasitic lifestyle made possible by the disrupted host homeostasis.

One of the samples from our study was characterized by a

microbiota typical of a diseased state, yet the corresponding tooth

was just starting to show some of the clinical symptoms of disease.

This observation implies that dysbiosis precedes the clinical

manifestation of disease, and that the oral microbiota could be a

potential tool for the early diagnosis of periodontitis.

The large variability we observe between healthy samples, and

even between different teeth of a same person, highlights the

limitation of using data derived from cross-sectional studies to

define what the core ‘‘normal microbiome’’ means. Furthermore,

case-control studies are likely insufficient to determine the causal

agents of periodontal disease – the organisms found to dominate

the diseased microbiome (the ‘‘usual suspects’’ commonly

described in the literature) may simply be a symptom of the

disrupted subgingival environment rather than the primary cause

of disease. The ‘‘usual suspects’’ approach considers presence and

absence of specific bacteria to be the critical precondition for

disease, however, our data support a more nuanced approach that

considers quantitative and genomic differences as the critical

factors when moving from health to a diseased state. Longitudinal

studies are necessary to characterize the dynamic changes that

occur in the oral microbiome in response to environmental

changes (food intake, changes in the host, etc.) and to track the

transition between the healthy and diseased states, and the return

to health after treatment.

It is important to note that the analyses described above are a

preliminary pilot project with limited sample size, and our

observations must be confirmed in more extensive studies.

Furthermore, we focus on whether the microbiome has the

potential to perform certain biological functions, and on deter-

mining the relative fraction of the microbial population that can

perform a particular function. These results (as well as those of

similar metagenomic projects) must be complemented by exper-

imental studies aimed at determining whether the biological

processes statistically enriched in disease are actually active in the

subgingival pocket.

As others have previously reported, and as observed in the data

we have shown here, periodontal disease is the result of a

disruption of the complex interactions occurring within the

subgingival microbiome and between the microbiome and the

host. A full understanding of the etiology of periodontal disease

will only be possible through further in-depth systems-level

analyses of the host-microbiome interaction.

Materials and Methods

Subject Population
The subject population consisted of 5 patients who were in

good general health and were recruited between August and

November 2009 at the Clinical Research Center, Boston

University Goldman School of Dental Medicine. Written

informed consent was obtained from all enrolled individuals.

The study protocol was reviewed and approved by the

Institutional Review Board at the Boston University Medical

Center. All subjects had at least 12 natural teeth with .20 years

of age (age range, 28–45 years). Subjects diagnosed with chronic

periodontitis (n = 2) were selected among those who had at least

six sites with probing depth $6 mm and attachment loss

$5 mm. Subjects in the control (periodontally healthy) group

had no pockets .3 mm and no attachment loss .2 mm at any

site with no signs of periodontal inflammation characterized by

bleeding on probing, redness, edema, and attachment loss, with

the exception of subject 5 where one of the teeth (# 3, sample

H31) exhibited mild bleeding at probing time consistent with

Microbiome Deep Sequencing & Periodontal Disease

PLoS ONE | www.plosone.org 11 June 2012 | Volume 7 | Issue 6 | e37919



initial periodontal disease. Sites with gingivitis were characterized

by bleeding on probing, redness, edema, but no attachment loss

(pocket depth #4 mm). Sites from chronic periodontitis subjects

further characterized as mild, moderate or advanced periodontitis

sites based on the pocket depth. Mild periodontitis was

characterized with pockets .4 mm but not more than 5 mm;

moderate periodontitis was characterized with pockets .5 but

,7 mm while advanced periodontitis was characterized with

pockets .7 mm. Healthy group consisted of subjects of Asian,

Caucasian and African American origin, while periodontitis

subjects were of Caucasian and African-American origin.

Exclusion criteria included pregnancy, lactation, systemic condi-

tions that could affect the progression or treatment of periodontal

diseases. In addition, none of the subjects had received systemic

antibiotics or periodontal therapy in the previous 6 months.

Subgingival Plaque Sampling and Isolation of Bacterial
DNA

After the removal of supragingival plaque with sterile gauze,

individual subgingival plaque samples were taken from the mesio-

buccal aspect of four molar teeth in four quadrants (upper right,

upper left, lower right and lower left) per subject using sterile

periodontal curettes (Hu-Friedy, Chicago, IL). Each sample was

placed in a separate sterile 1.5-ml tube containing 200 ml TE

buffer (50 mM Tris-HCl, 1 mM EDTA; pH 7.6). Bacterial DNA

extraction was performed using commercially available DNA

purification kit (Epicentre MasterPureTM, Madison, WI) according

to manufacturer’s guidelines. First, the debris was separated by

centrifugation at 4uC and supernatant was transferred to another

microcentrifuge tube and pellet was discarded. The collected

supernatant was mixed with 500 ml of isopropanol and centrifuged

at 4uC for DNA isolation. Isopropanol solution was carefully

removed without dislodging the DNA pellet. The DNA pellet was

rinsed with 75% ethanol and residual ethanol was removed. The

sample was resuspended in 25 ml of TE buffer and stored at

280uC until analysis.

16S rDNA Sequencing Protocol
DNA samples were amplified using the primers: 59-

GCCTCCCTCGCGCCATCAGacacactgCATGCTGCCTCC-

CGTAGGAGT and 59-CCTATCCCCTGTGTGCCTTGG-

CAGTCTCAGAGAGTTTGATCCTGGCTCAG to initiate

the reaction. The underlined portions of the primers corre-

sponded to ‘universal’ bacterial primers 338R and 27F primer,

the small letters contained a barcode specific to each well and

the 59 end of the primer was specific to the 454 specific

protocols. Each reaction had 5 units of Choice DNA Taq

polymerase (Denville Scientific), 100 uM of dNTPs, 16 reaction

buffer and 2 mM MgCl2 and occurred for 30 cycles of 94uC for

30 sec, 50uC for 30 sec, and 72uC for 30 sec. The presence of

amplified products was confirmed by gel electrophoresis.

Approximately equimolar amounts of product were pooled

and gel purified. Sequencing was performed using the Lib-L kit

following instructions from the manufacturer (Roche).

Data Collection, Sequencing and Preprocessing
16S rDNA sequences were processed and filtered based on

quality with an in-house pipeline as follows. First, sequences

containing at least one unrecognizable base-pair (‘N’), and that

were too short (,75 cycles of the 454 instrument) were excluded

from further analysis. Then, barcode sequences were deconvoluted

and removed.

Metagenomic sequencing was performed on pooled DNA from

multiple teeth in order to obtain sufficient DNA concentrations for

library construction. Metagenomic shotgun sequences were

obtained from the Illumina instruments in fastq format and were

trimmed for quality using the FastX Toolkit (Hannon Lab, CSHL)

with the following parameters: (1) minimum length 25, and (2) q-

value cutoff 20. Sequences containing at least one ambiguity

character (‘N’) were also removed. The remaining sequences that

passed the quality trimming outlined above were mapped to the

human genome reference (NCBI build 37 v 1) downloaded from

NCBI using Bowtie with parameters (2v 3; at most 3 mismatches)

If one of the sequences from a paired end matched the human

genome, then both sequences were removed from the data-set.

The remaining reads were mapped against the human sequences

in the NCBI nr database using Basic Local Alignment Search Tool

(BLAST) in order to remove human sequences not present in the

NCBI human genome reference. For this additional check we

required at least 95% global identity (since BLAST is a local

alignment algorithm, our calculation also takes into account the

length of the unaligned segments flanking the ‘hit’ reported by

BLAST).

Comparative Assembly
We mapped and assembled the samples against reference

sequences for oral microbes extracted from the Human Oral

Microbiome Database (HOMD, http://www.homd.org) [64] as

follows:

1. We used MUMmer [65] (-maxmatch -l 20 -b) to map the

individual reads against the HOMD reference database.

2. Reads that mapped with higher than 80% global identity were

then assembled based on the mapped coordinates of the reads.

3. This process was repeated using a 90% similarity threshold, but

mapping the reads against the assemblies generated at step 2,

rather than against the HOMD database.

4. The resulting contigs were then combined with the results of a

de novo assembly of the data, as described in more detail

below.

All customized scripts used to run this analysis can be obtained

by request from the authors and will soon be released as part of an

open-source package for comparative assembly of metagenomic

data [Liu et al. in preparation].

De Novo Assembly Using SOAPdenovo
We used SOAPdenovo V. 1.04 [66] with parameters 2K 23

and 2M 3, as previously used by the MetaHit project [52] to

assemble gut microbiome data.

Combining Comparative and de Novo Assembly Data
Contig sequences longer than 100 bp, which were generated by

our customized comparative assembly pipeline (workflow present-

ed above) and by SOAPdenovo, were combined and assembled

using MINIMUS [67] with the following parameters: (1) minimum

overlap length 40 bp, and (2) overlap error rate is 0.1.

Assembly and Gene Prediction of TM7 Genome
The reference genome of TM7a was downloaded from HOMD

(http://www.homd.org/). We pooled all available metagenomic

sequences together, and performed comparative assemblies against

the existing TM7a reference sequences as described above. The

resulting contigs were combined together with the de novo

assemblies of all metagenomic sequences using MINIMUS,
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resulting in a hybrid assembly for TM7a. The resulting assembly

was then further combined with the HOMD TM7a reference

genomic sequence. After assembly, scaffolds were created using

BAMBUS 2 using the available mate-pair information.

We used MetaGene [68] to predict genes (. = 300 bp) in the

TM7 reference genome (NCBI accession NZ_ABBV00000000) as

well as in our combined assembly described above. We, then

mapped (using BLASTN) the predicted genes from our assembly

against the predicted genes from the TM7 reference genome. A

match was defined as E-value, = 0.00001, % similarity . = 90%,

and more than 50% of the query sequence is aligned. Genes found

in our assembly that did not match any gene in the reference strain

were considered novel and subjected to functional annotation

using COMBREX.

Estimation of SNP Rates and Genetic Diversity
After assembly, the shotgun reads were mapped back to the

contigs using Bowtie [69] allowing at most 3 mismatches. To

avoid sequencing and mapping errors we used a conservative

approach as suggested in [70]: we only retained SNPs occurring

in regions with a depth of coverage higher than 4, and with each

individual haplotype represented in at least two different reads.

The SNP rate was calculated using a 5 Kbp window and a

100 bp step size.

We adapted the approach used in [71,72] to infer the genetic

diversity h from metagenomic shotgun sequencing data using

composite likelihood estimators while accounting for a constant

sequencing error rate. First we classified the nucleotide positions of

the assembled contigs into k groups, where k is the maximum

depth of coverage of the contigs, and positions within the same

group have the same depth of coverage. The number of nucleotide

positions in each group is denoted by n1, n2, …, nk. Considering

the large number of bacteria in the sampled community relative to

the number of reads sequenced, the probability that each read

derives from a different individual microorganism is close to one.

Thus, we have a population size equal to the depth of coverage at

every site in the assembled contigs [71]. Consequently, the

estimator can be obtained by calculating the expected number of

true SNPs and false SNPs due to sequencing errors [72]. Then for

a particular nucleotide group with the same depth d, assuming an

infinite sites model, the expected number of segregating sites is

hnd
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In our calculation, we assume a constant sequencing error rate

e = 0.01. The h value is calculated using a 1 Kbp window moving

average (which is roughly the average gene size in bacteria) with

100 bp step size.

Regions of the genome that had a value of h more than 2

standard deviations higher than the average were flagged as

potential polymorphism hotspots (Table S3).

Clustering and Annotation of 16S rDNA Sequences
The entire set of trimmed 16S rDNA sequences were clustered

into Operational Taxonomic Units (OTUs) with the program

DNACLUST [73], using a 1% radius (2r 2). To obtain the

taxonomic identities, the OTU centers were aligned using BLAST

to the RDP database [74] augmented with oral clones from the

HOMD database [64], and were annotated using the lowest

common ancestor approach (similar to the approach in [75]). The

assignment process is conservative: (1) only sequence with at least

global 98% identity with the reference is classified; (2) if there are

more than one equally good best hits, then the sequence is

classified using the lowest common ancestor approach; (3)

otherwise it is classified as unknown. Finally, the taxonomic label

of the OTU center is transferred to the sequences from the same

OTU cluster. The resulting data was organized in a collection of

tables at different taxonomic levels containing each taxonomic

group as a row and each sample as a column. These tables formed

the substrate for the further statistical analyses.

Antibiotic Resistance Genes Annotation
Shotgun reads are annotated against the Antibiotic Resistance

Genes Database (ARDB) reference genes [76] using BLASTX

with the following thresholds: (1) at least 60 bp long high-scoring

segment pairs, and (2) 90% or 95% similarity cutoff at the amino

acid level.

Seed Functional Mapping
Sequences that were preprocessed for removal human contam-

ination were uploaded to the MG-RAST online webtool (version

2.0 [77] metagenomics.anl.gov/v2). Results were downloaded and

parsed into individual files, one per patient, using PERL. Only

annotations with a confidence of 1E-5 or lower were kept for

further processing resulting in 1,130,510 annotations (representing

75,742 distinct functional labels). In an attempt to correct for

under-counting of low-abundance sequences, we used the Laplace

correction and added one to all counts.

GSEA
To perform the gene set enrichment analysis (GSEA), we used

the gene set enrichment analysis (GSEA) tool version 2.07 [78],

downloaded from the Broad Institute website (www.broadinstitute.

org/gsea/index.jsp). GSEA was used to identify functional

categories that were enriched in disease or control patients.

Functional sub-classes from SEED (Version 12) [79] were used as

the gene sets (total of 669). We added two gene sets which were not

represented in SEED, ‘transposases’, and ‘transposon related’,

bringing the total to 671). These new gene sets were created by
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searching for the title term (i.e. ‘transposases’, or ‘transposon

related’) in the functional descriptions of the full set of SEED

functional categories. We used the default parameter settings of

the GSEA software, with two exceptions. In our analysis, to rank

the functional classes, we used a ‘ratio of classes’ rather than the

‘signal to noise’ metric, and for the significance testing we

permuted the gene set instead of the phenotype. We selected and

reported all gene sets that had a p-value less than 0.005, and with a

false discovery rate q-value cut off of 0.01.

Calculating Tetramer Frequencies
K-mer frequencies, especially tetranucleotide frequencies in

prokaryotic genomes, have been shown to carry a phylogenetic

signal [80]. For each patient, we counted the occurrence of

each sequence motif of length 4 for all the pre-processed

sequence reads using a sliding window approach. The relative

frequency of each motif was calculated as the number of

occurrences of a specific motif (tetramer), divided by the total

number of motifs of length 4. The number of expected motifs of

length k based on the expectation from motifs of length k-1 was

estimated using a Markov chain [81]. For example, the

probability of observing a tetramer, such as ‘‘CTAG’’ is

estimated from the transition probability of observing a

‘‘CTA’’ motif adjacent to a ‘‘TAG’’ motif at ‘‘TA’’ dinucleo-

tides, or p(CTAG|CTA,TAG) = p(CTA) * p(TAG)/p(TA).

The observed motif frequencies were normalized by subtracting

the number of expected motifs from the number of observed

motifs, and dividing the result by the number of expected

motifs. Using these normalized values, we can visualize the

tetramer frequency counts directly and compare them across

samples. The tighter, linear grouping of the disease samples

suggests that the corresponding communities are composed of

organisms phylogenetically less diverse, compared to the larger,

more diverse cluster of healthy samples.

Taxonomic Diversity Analysis
Relative abundance estimates obtained from the 16S rDNA

sequencing data were used to compute the entropy (Shannon

diversity) for each of the 15 samples for which 16S rDNA data

were generated. Separate analyses were performed at the genus

and phylum levels, and the results were aggregated across clinical

status. The statistical significance of the observed differences was

estimated using a standard t-test.

Taxonomy Based PCA
The taxonomic composition of the samples was estimated

based on both 16S rDNA data (Methods above) and WGS data

using MetaPhyler [82]. Each sample was represented as a vector

of relative abundances of individual phyla, and the resulting

vectors were subjected to Principal Component Analysis using

the princomp function in R. Note that samples represented in

both the 16S rDNA and the WGS data are represented twice in

this analysis.

Enzyme Based PCA
After pre-processing, metagenomic sequences were annotated

with specific Kyoto Encyclopedia of Genes and Genomes

(KEGG) orthology (KO) codes using BLAST searches against

the KEGG sequence repository [83]. The KO numbers for

each protein were mapped to EC numbers, using a combination

of custom Perl scripts and a conversion table. The table was

generated from data available from the KEGG ftp server (ftp://

ftp.genome.jp/pub/kegg/). An E-value cut-off of 1E-05 was

applied to the resulting annotations to remove non-specific

BLAST hits. For each sample, we constructed a count matrix

containing the number of reads mapping to each enzyme. We

carried out a principal component analysis on this matrix, using

the ‘princomp’ function in Matlab implemented with the default

parameters. We then displayed the sample position on the first

and second principal components in Figure 3C to visualize each

sample’s relative distance.

Supporting Information

Figure S1 Histogram distribution of contig sizes. The

upper plot shows the distribution of contig size from TM7

reference genome, which is assembled from single-cell sequencing.

The lower plot shows the distribution of contig size from the

assembly that combines the contigs from TM7 reference genome

and metagenome. Contig sizes that are . = 5000 bp are plotted as

5000 bp.

(TIF)

Table S1 Differential abundance of genera between
cases and controls. P-values were computed with Metastats

[30].

(PDF)

Table S2 Summary of microbial functions enriched in
diseased or control samples. CLINICAL – indicates whether

enrichment occurs in disease or control samples; METHOD –

method used to compute significance of enrichment; SIGNIFI-

CANCE – Method-specific assessment of the significance of

enrichment: for GSEA [87] we report both the p-value and the q-

value obtained by correcting for the False Discovery Rate (FDR);

for MetaPath [84] we report both the raw p-value for enrichment

(p-abund) and p-value corrected for the structure of the metabolic

network (p-struct).

(PDF)

Table S3 Genomic regions with nucleotide diversity h
values that are more than two standard deviations away
from the mean.

(PDF)

Table S4 COMBREX [55] functional annotations of new
genes predicted from TM7a metagenomic assembly.

(PDF)
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