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Abstract

Background: There is a significant need for affinity reagents with high target affinity/specificity that can be developed
rapidly and inexpensively. Existing affinity reagent development approaches, including protein mutagenesis, directed
evolution, and fragment-based design utilize large libraries and/or require structural information thereby adding time and
expense. Until now, no systematic approach to affinity reagent development existed that could produce nanomolar affinity
from small chemically synthesized peptide libraries without the aid of structural information.

Methodology/Principal Findings: Based on the principle of additivity, we have developed an algorithm for generating high
affinity peptide ligands. In this algorithm, point-variations in a lead sequence are screened and combined in a systematic
manner to achieve additive binding energies. To demonstrate this approach, low-affinity lead peptides for multiple protein
targets were identified from sparse random sequence space and optimized to high affinity in just two chemical steps. In one
example, a TNF-a binding peptide with Kd = 90 nM and high target specificity was generated. The changes in binding
energy associated with each variation were generally additive upon combining variations, validating the basis of the
algorithm. Interestingly, cooperativity between point-variations was not observed, and in a few specific cases, combinations
were less than energetically additive.

Conclusions/Significance: By using this additivity algorithm, peptide ligands with high affinity for protein targets were
generated. With this algorithm, one of the highest affinity TNF-a binding peptides reported to date was produced. Most
importantly, high affinity was achieved from small, chemically-synthesized libraries without the need for structural
information at any time during the process. This is significantly different than protein mutagenesis, directed evolution, or
fragment-based design approaches, which rely on large libraries and/or structural guidance. With this algorithm, high
affinity/specificity peptide ligands can be developed rapidly, inexpensively, and in an entirely chemical manner.
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Introduction

A comprehensive survey of the human proteome requires a vast

library of specfic affinity reagents [1–4]. Building such a library

requires strategies that are high-throughput, inexpensive and have

the flexibility to produce ligands that are compatible with

numerous applications such as gel-based analysis, histology,

microarrays, purification columns, etc. [4]. Several well-estab-

lished approaches have proven to be a rich source of affinity

reagents. These include in vitro selection of peptides [5–7], protein

mutagenesis [8], computational design [9–12], aptamer selection

[13], bead-based library screens [14], and fragment-based design

of small molecules [3]. While these approaches generally produce

high-quality affinity reagents, they don’t fully meet the need for

rapid development, low cost, and application-specific flexibility.

The utilization of large chemical libraries during several stages of

affinity reagent development and/or the need for structural

information extend the completion time, increase the cost, and

limit the flexibility with these approaches [3,8,15,16]. A new

approach that addresses these points would have the potential to

serve the need for large numbers of inexpensive affinity reagents

for proteomics.

Driven by this need, we have explored a fundamentally

different, systematic strategy to develop high affinity binders to a

given protein target. Our guiding hypothesis was that weak

binding lead peptides could be readily identified from a screen of a
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small chemical library of unstructured short random peptide

sequences. Once identified, these leads could then be systemati-

cally improved to high affinity by utilizing thermodynamic

additivity of sequence variations. If successful, such an algorithm

would be generally applicable and enable high-throughput, low-

cost production of peptide affinity reagents with significant

flexibility due to the fact that the process is based solely on

chemical synthesis of small libraries, rather than large enzymat-

ically generated libraries. Importantly, because the algorithm relies

on additive interactions, it does not require structural knowledge

about the target. This is a principal characteristic that differen-

tiates this algorithm from other approaches that try to identify

cooperative interactions, which frequently require structural

information about the target protein and possibly the affinity

reagent/target complex [3,9], thereby significantly reducing

throughput and increasing cost. Here, we test the concepts of

this algorithm by generating high affinity peptide ligands to

protein targets.

In addition to the practical aspects of such an algorithm, the

effects of sequence perturbation(s) on protein-peptide binding

thermodynamics and specificity with short peptides derived from

random chemical libraries remains largely unexplored. Protein-

protein and protein-small molecule binding thermodynamics have

been extensively studied [17–21], but due to their highly

structured nature, it is not obvious that the same energetic

behavior observed in these complexes can be expected with short

unstructured peptides. In a protein-protein or protein-small

molecule complex, the overall binding energy can be an additive

or non-additive accumulation of component free energies, or a

combination of additive and non-additive effects. Additivity of

component free energies is observed when the component

interactions do not structurally interact and contribute indepen-

dently to the standard free energy of binding [22]. Conversely,

non-additive cooperative contributions to binding free energy are

observed when individual components are structurally connected.

The work presented here provides insight into the additive/non-

additive protein binding thermodynamics and specificity of

sequence variations in short unstructured peptide ligands identi-

fied from random chemically-synthesized sequence space.

Results

The basic strategy is illustrated in Figure 1. We choose to test

this strategy by creating ligands to the cytokine, tumor-necrosis

factor alpha (TNF-a) [23–25]. TNF-a is a high-value target for

which several antibody and small molecule therapeutics have been

developed [26,27]. TNF-a affinity reagents have been isolated by

other procedures [28–30], and this is useful for comparison. If

successful, a ligand for TNF-a could be used as an affinity reagent

by itself or as a component of a multivalent ligand [31].

Lead Generation from a Sparse Random Library
A library of 104 random 20-mer peptides (17 randomized

positions, 3 fixed positions at the C-terminus) was screened in

order to generate lead peptides with affinity for TNF-a. 20-mer

peptides were chosen because they are not expected to adopt

stable structures that would interfere with the ability of different

residues in the peptide to bind independently (Figures S1-3 in File

S1). Preliminary microarray experiments showed that this library

contains sufficient chemical diversity to identify lead peptides with

measurable target binding affinity and specificity (CWD and SAJ

unpublished data). This is likely possible because only a few

favorable contacts between a peptide and a target protein are

needed for observable binding [32].

Each member of this library of 104 peptides was individually

screened by surface plasmon resonance (SPR) and 171 peptide

sequences were identified as potential leads with affinity for TNF-

a. The significant number of potential lead sequences allowed for

the application of more stringent lead criteria such as good

solubility, high peptide sample purity and low background binding

to the SPR chip surface. To minimize non-specific binding, the

number of potential leads was further reduced by comparing

TNF-a SPR binding response to a panel of four unrelated proteins

(AKT1, Neutravidin, Transferrin, and Ubiquitin). Two peptides,

FERDPLMMPWSFLQSRQGSC (referred to as TNF1, note that

the GSC sequence at the end was common to all peptides in the

library) and YGPSDAFKITRFHQQSSGSC (referred to as

TNF4) were chosen as lead peptides for optimization based upon:

their respective dissociation constants (Kd) of 160619 mM and

Figure 1. Schematic of the additivity algorithm. A) A lead sequence is first identified from a peptide library; this algorithm is not dependent on
the source of the initial library (i.e. chemical library, in vitro library, etc.). B) A small library of point-variants (X = any substitution) is synthesized to C)
identify substitutions that enhance target affinity. D) Enhanced point-variants are combined to produce a peptide with a relative binding free energy
approximately equal to the sum of the component energies.
doi:10.1371/journal.pone.0015432.g001
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2363.5 mM for TNF-a; their minimal off-target binding (Figure

S4 in File S1); and their relative solubility indicated by

average hydropathy (GRAVY)[33] scores of 20.52 and 20.77,

respectively.

Point-Variant Scanning of the TNF1 Lead Peptide
A small library of TNF1 point-variants was generated to identify

higher affinity peptides. For a 20-residue peptide, it is feasible to

synthesize many, if not all, of the possible point-variants by

standard commercial synthesis and screen them individually. In

this study, only a subset of amino acids was substituted at each

position in TNF1, making the number of peptides in the library

more manageable. The specific amino acids used were selected

based on data from previous protein interaction studies [34–38]. A

library of TNF1 point-variants containing all substitutions of the

amino acid set {Y, A, D, S, K, N, V, W} in each of the 17

randomized positions (132 unique point-variants) was synthesized.

Tyrosine (Y), alanine (A), aspartic acid (D) and serine (S) were

selected because of their effectiveness in producing high affinity

interactions when substituted into the complementary-determining

regions (CDRs) of synthetic antibodies [34], lysine (K) was selected

to balance the charge in the substitution set, asparagine (N), valine

(V) and tryptophan (W) were selected to span the hydropathy

range [33]. This set of 132 point-variants was screened for relative

TNF-a SPR binding response using a 50 mM peptide concentra-

tion in each case. This concentration is approximately 3-fold

below the Kd of TNF1, and was used in order to increase the high-

end dynamic range for quantifying enhancing point variations.

The results from the TNF1 point-variant screen are represented

as a heat map (Figure 2). The heat map reveals that variations at 9

unique positions in the sequence result in a greater than 10-fold

increase in the SPR binding response relative to TNF1. Most

notably, the heat map suggests that negative charges in the lead

peptide may decrease TNF-a binding; almost any variation in

position 2 (E) or 4 (D) enhances affinity, including alanine, which is

considered a neutral substitution in scanning mutagenesis [39].

Further support for the importance of the overall charge of the

peptide comes from the fact that substituting lysine in several

positions enhances affinity. This suggests that the optimized

peptide should have a higher pI than TNF1. In addition to the

effects of negative charge, the heat map indicates that tyrosine is a

particularly favorable substitution in the N-terminal half of the

peptide. Tyrosine is the most favorable uncharged substitution in

the point-variant library, with 7 out of the 17 positions substituted

with tyrosine producing better than 5-fold enhancement. This is in

agreement with protein mutagenesis studies that show tyrosine to

be the most effective amino acid for producing favorable protein-

protein interactions [34–38]. Also, affinity enhancement from

tyrosine or lysine substitution in several positions of the peptide is

consistent with the idea that, in mostly unstructured peptides,

modest affinity can be achieved from a few interacting residues

separated by relatively flexible non-interacting residues.

Five of the affinity-increasing point-variants (D4S, D4Y, P5Y,

M7K, S11K) were selected for further characterization because

they showed a $15-fold enhancement in SPR binding response

relative to TNF1 as well as low non-specific binding on the SPR

chip. TNF-a affinities (Kd) for the selected point-variant sequences

were determined by equilibrium SPR measurements (Table 1).

Consistent with the initial point-variant screen, the selected

variants have significantly higher affinity than TNF1, exhibiting

an average 3.4 fold Kd improvement.

Affinity Prediction of TNF1 Multiple Variants
Relative binding free energies for each point variation were

calculated as the difference between the standard free energy of

binding for the point-variant sequence and that of the lead

sequence. The resulting relative binding free energies for the D4S,

D4Y, P5Y, M7K and S11K variants are given in Table 1. From

these individual contributions and the assumption that combining

point variations would result in a sum of their relative binding free

energies, the binding free energies of variant sequences containing

multiple substitutions can be predicted.

Thus, a combination of 4 point variations (D4S+P5Y+M7K

+S11K) is predicted to have a Kd ,1 mM, an approximate 100-

fold improvement relative to the lead peptide (Kd = 160 mM). As a

result of these predictions, this quadruple variant, referred to as

TNF1-opt, was selected as the optimized sequence. The D4S

substitution was selected over the D4Y substitution because a

Figure 2. Fold-change heat map from the SPR screen of TNF1 point-variants. Fold-change relative to the TNF1 lead peptide was calculated
from an average binding response after a 60-second association across several replicate injections of a fixed 50 mM peptide concentration. Peptides
were assayed at a concentration well below the dissociation constant of the lead peptide (Kd ,160 mM) to improve the high-end dynamic range of
responses. Point variation nomenclature: ‘P6Y’, indicates the original proline in position 6 is substituted with a tyrosine in the corresponding variant
peptide.
doi:10.1371/journal.pone.0015432.g002
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tyrosine substitution in position 5 (P5Y) also showed significant

improvement, which suggests there may be a proximity effect of

tyrosine substitution in this region of the peptide. In other words, it

may be that tyrosine can produce an affinity enhancement in

either position 4 or 5 but not both positions, particularly given the

large size of tyrosine. Therefore, a serine substitution was used in

position 4 (D4S) and tyrosine in position 5 (P5Y). In addition to the

TNF1-opt quadruple variant, several intermediate variants

(double, triple variants) were characterized to compare predicted

affinities to observed TNF-a affinities.

Affinity Characterization of TNF1 Double, Triple and
Quadruple Variants

Four double (D4Y+M7K, D4Y+S11K, P5Y+M7K, P5Y+
S11K), two triple (D4S+P5Y+M7K, D4S+P5Y+S11K) and one

quadruple (D4S+P5Y+M7K+S11K) variant sequences were

characterized with SPR. In all cases, an improvement in TNF-a
affinity was observed when an additional enhancing substitution

was added to the sequence. Double variants had higher affinities

than the corresponding single variants, triple variants had higher

affinities than the corresponding single/double variants and the

quadruple variant had the greatest affinity (Figure 3, Table 2).

The optimized quadruple variant sequence (TNF1-opt) has a

Kd = 1.660.3 mM determined by equilibrium SPR measurements

(Figure 4, Figures S5, S6 in File S1). Further validation of TNF1-

opt affinity was performed using fluorescence anisotropy, resulting

in a Kd = 1.160.2 mM, in agreement with the affinity determined

by SPR (Figure 4).

Kinetic fits of the TNF1 and TNF1-opt SPR sensorgrams (Figure

S7 in File S1) indicate that TNF1-opt has approximately an order of

magnitude or more improvement in both on-rate (kon), and off-rate

(koff), when compared to TNF1 (TNF1: koff = 1.660.5 s21,

kon = 5.061.76103 M21s21, TNF1-opt: koff = 0.260.02 s21 kon =

2.660.26105 M21s21). From these rate constants, one can

calculate a Kd of 0.7060.02 mM for TNF1-opt, which is

comparable to the affinities determined from equilibrium SPR

binding responses and fluorescence anisotropy (Figure 4).

Comparison of TNF1 Multiple Variant Observed Affinities
to Predicted Affinities

When the standard free energy of binding determined from the

Kd of the lead peptide, TNF1, is added to the sum of the relative

free energies of the individual point-variants required to generate

TNF1-opt, a predicted Kd of 1.9–0.7 mM is obtained (Table 2).

This matches well with the observed TNF1-opt Kd of 1.660.3 mM

and suggests that the affinity enhancements contributed by each of

the four point variations in TNF1-opt are acting nearly inde-

pendently [22]. If the energetic contributions of point variations

are additive, then a plot of the observed vs. predicted binding

energies for the multiple variants should have a slope of 1

(Figure 5). The slope of the best-fit line for the variants tested is

0.9760.01, very close to the expected value. Detailed predicted

and observed values for each of the variants tested are given in the

supporting materials (Table S1 in File S1) and in almost every

case, nearly additive energetic contributions of the point variations

are observed. The variant sequence that deviates most from the

predicted value is the D4S+P5Y+M7K triple variant. In this case

there are three substitutions in close proximity that could result in

nearest neighbor interactions that alter the energetic picture [20].

Combining the S11K variant, a three-residue separation from the

nearest substitution, with these three proximal substitutions

contributes additively.

Effect of TNF1 Additive Affinity Optimization on Binding
Specificity

In order to compare relative binding specificity of TNF1 and

corresponding variants, the peptides were spotted as a microarray

and TNF-a binding was tested in the presence of E.coli cell lysate.

Table 1. TNF1 lead and point-variant binding energies and affinities.a

Peptide TNF1 Lead D4S D4Y P5Y M7K S11K

Standard Binding
DGu (kcal/mol)

25.2160.07 25.9860.04 25.9560.06 25.7960.04 25.9360.20 26.0360.10

Kd (mM) 160±19 42±2.4 44±4.8 58±3.4 57±20 40±7.2

Kd Fold-Change
Relative to Lead

- 3.860.5 3.660.6 2.760.4 2.861.0 3.960.9

Variant Relative DG
Contribution (kcal/mol)

- 20.7760.08 20.7460.10 20.5860.08 20.7260.22 20.8260.13

aStandard binding free energies and dissociation constants (Kd) were calculated separately as an average of several replicate measurements. Point-variant relative
contributions were calculated as the difference between the standard binding free energy of a particular point-variant from that of the lead.

doi:10.1371/journal.pone.0015432.t001

Figure 3. Fold-change in TNF-a affinity across four generations
of TNF1 variant sequences. Fold-change relative to TNF1 is above the
bars in bold and is calculated from the association constant (Ka = 1/Kd) of a
variant divided by the Ka of TNF1.
doi:10.1371/journal.pone.0015432.g003
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Spotting the peptides as a microarray allows for comparison of

TNF-a binding specificity across all variants in a single

experiment. Preliminary microarray studies indicated that E.coli

cell lysate serves as an excellent heterogeneous competitor (PEB,

CWD and SAJ unpublished data). To minimize dye effects on

binding, dual-color dye-swap experiments were performed with

Alexa-555 labeled TNF-a and Alexa-647 labeled E.coli lysate, then

repeated under the same conditions with Alexa-647 labeled TNF-

a and Alexa-555 labeled E.coli lysate. These data were normalized

and the TNF-a/E.coli binding intensity ratios for TNF1 and

corresponding variants calculated.

Binding intensity ratios on the microarrays show some increased

variant peptide binding to E.coli lysate relative to TNF1 (Table S2

in File S1). TNF1-opt, when spotted on a surface, binds both

labeled TNF-a and labeled E.coli lysate with greater apparent

affinity.

Subsequent pull-down assays were performed with TNF1 and

TNF1-opt immobilized on agarose beads in order to determine if

the increased TNF1-opt E.coli lysate binding is due to general non-

specificity or specific binding to a small number of E.coli proteins.

TNF-a was spiked into an excess of E.coli lysate and incubated

with the beads. SDS-PAGE analysis of the final eluted fraction

shows that both TNF1 and TNF1-opt have good specificity for

TNF-a (Figure 6). Only one additional band at approximately

65 kDa on the gel appears in the TNF1-opt eluted fraction when

compared to TNF1. Several faint bands above and one below the

Figure 4. Equilibrium binding isotherms for TNF1-opt. Outer
plot: SPR normalized replicate responses performed with TNF-a
captured on the SPR chip surface and variable TNF-opt concentrations
flowed over the surface. Inset plot: Solution-phase fluorescence
anisotropy measurements performed in triplicate with TNF1-opt labeled
at the C-terminal cysteine, TNF-opt concentration was fixed at 100 nM
while TNF-a concentration was varied. TNF1-opt sensorgrams are
available in Figure S5 in File S1, SPR binding isotherms for all enhanced
variants tested are available in Figure S6 in File S1.
doi:10.1371/journal.pone.0015432.g004

Table 2. TNF1 multiple variant observed/predicted binding energies and affinities.a

Peptide D4Y+M7K D4Y+S11K P5Y+M7K P5Y+S11K
D4S+P5Y
+M7K

D4S+P5Y
+S11K

D4S+P5Y
+M7K
+S11K

Observed Standard Binding
DGu (kcal/mol)

26.5460.07 26.8760.05 26.2460.04 26.3160.04 26.6360.04 27.0360.04 27.9760.11

Kd (mM) 17±1.9 9.3±0.7 27±1.8 24±1.4 14±1.0 7.0±0.5 1.6±0.3

Kd Fold-Change
Relative to Lead

9.461.6 1762.5 5.860.8 6.660.9 1161.6 2363.2 100622

Predicted Standard Binding
DGu (kcal/mol)

-6.6660.25 -6.7760.18 -6.5160.24 -6.6160.17 -7.2860.26 -7.3860.19 28.1060.29

Kd Range (mM) 20-8.5 15-8.0 25-11 19-11 7.0-3.0 5.3-2.8 1.9-0.7

aStandard binding free energies and dissociation constants (Kd) were calculated separately as an average of several replicate measurements. Predicted standard binding
free energies were calculated as a sum of the standard binding free energy of the lead and the relative binding free energy contribution of the point-variations (Table 1)
substituted into the corresponding multiple variant sequences.

doi:10.1371/journal.pone.0015432.t002

Figure 5. TNF1 multiple variant standard binding free energies:
observed vs. predicted assuming thermodynamic additivity.
Observed standard binding free energies were calculated from the
dissociation constants measured across several replicate experiments,
predicted standard binding free energies were calculated as the sum
of the standard binding free energy of TNF1 and relative binding free
energy contributions from the corresponding point-variants. The
95% confidence interval for the best-fit line (solid line) is shaded.
The observed slope (0.9760.01) of the best-fit line is in good
agreement with the slope predicted from thermodynamic additivity
(predicted = 1).
doi:10.1371/journal.pone.0015432.g005
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62 kDa marker appear in the gel, independent of the immobiliz-

ed peptide, and are attributed to E.coli lysate binding to the

beads (Figure 6). From this result, the increased TNF1-opt E.coli

lysate binding observed on the microarray appears to be due

primarily to enhanced binding to a single E.coli protein. Qu-

antitative interpretation of this specificity data is somewhat difficult

due to avidity on the surface, which can favor non-specific

interactions [40].

Additive Optimization of a Second Lead Peptide (TNF4)
that Binds TNF-a

To test if this approach can be used to optimize lead peptides

with a much better starting affinity, TNF4 (Kd = 2363.5 mM for

TNF-a) was optimized. From a screen of point-variants (Figure S8

in File S1), three affinity enhancing variations Y1W, D5Y and

T10Y having the respective affinities Kd = 380680 nM,

Kd = 280640 nM and Kd = 310610 nM (Table S3 in File S1)

were identified. From these point-variants, a double variant

Y1W+D5Y with a Kd = 200630 nM and a triple variant

Y1W+D5Y+T10Y (referred to as TNF4-opt) with a Kd =

90620 nM were produced (Table S3 in File S1). TNF4-opt has

an approximate 250-fold enhancement in affinity relative to the

TNF4 lead, which represents a larger affinity enhancement with

three substitutions in TNF4-opt compared to four substitutions in

TNF1-opt. This larger enhancement in TNF4-opt is thought to be

due to the fact that the point-variants exhibit a more than 70-fold

average enhancement relative to TNF4 (Table S3 in File S1)

compared to a 3.4-fold average enhancement in the TNF1 point-

variants (Table 1). TNF4-opt binding kinetic fits of SPR

sensorgrams across several concentrations (Figure S9 in File S1)

produce a koff = 7.560.861023 s21 and kon = 5.861.26104 M21s21,

resulting in a Kd = 130630 nM, which is in agreement with the affinity

determined from equilibrium binding responses. TNF-a pull-down

assays performed in the presence of excess E.coli lysate with TNF4 and

TNF4-opt immobilized on beads indicate good TNF-a binding

specificity (Figure S10 in File S1). After subtracting background bead

binding, TNF4-opt produces one additional off-target band in the

SDS-PAGE analysis when compared to TNF4.

General Applicability of the Additivity Algorithm
To explore the generality of thermodynamic additivity for

optimization of additional lead peptides and target proteins,

affinity optimization of a peptide with the sequence

AHKVVPQRQIRHAYNRYGSC (referred to as TRF26) known

to bind weakly to the common blood protein transferrin

(Kd = 85614 mM) was performed. In this case, TRF26 was

identified from a screen of the same initial library of 104 random

peptide sequences printed as a microarray on a glass slide (PEB,

CWD and SAJ unpublished data), rather than high-throughput

SPR screening as was done for TNF1 and TNF4.

A library of 323 TRF26 point-variants, substituting 19 of the 20

natural amino acids (excluding cysteine) in 17 positions of the

peptide, was screened using array-based SPR with the peptides

immobilized on a gold SPR chip surface (via a C-terminal cysteine)

and 10 mM unlabelled transferrin in solution. The results of this

point-variant screen are shown as a heat-map (Figure S11 in File

S1). From this, two TRF26 point-variants (P6Y, H12F) were

selected for further affinity characterization. The P6Y and H12F

point-variants have dissociation constants of 8.661.6 mM and

9.761.6 mM respectively (Table S4 in File S1). Interestingly, a

substitution set of 19 amino acids in the TRF26 point-variant

screen did not produce proportionally more enhanced point

variations than the 8 amino acid set used in the TNF1 or TNF4

point-variant screens, which suggests that a large amino acid

substitution set is not required to identify affinity enhancing point

variations. A TRF26 double variant sequence containing the

P6Y+H12F variations was characterized by SPR. Assuming

energetic additivity of point variations, the P6Y+H12F variant

should have a Kd in the range of 1.3–0.7 mM. The observed

P6Y+H12F variant Kd = 0.560.1 mM is in good agreement with

this prediction (Table S5 in File S1).

Discussion

We have utilized thermodynamic additivity of component

variations to formulate a systematic algorithm for the development

of peptide affinity reagents. This algorithm does not require large

libraries or structural information, which are important charac-

Figure 6. SDS-PAGE analysis of TNF1 and TNF1-opt pull-down
assays. Silver-stained gel image of the final eluted fraction from TNF-a
pull-down assays performed with immobilized TNF1 and TNF1-opt in
the presence of excess E.coli lysate (,2 mg/mL). Purified 10 mM TNF-a
and the TNF-a spiked E.coli lysate used in the pull-down assay are also
shown. Several bands appear on the gel independent of the
immobilized peptide and are indicated with an asterisk (*), these bands
are attributed to background bead binding. After subtracting
background bands, one additional off-target band at approximately
65 kDa that appears in the TNF1-opt pull-down eluted fraction is noted.
(Bottom) The band near 17 kDa in the SDS-PAGE image was validated
as TNF-a with a Western blot.
doi:10.1371/journal.pone.0015432.g006
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teristics that enable rapid, low-cost generation of high-affinity

peptide ligands and differentiate this algorithm from other affinity

reagent development approaches. Initially, a sparse sampling of

random 20-mer peptide sequence space was screened for low-

affinity lead peptides. After lead identification, the low-affinity

peptides were optimized to high-affinity in only two steps by first

screening restricted-diversity point-variant libraries, and second

combining affinity-enhancing sequence variations to achieve

thermodynamically additive binding affinity gains (Figure 1).

General applicability to several protein targets has been shown,

and binding dissociation constant (Kd) enhancements of nearly

250-fold were achieved with this algorithm (Table S3 in File S1).

In one specific example, the TNF4-opt peptide developed with this

algorithm is one of the highest affinity TNF-a binding peptides/

small-molecules reported to-date [28–30,41].

While a comprehensive analysis of enthalpy/entropy contribu-

tions of variations in short unstructured peptides warrants a

dedicated publication, this work provides insight into the effect of

sequence variation on protein-peptide binding thermodynamics

and specificity. First, in most cases tested, the effect of combining

sequence variations was additive with respect to binding energy

(Table 2, Tables S3, S5 in File S1). Exception to this was observed

when the combined point-variations were nearest neighbors, in

which case, the affinity gains were less than what would be

expected from thermodynamic additivity. This deviation from

additivity is presumably due to nearest neighbor interactions that

interfere with independent contributions by each variation

[17,20]. It is also possible, in principle, for nearest neighbor

interactions to result in cooperative gains, thereby improving

affinity beyond what would be predicted by thermodynamic

additivity, such cooperative interactions were not observed here.

Based on the lead peptides tested, it appears that higher lead

peptide affinity produces higher affinity in an optimized sequence

containing multiple ehancing point variations. Also, the somewhat

less than additive affinity gains achieved with TNF4-opt, which

was derived from the highest lead starting affinity (TNF4,

Kd = 2363.5 mM for TNF-a), suggest that additivity in a 20-mer

peptide starts to break down as the affinity approaches the low

nanomolar range (Table S3 in File S1). One explanation for this is

that as additional contact points between the peptide and protein

are added, the peptide becomes increasingly sterically constrained,

making it impossible to add further contact points that are

structurally independent [17,20,42]. A potentially powerful

strategy to overcome this apparent affinity barrier is to combine

this additivity algorithm with recently described multivalent

peptide affinity reagent approaches [31,43].

Both microarray-based and bead-based pull-down specificity

studies show that TNF1-opt and TNF4-opt bind TNF-a with high

specificity when challenged with E.coli lysate as a competive

mixture (Figure 6, Figure S10 in File S1). Pull-down assays

identified only one additional off-target E.coli protein bound by the

optimized peptides when compared to the leads. This suggests that

the additive affinity enhancements are not purely due to non-

specific effects. Several possible explanations for the optimized

variants binding to a single additional off-target protein exist. First

the variations introduced into the optimized sequences could have

produced a new binding motif in the peptides that have ‘specific’

affinity for a single E.coli protein. Second, it is possible E.coli

protein(s) exist that contain binding surfaces(s) analogous to

binding surface(s) on TNF-a and enhancing TNF-a binding site

affinity also enhances affinity for analogous sites on E.coli

protein(s). Finally, variant peptide binding to TNF-a may modify

the surface of TNF-a in such a way that promotes an interaction

between TNF-a and specific E.coli protein(s). Due to the distinct

nature of binding affinity and specificity [44,45], achieving

significant gains in affinity as well as target specificity may be

possible by simultaneously screening point-variants for both

affinity and specificity enhancement before combining them into

an optimized variant.

From the microarray binding experiments, it is worth noting

that the ranked fluorescently labeled TNF-a binding intensities for

TNF1 and all variants on the microarray (Table S2 in File S1)

agree very well with the ranked affinities of the same peptides

determined by SPR (Tables 1, 2). This demonstrates that short

peptides screened and optimized in solution-phase assays such as

SPR can show comparable target binding behavior when

immobilized on a microarray surface [46], a potentially very

useful characteristic when designing affinity reagents for purifica-

tion or diagnostics.

The additivity algorithm described here provides several distinct

advantages for affinity reagent development. First, without the use

of enzymes to create the libraries, there is unbiased sequence

selection/optimization [20], and this approach could be applied to

natural/non-natural heteropolymers under a diverse range of

conditions. Second, through judicious combination of point

variations, specific properties of the final affinity reagent, such as

solubility, tendency to aggregate, or performance in a particularly

assay format, can be maintained or improved throughout the

optimization process. Third, since this algorithm utilizes a screen,

rather than a selection, both enhanced and reduced affinity

variants can be quantified, providing significantly more informa-

tion about the binding interaction when compared to a selection

that only produces a small set of the highest affinity sequences.

Finally, this approach uses a relatively small amount of target

protein and is amenable to high-throughput application and

automation, which is very important for producing a library of

affinity reagents to the proteome. Because this is a systematic

algorithm, one could envision an automated system that starts with

a target protein, generates a lead sequence from a sparse random

library, optimizes the peptide via thermodynamic additivity and

outputs an optimized sequence.

Methods

Peptide SPR Screen
A library of 104 20-mer random sequence peptides was screened

as a series of 4 experiments using a Biacore A100 (GE Healthcare,

Piscataway, NJ) high-throughput surface plasmon resonance (SPR)

system, with ,2500 peptides screened in each experiment. Four

peptides were flowed separately, in parallel, through four SPR flow

cells with 5 proteins immobilized as addressable spots in each flow

cell (a total of 20 addressable spots). Peptide binding was analyzed

with a 60-second association phase followed by a 60-second

dissociation phase. Reference subtracted SPR sensorgrams were

recorded for each peptide at all protein spots, in all flow cells, on

the SPR chip. Surface regeneration was performed after every 15

injections in each flow cell with Biacore Glycine 2.5 regeneration

solution (GE Healthcare, Piscataway, NJ).

Lead Identification
Lead peptides with TNF-a affinity were identified after a series

of validation steps following the random peptide library screen.

First, 171 potential lead peptides were screened for acceptable

sample purity using MALDI-MS, those with purity less than 70%

were discarded. The remaining potential lead peptides were

further filtered by comparing TNF-a SPR binding response to the

binding response from three unrelated proteins on the SPR chip as

well as the response from the neutravidin coated reference spot.

Additivity of Peptide Sequence Variations
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Peptides that showed significant binding response with any of the

off-target proteins were discarded. Finally, the remaining 10 leads

were subjected to a second SPR affinity assay using a series of

peptide concentrations. From this, two lead peptides, TNF1 and

TNF4, were identified.

Point-Variant Library and SPR Chip Preparation
Point-variant libraries were prepared in 96-well stock plates as

described in the supporting information. From the stock plate,

peptides were diluted to 50 mM or 10 mM in Biacore HBS-EP

buffer (GE Healthcare, Piscataway, NJ) containing 1 mg/ml

carboxymethyl-dextran (Sigma-Aldrich, St. Louis, MO) to reduce

non-specific binding to the CM-5 SPR chip surface. Biotinylated

TNF-a was captured on a neutravidin coated Biacore CM-5 chip

(GE Healthcare, Piscataway, NJ) at different levels on spots 1, 2, 4,

and 5 across all four flow cells corresponding to a low to moderate

Rmax range of 40-200 RU. Spot 3 on all flow cells contained only

immobilized neutravidin and served as a reference spot.

Point-Variant SPR Screen
Using the prepared 96-well plates and Biacore A100 SPR

system, four peptides were flowed separately, in parallel, through

the four flow cells over all 4 TNF-a spots and the neutravidin

reference spot (16 TNF-a, 4 neutravidin spots total), with a 60-

second association phase and 300-second dissociation phase.

Reference subtracted SPR sensorgrams were recorded for each

peptide from all TNF-a spots. Surface regeneration was performed

after every 12 injections in each flow cell with Biacore Glycine 2.5

regeneration solution. Point-variant reference subtracted, peptide

molecular weight adjusted, responses at the late binding region of

the sensorgram (a few seconds before dissociation) were compared

to the response of the lead.

Enhanced Point-Variant Characterization
Affinities of several enhanced point-variants identified from the

point-variant screen were determined by SPR using equilibrium

binding responses across a series of peptide concentrations on an

SPR chip containing varying levels of immobilized TNF-a with a

predicted Rmax range of 40-120 RU. Responses were normalized

to the predicted Rmax so that results from different TNF-a capture

levels could be directly compared.

Multiple Variant Characterization
Sequences containing multiple enhancing point variations were

synthesized using standard solid-phase synthesis and purified.

Multiple variant affinities were determined with the same protocol

used for point-variant affinities. (PDF)

Calculation of Binding Energies and Dissociation
Constants

Peptide binding energies and dissociation constants (Kd) were

calculated separately as a mean and standard error of all replicate

measurements. Therefore, the reported standard free energies of

binding and dissociation constants may deviate slightly from direct

calculation using the reported values. For multiple variants,

predicted binding energies are reported as a range to account for

the error in the observed values used to calculate the predicted

value.

Additional experimental details are available in the supporting information

(Text S1 in File S1).

Supporting Information

File S1 Additional figures, tables and experimental
methods.
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