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Abstract

Background: Peripheral arterial disease (PAD) is a growing problem with few available therapies. Cilostazol is the only FDA-
approved medication with a class I indication for intermittent claudication, but carries a black box warning due to concerns
for increased cardiovascular mortality. To assess the validity of this black box warning, we employed a novel text-analytics
pipeline to quantify the adverse events associated with Cilostazol use in a clinical setting, including patients with congestive
heart failure (CHF).

Methods and Results: We analyzed the electronic medical records of 1.8 million subjects from the Stanford clinical data
warehouse spanning 18 years using a novel text-mining/statistical analytics pipeline. We identified 232 PAD patients taking
Cilostazol and created a control group of 1,160 PAD patients not taking this drug using 1:5 propensity-score matching. Over
a mean follow up of 4.2 years, we observed no association between Cilostazol use and any major adverse cardiovascular
event including stroke (OR= 1.13, CI [0.82, 1.55]), myocardial infarction (OR= 1.00, CI [0.71, 1.39]), or death (OR = 0.86, CI
[0.63, 1.18]). Cilostazol was not associated with an increase in any arrhythmic complication. We also identified a subset of
CHF patients who were prescribed Cilostazol despite its black box warning, and found that it did not increase mortality in
this high-risk group of patients.

Conclusions: This proof of principle study shows the potential of text-analytics to mine clinical data warehouses to uncover
‘natural experiments’ such as the use of Cilostazol in CHF patients. We envision this method will have broad applications for
examining difficult to test clinical hypotheses and to aid in post-marketing drug safety surveillance. Moreover, our
observations argue for a prospective study to examine the validity of a drug safety warning that may be unnecessarily
limiting the use of an efficacious therapy.
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Introduction

Peripheral arterial disease (PAD) is a growing problem that now

accounts for every fifth dollar spent on inpatient cardiovascular

care in the United States [1]. This condition affects approximately

8 million Americans, and is associated with significantly impaired

long-term cardiovascular outcomes [2]. For example, PAD

patients have been shown to have high rates of mortality, stroke

and myocardial infarction (MI), with an equal or even greater risk

of events than those subjects with a diagnosis of cerebrovascular or

coronary artery disease [3]. Patients with claudication also report

reduced quality of life, experience higher rates of clinical

depression, and are measurably more sedentary than non-PAD

patients [4–6].

Despite the impact of this disease, very few medical therapies

are available to the patient with PAD. Indeed, Cilostazol is the

only FDA-approved medication that carries a class I indication for

the treatment of intermittent claudication [7]. Cilostazol is a type

III phosphodiesterase inhibitor that possesses both vasodilatory

and anti-platelet properties, and has been shown to improve

maximal walking distance significantly compared to placebo in a

series of prospective randomized clinical trials [8,9]. Cilostazol can

induce a number of minor side effects such as headache and

diarrhea, but generally has been observed to be safe with regards

to major cardiovascular events such as myocardial infarction,

stroke and death [10,11]. However, other phosphodiesterase

inhibitors such as milrinone have been associated with increased

mortality rates in patients with congestive heart failure (CHF) [12],

and Cilostazol has therefore been issued a black box warning

despite never having been shown to increase risk of any major

clinical endpoint [12,13]. Prior attempts to quantify this risk were

underpowered and did not lead to reversal of the FDA’s risk
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assessment [14]. To additionally quantify the risk associated with

this black box warning, we developed a novel text-analytics

pipeline to examine the adverse event profile [15] of Cilostazol in a

clinical setting, and also in patients with CHF.

Methods

Data Sources
We used clinical notes from the Stanford Translational

Research Integrated Database Environment (STRIDE). For

validation of our findings in the CHF subgroup we used data

from the Palo Alto Medical Foundation (PAMF).

The STRIDE dataset spans 18-years’ worth of data from 1.8

million patients; it contains 19 million encounters, 35 million

coded ICD9 diagnoses, and a combination of pathology,

radiology, and transcription reports totaling over 11 million

unstructured clinical notes.

The PAMF dataset spans 13-years’ worth of patient data from

1.2 million patients; it contains 78 million encounters, 64 million

coded ICD9 diagnoses, and a combination of progress notes,

pathology, radiology, and transcription reports totaling over 50

million unstructured clinical notes.

The use of these data sources has been approved by the

Institutional Review Boards at Stanford and PAMF.

Data Collection and Processing
We processed the unstructured clinical notes as described in

Figure 1 and by LePendu et al. [16]. In brief, we used an optimized

version of the NCBO Annotator [17,18] with a set of 22 clinically

relevant ontologies. We removed ambiguous terms using a variety

of statistical and manual filters [19–22], and flagged negated terms

as well as terms attributed to family history [23,24]. We

normalized all drugs to their ingredients using RxNorm, such

that the terms ‘‘pletal’’ and ‘‘cilostazol’’ are both normalized to the

ingredient Cilostazol. We normalized remaining terms to clinical

concepts and aggregated the concepts according to hierarchical

relationships, e.g., patients with acute myocardial infarction are

also counted as persons with myocardial infarction. Finally, we

ordered the set of all concepts for each note based on the time at

which the note was recorded. As a result, for every patient, we

have sets of concepts spaced apart in time based on the clinical

notes they were mentioned in, comprising the patient-feature

matrix (see Figure 1).

We recognize drug exposure and clinical conditions based on

the temporally ordered concept mentions. We validated the

accuracy using a manually annotated gold standard corpus (from

the 2008 i2b2 Obesity Challenge [25]). This corpus is manually

annotated by two annotators for 16 conditions and was designed to

evaluate the ability of NLP systems to identify a condition present

for a patient based on textual notes. On average, we achieved 98%

specificity for recognizing disease conditions with a precision of

90%. In particular, for PAD we have 98% specificity (with 83%

precision) and for CHF 95% specificity (with 92% precision). We

trade sensitivity for ensuring high specificity and precision; and

sensitivity is around 73%. However, given the large dataset we

begin with, we are still able to identify large enough cohorts for the

study. Drug recognition is done in a similar manner using strings

from RxNORM and an independent study at the University of

Pittsburgh, which examined the annotations on 1960 clinical notes

manually [26], estimated over 84% sensitivity and 84% specificity

for recognizing drugs.

Study Covariates and Outcome Variables
We defined several covariates for propensity score matching and

several outcome variables for comparison. Each variable is

composed of a set of concepts, and each concept contains several

terms. For example, the variable ‘‘myocardial infarction’’ is

composed of 18 different concepts, including C0027051 (myocar-

dial infarction), C0340324 (silent myocardial infarction) and

C0155626 (acute myocardial infarction), etc. (see Material S1).

Each of these concepts can be further decomposed into the terms,

which are actually mentioned in the clinical notes. For example,

the terms ‘‘heart attack’’ and ‘‘myocardial infarction’’ both count

as mentions of the concept C0027051 (myocardial infarction). The

list of concepts and terms defining the covariates as well as the

outcome variables used in this study was manually curated and can

be found in the Material S1.

We defined an index time point of treatment for all patients,

and grouped all annotations into two groups: concepts associated

with clinical events that happened before treatment (which can

therefore be used for matching patients) and concepts associated

with events that happened after the treatment (and can therefore

be interpreted as outcomes). We scanned the annotations of each

patient for the occurrence of concepts before and after the index

time point to create a binary matrix; where for each patient we set

the variable to 1 or 0 indicating that the concepts had been

mentioned in the clinical notes or not. We extracted the

demographic variables age, gender and race, and used a cross-

reference of the STRIDE data with the social security index

(SSDI) to define the outcome variable ‘‘death (SSDI)’’.

Study Period and Study Groups
We extracted data from our annotations for all patients with

PAD, as defined by mention of the peripheral artery disease terms

listed in Table 1. To allow a detailed analysis of multiple clinical

endpoints, we excluded patients having less than one year’s worth

of data after their first PAD mention to ensure sufficient clinical

follow up data for each patient. For the Cilostazol study group, we

selected those PAD patients who had a Cilostazol mention after or

at the same time as their first PAD mention. We then used 1:5

propensity score matching to define a control group.

To summarize, patients in the Cilostazol study group met the

following criteria: (i) they had to have a diagnosis of PAD as

defined by mention of the PAD-related terms listed above, (ii) the

first PAD mention had to be before or at the same time as the

Cilostazol mention, (iii) the patients were required to have at least

one year worth of data after their first PAD mention. The control

group similarly carried a diagnosis of PAD, had no mention of

Cilostazol, and was matched to the Cilostazol group by propensity

score matching based on expert selected variables.

Congestive Heart Failure Study Subgroup
In addition to the total PAD group, we also extracted patients

who had a mention of CHF in their clinical notes before the first

mention of Cilostazol. The electronic records of these subjects

containing the CHF annotation were manually reviewed to

confirm the clinical diagnosis of CHF and to ensure the

correctness of the temporal ordering. We then used 1:5 propensity

score matching to construct a control group from all other PAD

patients who also had a history of CHF, but no Cilostazol

prescription.

Propensity Score Matching and Statistical Methods
We used propensity score matching to construct control groups.

For this purpose, we first fit a propensity score model using logistic
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regression where the treatment assignment (Cilostazol vs. no

Cilostazol) was regressed on the 18 covariates marked in Table 2,

including the demographic variables, age at first PAD mention,

gender and race, as well as several co-morbidities and co-

prescriptions. We then used the Matching package for R [27] to

perform 1:5 propensity score matching without replacement and

to check balance in the variables between the Cilostazol and

control groups. We analyzed the success of the matching–whether

covariate values were balanced across the two groups after

matching–by examining for significant differences in means for

continuous variables and significant differences in percentages for

indicator variables using a p-value significance level of 0.05. To

account for the matched nature of the data, we then used

conditional logistic regression [28] of the Survival package for R

[29] to compute odds ratios and 95% confidence intervals for

several outcome variables. The same analysis was performed for

the patients with a history of CHF. Furthermore, we performed

standard multivariate logistic regression to compute odds ratios

which: 1) compare the Cilostazol group with all other unmatched

PAD patients, 2) adjust for confounding by including several

covariates, as well as the propensity scores themselves in the

regression model (see Material S2).

Results

In the current paper, we describe a study performed using free-

text clinical notes from the clinical data warehouse at Stanford.

Our text-processing pipeline converts clinical notes from a

patient’s medical record into a patient-feature matrix for data

mining as described in the Methods. In order to study the

outcomes in patients with PAD taking Cilostazol, we examined for

differences in several clinical outcomes comparing patients taking

Cilostazol with a matched control group. As described in the

methods, we defined an index time point (the time point at which

treatment for PAD started) and scanned the patient’s annotations

for occurrence of the variables before and after that time point.

We then used variables mentioned before the index time point for

propensity score matching and variables mentioned after that time

point as outcome variables. We analyzed outcomes between the

232 patients on Cilostazol in STRIDE, and their matched controls

by comparing for significant differences in major adverse

cardiovascular events (MACE), major adverse limb events

(MALE), and symptoms for arrhythmias. We also examined a

small cohort of patients with congestive heart failure who were

prescribed Cilostazol and validated our findings for the CHF

subgroup in an independent dataset.

Propensity Score Matching
In total, there were 11,435 PAD patients in STRIDE. Amongst

the entire cohort, there was no difference in mortality (OR=1.08

CI [0.86, 1.35]) comparing 340 Cilostazol patients with the other

11,095 PAD patients, as assessed by query of the SSDI. In order to

carry out a more detailed analysis of multiple clinical endpoints

such as MACE and MALE, we restricted our study set of 11,435

Figure 1. Generation of the patient–feature matrix. (1) The workflow downloads ,5.6 M strings from the 22 clinically relevant ontologies as
well as trigger terms from NegEx and ConText for negation detection. (2) It uses term frequency and syntactic type information (e.g., predominant
noun phrases) from MedLine to prune the set of strings into a clean lexicon, and (3) then applies the lexicon directly against the textual clinical notes
using exact string matching. (4) The workflow furthermore uses NegEx and ConText rules to filter negated terms and terms within family history
contexts. (5) Next, UMLS and BioPortal mappings and semantic type information are used to normalize terms into concepts, which are furthermore
grouped into the semantic groups ‘‘drug’’, ‘‘disease’’, ‘‘device’’, or ‘‘procedure’’. (6) Finally, the annotations of the clinical notes are used to construct
the patient–feature matrix, where each row of the matrix represents a patient and the columns are the clinical concepts annotated in the patients
clinical notes; here the time stamps of the clinical notes induce a temporal ordering of the annotations over the entire patient–feature matrix.
doi:10.1371/journal.pone.0063499.g001

Table 1. Peripheral artery disease definition.

Concept
Concept unique identifier
(UMLS)

Peripheral arterial diseases C1704436

Peripheral vascular diseases C0085096

Peripheral arterial occlusive disease C1306889

Intermittent claudication C0021775

Claudication (finding) C1456822

doi:10.1371/journal.pone.0063499.t001
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Table 2. Balance in variables before and after propensity score matching in STRIDE.

Variable Before Matching After PSM matching

Cilostazol group
(n=232)

Unmatched
PAD patients
(n=5525) p-value

Matched control group
(n =1160) p-value

Demographics

Age (at indication onset), mean (sd)* 71.20 (10.98) 70.41 (12.47) 0.30 71.43 (10.87) 0.81

Gender (female), n (%)* 37.07 45.96 ,0.01 36.03 0.82

Race, n (%)*

Asian 8.62 7.40 0.52 8.10 0.84

Black 2.59 3.71 0.30 2.76 0.91

Native American 0.00 0.24 ,0.001 0.00 1.00

Unknown 24.14 26.12 0.50 24.66 0.90

White 64.22 62.26 0.54 63.97 0.95

Comorbidities

Congestive heart failure, n (%)* 18.53 21.96 0.19 19.22 0.84

Diabetes, n (%) 25.00 19.55 0.06 25.69 0.86

Dyslipidemias, n (%)* 57.33 47.22 ,0.01 58.62 0.77

Hypertension, n (%)* 74.41 68.07 0.04 75.17 0.78

Renal failure, n (%)* 9.05 7.78 0.51 8.88 0.95

Co-prescriptions

Statins, n (%)* 62.50 48.25 ,0.001 63.79 0.76

Beta blocking agents, n (%) 50.86 43.44 0.03 50.09 0.86

ACE inhibitors, plain, n (%)* 61.21 53.17 0.02 61.64 0.92

Antiplatelet drugs, n (%)

Aspirin, n (%)* 68.10 58.32 ,0.01 69.14 0.80

Clopidogrel, n (%)* 31.03 14.46 ,0.001 28.19 0.44

Warfarin, n (%)* 13.36 17.20 0.10 11.64 0.57

Antiarryhtmics, n (%)* 25.86 36.09 ,0.001 25.78 0.98

Diabetes drugs, n (%) 29.74 23.71 0.05 29.05 0.87

History of

Arrhythmias, n (%)* 32.76 31.78 0.76 33.71 0.82

Tachycardia, n (%) 21.55 21.77 0.94 20.78 0.84

Atrial fibrillation, n (%) 12.93 14.10 0.61 13.28 0.91

Ventricular tachycardia, n (%) 3.02 2.44 0.62 2.84 0.60

Ventricular fibrillation, n (%) 0.86 0.81 0.94 0.60 0.75

Conduction disease and/or bradyarrythmia, n (%) 12.93 12.24 0.76 14.91 0.53

MACE, n (%)*{ 29.74 30.24 0.87 29.48 0.95

Myocardial infarction, n (%) 18.10 15.87 0.39 16.98 0.75

Stroke, n (%) 18.97 18.30 0.80 16.98 0.57

Defibrillation event, n (%) 2.59 3.49 0.40 3.19 0.70

Cardiac arrest, n (%) 1.29 1.05 0.75 1.21 0.93

Sudden cardiac death, n (%) 0.43 0.58 0.78 0.43 1.00

MALE, n (%){ 79.74 48.56 ,0.001 80.43 0.76

Revascularization, n (%)* 75.43 42.01 ,0.001 76.29 0.72

Bypass, n (%)* 35.35 17.03 ,0.001 33.19 0.57

Angioplasty, n (%)* 28.02 11.66 ,0.001 25.00 0.39

Amputation, n (%)* 6.73 4.87 0.16 7.07 0.92

Variables that differ statistically significantly (p-value ,0.05) are bold. Propensity score matching removes any imbalance in all variables.
*covariates included in the propensity score model,
{pooled variables combining all variables listed below.
doi:10.1371/journal.pone.0063499.t002
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PAD patients to the 5,757 PAD patients with at least one year of

clinical follow up, as described in the methods. For this reduced

study set, we had on average more than 8 years’ worth of data

spanning the index time point of treatment for each patient In this

group, we identified 232 PAD patients taking Cilostazol and

compared them to the other 5,525 PAD patients in the STRIDE

database. Table 2 summarizes the prevalence of several clinical

variables in the Cilostazol study group and the unmatched PAD

control patients. On average, the Cilostazol patients are older, are

more likely male, have more comorbidities, are prescribed more

medications and have had more major adverse limb events than

PAD patients not taking Cilostazol (p-value ,0.05 for each

condition); hence on average Cilostazol patients are sicker than the

other PAD patients. After using propensity score matching, we

were able to identify a cohort of 1160 controls (1:5 matching) that

were fully balanced for all 18 clinical variables (see Table 2). This

group was used to compare all subsequent clinical outcomes. In

total, 5,892 patient-years of data were available for the subjects

studied compared to 2136 patient-years in [14].

Outcomes in PAD Patients Taking Cilostazol
Differences in claudication symptoms. We first quantified

the frequency with which subjects in each group reported

improvement or resolution of claudication symptoms over time.

We were able to ‘re-discover’ that Cilostazol use was associated

with a significant reduction in symptomatology [30]–defined by

mentions of phrases such as ‘‘no claudication’’, ‘‘no complaints of

claudication’’, or ‘‘no sign of claudication’’ after assignment to the

Cilostazol group (OR=2.35, CI [1.75, 3.14]–thus providing a

positive control for our approach.

Another example that such text-mining approaches don’t

always result in negative findings, is given by our recently

published study, in which we used similar techniques to detect

adverse drug reactions from the clinical notes and achieved 80.4%

AUC on a gold standard of positive and negative drug-adverse

event associations as well as detected 6 out of 9 recalls in the past

decade including the association between Vioxx and Myocardial

infarction [15,16].

Differences in major adverse cardiovascular events

(MACE). To assess the impact of Cilostazol therapy on major

clinical outcomes, we then computed odds ratios for several major

adverse cardiovascular events (MACE), including myocardial

infarction, stroke, cardiac arrest, sudden cardiac death and

defibrillation events. Compared to the entire unmatched PAD

cohort, those prescribed Cilostazol had slightly higher rates of

MACE (crude OR=1.37, CI [1.05, 1.79]). However, after

matching on potential confounders, Cilostazol was not associated

with any major cardiovascular endpoint including death

(OR=0.86, CI [0.63, 1.18]), MI (OR=1.00, CI [0.71, 1.39]),

or stroke (OR=1.13, CI [0.82, 1.55]) in the matched cohort (see

Figure 2A). Similar results were obtained adjusting the crude odds

ratios for different potential confounders (see Material S2).

Differences in major adverse Limb events (MALE). To

assess the impact of Cilostazol therapy on PAD-specific outcomes,

we next compared major adverse limb events (MALE) such as

amputation and lower extremity revascularization. As expected,

the Cilostazol group had much more advanced PAD than the

unmatched control PAD group, with significantly higher rates of

MALE (crude OR=6.26, CI [4.30, 9.13]) and each PAD-specific

endpoint (see Material S2). Compared to the matched control

group, the difference in odds ratios between the groups reduced,

but still remained significantly different for MALE (OR=2.84, CI

[1.87, 4.29]), amputation (OR=1.47, CI [0.97, 2.22]), bypass

(OR=1.53, CI [1.14, 2.07]) and revascularization (OR=2.77, CI

[1.89, 4.05]) (see Figure 2B). Again, similar results were obtained

using different ways to adjust for confounders (see Material S2).

Differences in arrhythmias and arrhythmic

symptoms. Despite the concern that Cilostazol may increase

malignant arrhythmias, we did not observe any statistically

significant differences between the Cilostazol and control PAD

patients (either before or after matching) with respect to cardiac

arrhythmias, nor typical arrhythmia symptoms (see Figure 2C) and

Material S2).

Outcomes in PAD Patients with CHF Taking Cilostazol
We identified several patients who had an annotation of CHF

before the first mention of Cilostazol. After manually reviewing

their medical records, we confirmed that 43 patients with a

diagnosis of CHF were subsequently prescribed Cilostazol for

PAD. We used these patients to comprise a CHF study subgroup.

Again, we observed an imbalance in several variables including

gender, several co-prescriptions and history of revascularization

events. Using propensity score matching, we extracted a control

group of 215 PAD patients who also had a history of CHF but

were not prescribed Cilostazol, and then compared both groups

with respect to different outcomes. Matching removed pre-existing

imbalance in the covariates (see Material S3). Importantly,

Cilostazol use was not associated with an increase in any major

adverse cardiovascular event amongst heart failure patients.

Similarly, no increase in arrhythmia, arrhythmic symptoms, or

sudden cardiac death was observed in this subgroup analysis (see

Figure 3). We again observed slightly increased odds ratios for

major adverse limb events, in particular revascularization events,

confirming that the PAD of the Cilostazol patients was more

advanced.

We also extracted data for 96 PAD patients with a history of

CHF who were prescribed Cilostazol from an independent data

source at PAMF. We manually validated the CHF subgroup

similarly as done for the STRIDE dataset. Using propensity score

matching we constructed a fully balanced matched control group

of 480 patients (for balance analysis see Material S4), and analyzed

differences in clinical outcomes between the two groups using the

same methods as for STRIDE data. We observed the same trend

as seen for the STRIDE data in Figure 3 (see Table 3).

Discussion

In this study, we employed a novel analytical approach to

conduct the equivalent of a phase IV safety surveillance study on

an efficacious, yet potentially dangerous FDA-approved drug. By

querying the clinical medical records of over 1.8 million patients

with our pipeline, we were able to identify a large cohort of PAD

subjects that were matched with the exception of exposure to

Cilostazol, the agent of interest in this study. Using this approach,

we did not observe any difference in mortality comparing the

Cilostazol patients to all other unmatched PAD patients. We

furthermore observed no association between Cilostazol and any

major adverse cardiovascular event including stroke, myocardial

infarction or death in a reduced fully matched study set, which is

in good agreement with earlier studies [31]. We also identified a

subset of CHF patients who were prescribed Cilostazol, and

interestingly found that it did not appear to increase mortality in

this theoretically high-risk group of patients. This proof of

principle study shows the potential of data-mining methods to

query unstructured data in clinical data warehouses to answer

important, but difficult to address clinical questions [32].

Moreover, it argues for a prospective study to examine the
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validity of an unproven FDA-issued black box warning that likely

limits the broad application of a clinically effective therapy.

In many situations, clinical hypotheses often go untested due to

ethical concerns around presumed benefit. Examples include the

use of PVC-suppressing antiarrythmics post MI or hormone

replacement in menopausal women, each of which was found to

promote, not prevent risk when formally tested [33,34]. Similarly,

clinical trials often do not study the most complicated patients due

to concerns over the impact of comorbidities, and clinicians often

have little data to guide therapy for the sickest patients. We argue

that in the era of electronic medical records, it is possible to

harness the knowledge embedded in clinical data warehouses to

inform therapy decisions [32] as well as perform phase IV

surveillance [15,16,35]. The informatics approaches employed in

the current study allow for uncovering ‘natural experiments’ that

would otherwise be difficult to perform–generating practice-based

evidence.

By looking at large enough sample sets, it is possible to identify

patients of interest who have been exposed to a given treatment

approach, compare them to patients who are otherwise indistin-

guishable, and observe their clinical outcomes for significant

differences. Because this work is performed with data from a ‘real

world’ clinical setting, patients who would have been excluded

from most clinical trials are also examined, such as the patients

with recognized CHF who were prescribed Cilostazol. Given

Cilostazol’s black box warning, it is difficult to imagine a scenario

where these patients would have been enrolled into a trial that was

supported by a pharmaceutical company and endorsed by an

academic Institutional Review Board. While our findings do not

prove that Cilostazol is safe in heart failure patients, they help

make the case for a prospective study in this cohort.

Because the full medical record can be queried, this approach

also offers the benefit of allowing a wide spectrum of endpoints to

be assessed. Also, at-risk and other understudied subgroups such as

children, the elderly, minorities, pregnant women and those with

multiple comorbidities could be studied with this approach. In the

current study, we focused heavily on potential arrhythmic

complications given the high incidence of palpitations reported

in the original Cilostazol studies. Importantly, no increase in

arrhythmia was observed and there was no increase in total

mortality or sudden cardiac death – endpoints, which would have

Figure 2. Outcomes in PAD patients taking Cilostazol compared to the matched control group. Odds ratios and 95% confidence intervals
are plotted; upper limits of the confidence intervals are clipped at 4. There are no statistically significant differences in major adverse cardiovascular
events (A), there is an increased risk for several major adverse limb events (B), and there are no differences for arrhythmias and arrhythmic symptoms
(C). MACE and MALE are pooled variables combining all other variables listed below.
doi:10.1371/journal.pone.0063499.g002

Figure 3. Outcome analysis in the CHF subgroup comparing patients with a history of CHF and taking Cilostazol to a matched
control of CHF patients not taking Cilostazol. Odds ratios and 95% confidence intervals are plotted; upper limits of the confidence intervals are
clipped at 4. There is no statistically increased risk for any major adverse cardiovascular events (A), there is an increased odds ratio for several major
adverse limb events (B), and there are no differences for arrhythmias and arrhythmic symptoms (C). MACE and MALE are pooled variables combining
all other variables listed below.
doi:10.1371/journal.pone.0063499.g003
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been detected by cross-referencing with the Social Security Death

Index.

This study has several potential limitations that warrant

discussion. Although our annotation pipeline has been shown to

have a specificity of 98% for recognizing diseases, we could have

missed comorbidities due to false negatives from lower sensitivity

(73%). However, these errors should be equally distributed across

case and control groups. We performed standard propensity score

matching in order to reduce potential bias introduced by

imbalance in the covariates; however matching may not have

been complete. For example, we did not have access to the

subjects’ ankle-brachial indices, and therefore could not quantitate

the severity of each patient’s peripheral stenosis at baseline.

Indeed, we observed that the Cilostazol group had higher rates of

MALE than control subjects. While we cannot exclude the

possibility that Cilostazol promotes the progression of PAD, we

view this as an unlikely possibility given the multiple published

randomized, placebo-controlled trials demonstrating efficacy of

Cilostazol [10,11]. Rather, we suspect that the groups were not

completely matched for PAD severity at baseline, given that

Cilostazol is generally prescribed to subjects with lifestyle-limiting

claudication [3,36–38]. As a result, the Cilostazol group may have

had higher-grade ischemic lesions, which necessitated the observed

increase in peripheral interventions and MALE. However, if an

unmeasured residual imbalance was present, it would bolster the

interpretation that Cilostazol is likely safe from a cardiovascular

mortality perspective, in that the treatment group presumably had

more advanced atherosclerosis, yet had no increase in arrhythmia

or cardiovascular events when taking the drug. Moreover, we

applied different models including a variety of additional potential

confounders and the results did not change (for details see Material

S2). Finally, the outcome measures may not have captured events

occurring outside of the hospital or that led to hospitalizations in

other institutions. However, we note that the endpoint of death

was captured for all patients via cross-referencing with the Social

Security Death Index data, giving confidence in our conclusions

about survival. Also, our ‘re-discovery’ that Cilostazol reduces

claudication complaints provides a ‘positive control’ to illustrate

the potential of our approach for detecting subjective clinical

endpoints.

In conclusion, we used an informatics approach to examine the

side-effect profile of Cilostazol and to indirectly assess the validity

of a black box warning that was originally issued over theoretical

concerns. We find that the feared complications of malignant

arrhythmia and sudden death were not observed in association

with the drug in the cohort examined. We used our analytics

approach to discover and examine a ‘natural experiment’ in a

subset of patients that would be difficult to enroll in a clinical trial

and found that Cilostazol had no untoward effect on survival

amongst heart failure patients. This result supports the argument

for a prospective randomized trial in CHF patients, which need

not be considered unsafe or unethical.

We believe that similar Phase IV monitoring could be executed

for other drugs without a proven safety record to identify sequelae

not recognized at the time of FDA review. We expect that such

data-mining driven surveillance approaches will have broad

applicability to the field of pharmaceutical safety and will become

a key aspect of Phase IV post-marketing surveillance, particularly

for patient groups not likely to be studied in randomized clinical

trials.
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Table 3. Outcomes in the CHF-subgroup in the PAMF dataset comparing Cilostazol patients with their matched controls.

Major adverse cardiovascular events Major adverse limb events Arrhythmias and symptoms

MACE* 1.38 [0.85, 2.25] MALE* 0.89 [0.54, 1.46] ARRHYTHMIAS 1.05 [0.65, 1.70]

Cardiac arrest 1.07 [0.44, 2.64] Amputation 1.63 [0.87, 3.03] Atrial fibrillation 0.90 [0.57, 1.42]

Defibrillation events 0.82 [0.34, 2.01] Angioplasty 1.43 [0.87, 2.36] Conduction disease/
bradyarrhythmia

1.34 [0.85, 2.09]

Myocardial infarction 1.42 [0.90, 2.26] Bypass 1.18 [0.73, 1.93] Tachycardia 1.15 [0.73, 1.82]

Stroke 0.91 [0.57, 1.43] Revascularization 0.92 [0.54, 1.46] Ventricular fibrillation 1.67 [0.45, 6.16]

Sudden cardiac death 0.38 [0.05, 2.94] Ventricular tachycardia 1.32 [0.56, 3.13]

Dizziness 0.99 [0.63, 1.55]

Palpitations 1.18 [0.73, 1.90]

*pooled variables combining all variables listed below.
doi:10.1371/journal.pone.0063499.t003
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