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Abstract

Gliomas are morbid brain tumors that are extremely resistant to available chemotherapy and radiology treatments. Some
studies have suggested that calcium-activated potassium channels contribute to the high proliferative potential of tumor
cells, including gliomas. However, other publications demonstrated no role for these channels or even assigned them
antitumorogenic properties. In this work we characterized the expression and functional contribution to proliferation of
Ca2+-activated K+ channels in human glioblastoma cells. Quantitative RT-PCR detected transcripts for the big conductance
(BK), intermediate conductance (IK1), and small conductance (SK2) K+ channels in two glioblastoma-derived cell lines and a
surgical sample of glioblastoma multiforme. Functional expression of BK and IK1 in U251 and U87 glioma cell lines and
primary glioma cultures was verified using whole-cell electrophysiological recordings. Inhibitors of BK (paxilline and
penitrem A) and IK1 channels (clotrimazole and TRAM-34) reduced U251 and U87 proliferation in an additive fashion, while
the selective blocker of SK channels UCL1848 had no effect. However, the antiproliferative properties of BK and IK1
inhibitors were seen at concentrations that were higher than those necessary to inhibit channel activity. To verify specificity
of pharmacological agents, we downregulated BK and IK1 channels in U251 cells using gene-specific siRNAs. Although
siRNA knockdowns caused strong reductions in the BK and IK1 current densities, neither single nor double gene silencing
significantly affected rates of proliferation. Taken together, these results suggest that Ca2+-activated K+ channels do not play
a critical role in proliferation of glioma cells and that the effects of pharmacological inhibitors occur through their off-target
actions.
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Introduction

Gliomas are primary brain tumors that arise from glial cells.

They represent 30 to 60% of CNS primary tumors, with the

incidence of 2 to 3 new cases per 100,000 persons annually [1,2].

Based on their histopathological characteristics, gliomas are

classified as grades I through IV, with higher grades being more

de-differentiated and malignant [3,2]. Grade IV gliomas, also

known as glioblastoma multiforme (GBM), have a very high

proliferative potential, are invasive and resistant to currently

available therapies [3,4]. Only 30% of GBM patients survive one

year, and the average life expectancy remains approximately 14–

18 months even with maximal therapy including gross total

surgical resection followed by chemotherapy and radiation therapy

[5,6]. Despite medical advances over the past 30 years, there has

not been a significant impact on GBM patient survival [4].

Therefore, a better understanding GBM biology is needed in order

to develop novel therapeutic treatments for this disease.

There is extensive literature suggesting that proliferation of

normal and transformed animal cells requires activity of certain

potassium (K+) channels (see for example [7,8,9,10]). K+ channels

are thought to facilitate progression through cell cycle checkpoints,

likely via modulation of membrane potential (reviewed in [11,12]).

Particularly, progression through the G1/S checkpoint in many

cell types is associated with increased K+ channel activity and

transient hyperpolarization [12]. Conversely, G2/M transition

may involve depolarization and be associated with increased Cl2

currents [12]. On the other hand, a number of studies suggest that

concomitant modulation of K+ and Cl2 channel activity may lead

to cell cycle-dependent changes in cell volume (reviewed in

[13,14]).

One group of K+ channels that may be relevant to proliferation

of both malignant and non-malignant cells are the Ca2+-activated

K+ channels ([14], see also references below). These channels are

subdivided into big conductance (large or maxi-) K+ channels

(BK), intermediate conductance K+ channels (IK1), and small

conductance K+ channels (SK) [15]. Each of these sub-classes can

be discriminated based on their biophysical and pharmacological

properties. BK channels, also known as SLO1, are broadly

expressed in various tissues but have particular functional
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significance for membrane potential regulation in excitable and

exocrine cells [15,16]. The pore-forming subunit of BK is encoded

by the KCNMA1 gene. BKs are voltage-gated channels that are

activated at high positive potentials with a large unitary

conductance of 100–300 pS. Increases in the intracellular Ca2+

concentration to the micromolar levels strongly shift the voltage-

dependence of BK to more negative potentials [16]. Paxilline,

penitrem A, iberiotoxin, and low concentrations of tetraethyl

ammonium are potent and specific inhibitors of BK [16]. IK1

channels, also known as KCa 3.1 or SK4, are the product of the

KCNN4 gene. They are expressed in a variety of tissues and play

diverse physiological roles [15,17]. Unlike BK, IK1 channels are

strictly Ca2+ dependent as their channel-forming subunit is

constitutively associated with calmodulin [18]. Once activated by

cytosolic Ca2+, they show an intermediate single channel

conductance of 33–42 pS [17]. Clotrimazole and its derivative

TRAM-34 are potent inhibitors of IK1, discriminating it from

other Ca2+-activated K+ channels [19,17].

Prior studies have implicated BK channels in the proliferation

and migration of glioblastoma cells [20,21,22]. BK has also been

associated with growth control in cervical, ovarian, prostate, and

breast cancer derived cell lines [23,24,25]. However, a number of

other studies contradict these findings and suggest that BK

channels are not required for proliferation or even have

antitumorogenic properties, including in glioma cells

[26,27,28,29]. In addition to BK, intermediate conductance

Ca2+-activated K+ channels (IK1) have also been proposed to

regulate growth rate in numerous types of malignant and non-

malignant mammalian cells [30,31,32,33,34,35]. More important-

ly, the inhibitor of the IK1 clotrimazole strongly reduces tumor

load and metastases in vivo in several cancer types including GBM

[36,37,38]. It should be noted, however, that some studies

question the functional expression of IK1 in GBM cells [22].

Because of the uncertain functional significance of BK and IK

channels in glioblastoma proliferation, in the present study we

used a combination of pharmacological and molecular biology

tools to explore their functional significance. We found that

pharmacological inhibitors of both BK and IK1 strongly suppress

glioma cell growth in an additive fashion. However, low

concentration of the same blockers that were sufficient to inhibit

channel activity had no effect on cell proliferation. To address this

discrepancy, we downregulated BK and IK1 channels using gene-

specific siRNAs. siRNA transfections caused strong reductions in

K+ current densities but no changes in cell growth. These data

argue against a critical role for BK and IK1 in GBM proliferation.

Materials and Methods

Materials
Clotrimazole, paxilline, penitrem A, 8,14-Diaza-1,7(1,4)-diqui-

nolinacyclotetradecaphane trifluoroacetate salt (UCL1848), and

all other salts and chemicals were from Sigma-Aldrich (St. Louis,

MO, USA) unless otherwise noted. 1-[(2-Chlorophenyl)diphenyl-

methyl]-1H-pyrazole (TRAM-34) was purchased from Tocris

Biosciences (Ellisville, MO, USA). Stock solutions of paxilline

(20 mM), penitrem A (20 mM), clotrimazole (30 mM), and

TRAM-34 (30 mM) were prepared in DMSO and stored at

230uC. UCL1848 was diluted in water at 20 mM.

Cell cultures
Two established astrocytoma/glioblastoma cell lines, U251 MG

and U87 MG, were used in this study. U251 cells were a gift of Dr.

M.G. Kaplitt (Weill-Cornell Medical Center, New York, USA);

their exact passage is unknown. U87 cells were obtained from the

American Type Culture Collection (ATCC, Manassas, VA, USA)

and used at passages 78–90. Both U251 and U87 cells were grown

in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented

with 10% fetal bovine serum (FBS), 50 U/ml penicillin, and

50 mg/ml streptomycin at 37uC in a humidified atmosphere

containing 95% air and 5% CO2. All cell culture reagents are

from Invitrogen-Gibco (Carlsbad, CA, USA). Culture media was

changed twice a week and cells were passaged using recombinant

protease TrypLE when 90–95% confluency was reached.

Primary glioblastoma cells were prepared from a surgical

sample of glioblastoma multiforme. Tissue sample was obtained

with written consent under a protocol approved by Albany

Medical Center Institutional Review Board. Tumor tissue (,200–

300 mg) was washed twice with ice-cold Ca2+-, Mg2+-free

phosphate-buffered saline (PBS, pH 7.4), minced to small pieces

and treated with solution of 0.125% Trypsin/0.015% EDTA in

PBS containing 250 mg/ml DNAse I. After brief digestion, tissue

fragments were triturated using fire-polished glass Pasteur pipette,

and the resulting cell suspension was filtered through a Nylon cell

strainer (70 mm, BD Falcon, Bedford, MA, USA). Cell were grown

in T75 cell culture flasks in DMEM plus 20% FBS supplemented

with 100 U/ml penicillin, and 100 mg/ml streptomycin at 37uC
in a humidified atmosphere containing 95% air and 5% CO2.

Analysis of gene expression in tumor samples and
cultured cells

Expression of various Ca2+-activated K+ channels in cultured

cells and the surgical GBM tissue sample was analyzed using

quantitative RT-PCR. Cellular or tissue mRNA was isolated using

the RNAqueous-4PCR kit (Applied Biosystems-Ambion, Austin,

Texas, USA) according to the manufacturer’s instructions.

Cultured cells were grown in a 60-mm dish to 60–80% confluency

and lyzed in 700 ml of lysis buffer. The GBM tumor sample

(,100–150 mg) was homogenized in 1 ml lysis buffer provided

with the RNAqueous-4PCR kit. Concentration of mRNA in

resulting samples was quantified using NanoDrop 1000 (Thermo-

Fisher Scientific, Wilmington, DE, USA). mRNA was converted to

cDNA using the iScript cDNA Synthesis kit (Bio-Rad Laborato-

ries, Hercules, CA, USA) according to the manufacturer’s

instructions. One mg of mRNA was used in each 20-ml cDNA

synthesis reaction mix.

Gene expression was quantified by a real-time PCR using the

CFX96 Real-Time PCR Detection System (Bio-Rad) and iTaq

SYBR Green Supermix kit (Bio-Rad) according to the manufac-

turer’s instructions. One ml of cDNA product prepared as

described above was used for each qPCR reaction. Gene

expression was analyzed with the gene-specific QuantiTect Primer

Assays (Qiagen, Hilden, Germany; see Table 1 for the list of

primers). Two housekeeping genes, GAPDH and RPL13A, were

used as internal reference.

Western blot analysis
Protein expression of the IK1 channel was assessed by the

Western blot analysis using polyclonal antibody raised against

synthetic peptide corresponding to a region of human IK1

(LYDLQQNLSSSHRALEKQIDTLAGKLDALTELL-

STALGPRQLPEPSQQSK, Sigma-Aldrich; cat.# AV35098).

Whole cell lysates were diluted with a reducing Laemmli buffer.

Proteins were separated on 10% polyacrylamide gel followed by

transfer onto an Immun-Blot PDVF membrane (Bio-Rad). The

membrane was blocked for 1 hr with 5% nonfat milk in Tris-

Phosphate buffer containing 0.05% Tween 20 (TBS-T). It was

further incubated overnight at 4uC with primary antibody (1:500

dilution). After five washes for 5 min with TBS-T, membranes
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were further incubated with horseradish peroxidase-conjugated

secondary antibodies (GE Healthcare/Amersham Biosciences,

Piscataway, NJ; 1:10,000 dilution), followed by four TBS-T

washes. The horseradish peroxidase signal was detected and

digitized using a chemiluminescence ECLplus reagent (GE

Healthcare/Amersham Biosciences) and a luminescent image

analyzer LAS-4000 (FujiFilm Medical Systems, Stamford, CT).

Electrophysiology
BK and IK1 currents were recorded employing conventional

whole-cell patch clamp technique [39]. Ion currents were recorded

using an Axopatch-200B amplifier (Molecular Devices, Sunnyvale,

CA, USA). Patch pipettes were prepared from borosilicate glass

(Warner Instruments, Hamden, CT, USA) using a P-97

micropipette puller (Sutter Instruments, Novato, CA, USA).

Pipette resistances were 2.5–4 MOm when filled with a solution

containing (in mM): 135 KCl, 2 MgSO4, 10 HEPES, 2.5 ATP-Na,

0.1 EGTA (pH = 7.2, adjusted with KOH). Bath solution

contained (in mM): 140 NaCl, 5 KCl, 3 CaCl2, 1.2 MgSO4, 10

HEPES, 10 glucose (pH = 7.4, adjusted with NaOH). In

experiments to detect IK1 currents, calcium concentration in

pipette solution was increased to 750 nM by adding CaCl2. Free

Ca2+ levels were calculated using CaBuf software (G. Droogmans,

KU Leuven, Leuven, Belgium). In all experiments series resistance

was ,15 MOm.

BK currents were recorded from a holding potential of

280 mV in response to step pulses of 280 mV to +140 mV in

20 mV increments. BK current development and inhibition was

monitored by applying repetitive (every 3 sec) depolarization

ramps from 2120 mV to +140 mV. Because the pipette solution

is nominally Ca2+-free, other Ca2+ activated K+ channels, such as

IK1 and SK1-3 are silent under these experimental conditions.

IK1 currents were recorded from a holding potential of

280 mV in response to step pulses from 2120 mV to +80 mV

in 20 mV increments. Development and inhibition of the Ca2+-

dependent IK1 currents were monitored by applying repetitive

(every 3 sec) depolarization ramps from 2120 mV to +80 mV.

Since these conditions also favor activation of BK currents, 2 mM

paxilline was added to bath solution to isolate the IK1 currents.

Cell proliferation assays
Cell proliferation rates were quantified using two approaches:

Coulter counter technique and colorimetric MTT proliferation

assay. U251 and U87 cells were plated in 24-well cell culture plates

(TPP, Trasadingen, Switzerland, Europe) at the density of 10,000

cells per well and were allowed to grow overnight. The next day,

culture media was replaced with serum-containing or serum-free

media including the various pharmacological inhibitors or vehicle

controls. Initial cell density was quantified at this time in a separate

‘‘baseline’’ plate prepared in the same fashion. We used two types

of culture media in pharmacological experiments: serum-contain-

ing (DMEM plus 10% FBS), or serum-free medium prepared

using OptiMEM with B27 supplement (Invitrogen; 1:50 dilution).

To preclude the potential degradation of inhibitors, we replaced

inhibitor-containing media with freshly prepared every 24 hrs.

48 hrs after first application of inhibitors, extracellular media were

removed and cells were processed for proliferation assays.

For MTT assays, cells were briefly washed with basal solution

containing (in mM): 135 NaCl, 3.8 KCl, 1.2 MgSO4, 1.3 CaCl2,

1.2 KH2PO4, 10 HEPES, and 10 glucose (pH = 7.4, adjusted with

NaOH). Aliquots of basal solution containing 0.5 mg/ml thiazolyl

blue tetrazolium bromide (MTT, Sigma-Aldrich) were then added

to each well. After 30-min incubation at 37uC MTT solution was

removed, and cells were solubilized in acidified isopropanol to

dissolve newly formed MTT-formazan particles. 250-ml aliquots

from each well were transferred into a 96-well plate. Absorbances

at 562 nm were measured using ELx800 Absorbance microplate

reader (BioTek Instruments, Winooski, VT, USA).

For Coulter counter assays, cells were detached from substrate

using recombinant protease TrypLE and counted using a Z1

Series Coulter Counter (Beckman Coulter, Miami, FL, USA).

siRNA transfections
To downregulate BK and IK1, U251 cells were transfected with

gene-specific siRNAs using a Nucleofector II (Lonza, Cologne,

Germany) and the Amaxa Nucleofection kit T according to the

manufacturer’s protocol. Cells were removed from the substrate

with TrypLE, counted, centrifuged at 300 g for 10 min, and

mixed with nucleofection suspension buffer containing 0.5 mg of

GFP cDNA (as a control of transfection efficacy) and 1 mM siRNA

of choice. Cells were electroporated using program T-20 and then

plated on either 24-well plates for proliferation assays or glass

coverslips for patch clamp experiments. We used two to three

siRNA constructs per gene that were obtained from Qiagen or

Ambion. Target sequences for each siRNA are listed in Table 2.

As a negative control we used nonsense AllStars negative control

siRNA (Qiagen) or siRNA to an unrelated K+ channel TREK.

Statistical analysis
All data presented as mean values 6SE. Number of

independent experiments per group is indicated in each figure

legend. Statistical significance was determined by one-way analysis

of variance (ANOVA) and a priori Newman-Keuls test for multiple

comparisons. p,0.05 was accepted as significant. In those

experiments where experimental values were normalized to

controls, statistical difference from controls was calculated with

unpaired Student’s t-test. Origin 6.0 (Origin Labs, Northampton,

MA, USA) and Prism 5 (GraphPad Software, San Diego, CA,

USA) were used for statistical analysis.

Results

Expression of mRNAs encoding the Ca2+-activated K+

channels BK, IK1 and SK1-3 in glioma cell lines and in a
surgical sample of glioblastoma multiforme

We initially evaluated the expression of Ca2+-activated K+

channels in glioma cell lines at the mRNA level. U251 and U87

are both derived from human gliomas, but demonstrate different

morphological and growth characteristics as well as substantial

Table 1. Quantitative primers for real time PCR.

Gene Sequence Manufacturer
Catalog
number

RPL13A
(housekeeping)

Proprietary Qiagen QT00089915

GAPDH
(housekeeping)

Proprietary Qiagen QT01192646

KCNMA1 (BK1 or
SLO1)

Proprietary Qiagen QT00024157

KCNN1 (SK1) Proprietary Qiagen QT00025375

KCNN2 (SK2) Proprietary Qiagen QT00016611

KCNN3 (SK3) Proprietary Qiagen QT00070966

KCNN4 (IK1) Proprietary Qiagen QT00003780

doi:10.1371/journal.pone.0012304.t001
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difference in gene expression profiles [40,41]. For example, U87

cell express wild type p53, while U251 carry its mutated form [40].

We found expression of BK, IK1, and SK2 transcripts in U251

and U87 cells. The levels of transcripts for each of these channels

were quantitatively similar, representing ,0.5–2% of the mRNA

expression levels for the housekeeping gene GAPDH (Fig. 1). SK1

and SK3 expression levels were negligible. In order to determine if

glioma cells in situ have a similar Ca2+-activated K+ channel

expression profile, we isolated mRNA from a surgical sample that

was histopathologically identified as a GBM. In the GBM sample,

BK and IK1 mRNA expression levels were comparable to those in

U251 and U87 cells (Fig. 1). However, GBM SK2 transcript levels

were substantially higher than in glioma cell lines. Additionally, we

found the expression of SK1 and SK3 in the surgical sample that

was not present in the glioma cell lines (Fig. 1).

Functional expression of BK and IK1 in glioma cell lines
and in primary GBM cells

Expression of mRNA does not necessarily result in production

of functional plasmalemmal channels. For example, Weaver et al.

found high levels of the IK1 mRNA but no IK1 immunoreactive

signal in Western blot analysis or functional IK1 currents in

electrophysiological experiments in D54 and U251 glioma cell

lines [22]. Therefore, we assessed the functional expression of

Ca2+-activated K+ channels using conventional patch clamp

technique.

When U251 cells were dialyzed with a pipette solution

containing no Ca2+, we registered large macroscopic K+ currents

that were activated in response to depolarizing step pulses

.40 mV (Fig. 2A, D). This electrophysiological profile is

characteristic of BK channels [16]. Under these Ca2+-free

recording conditions, the addition of specific BK channel blockers

paxilline (2 mM, Fig. 2B and C) or penitrem A (1 mM, Fig. 2E and

F) nearly completely suppressed transmembrane K+ currents.

Paxilline and penitrem A data were corroborated with the BK

peptide inhibitor charybdotoxin (Fig. S1). Average BK current

density, calculated as the paxilline-sensitive component of

macroscopic K+ currents at +140 mV, was 6769 pA/pF

(n = 11). U87 cells also exhibited BK currents of similar amplitude

(data not shown).

To record IK1 currents, we increased [Ca2+] in the pipette to

750 nM and applied step pulses from –120 mV to +80 mV in

20 mV increments. To prevent concomitant activation of the BK

currents, 2 mM paxilline was included in the bath solution. Under

these recording conditions, we observed macroscopic K+ currents

that were saturated at voltages $40 mV, consistent with the

electrophysiological profile of IK1 channels (Fig. 2A and C) [35].

The specific blockers of IK1 channels 2 mM clotrimazole (Fig. 2B

and C), and 1 mM TRAM-34 (Fig. 3E and F) inhibited the K+

currents, indicating that they are indeed mediated by the IK1

channels. In U251 cells, average IK1 current density, calculated as

the clotrimazole-sensitive component, was 2566 pA/pF at 0 mV

(n = 6). Similar IK1 currents were recorded in U87 cells (Fig. S2).

Since immortalized cell lines frequently have different gene

expression profile from cells in situ and primary cell cultures, we

performed recordings in primary glioma cultures prepared from a

human surgical sample of GBM. As shown in Fig. 4, primary

GBM cells also exhibited large paxilline-sensitive BK currents

under Ca2+-free conditions (Fig. 4A–C). Five out of five recorded

cells had BK currents, with average current density 80633 pA/pF

at +140 mV. We also observed the clotrimazole-sensitive IK1

currents when [Ca2+]i was clamped at 750 nM and 2 mM paxilline

was added to the bath solution (Fig. 4D–F). Three out of six

recorded GBM cells showed IK1 currents with an average current

density of 1366 pA/pF at 0 mV. The reasons for heterogeneity of

IK1 current expression are not clear. However, when observed,

GBM IK1 current densities were not statistically different from

those found in U251 cells.

Our finding of the functional IK1 currents in all glial cell lines

was in conflict with the previous observations of Weaver et al. [22].

Table 2. Gene-specific siRNA constructs used in the gene downregulation experiments.

Target gene siRNA # Sense strand Antisense strand Manuf.

Hs_KCNMA1 BK#1 59-CCUGAAAUCAUAGAGUUAAtt-39 59-UUAACUCUAUGAUUUCAGGga-39 Ambion

Hs_KCNMA1 BK#2 59-CAUCAAUCUAUGCAGUUUtt-39 59-AAACUGCAUAGAUUUGAUGtt-39 Ambion

Hs_KCNN4 IK1#5 59-CUUUGUAAUAAAUGUUAAATT-39 5-UUUAACAUUUAUUACAAAGAT-39 Qiagen

Hs_KCNN4 IK1#6 59-CAUCGGCGCUCUCAAUCAATT-39 59-UUGAUUGAGAGCGCCGAUGCT-39 Qiagen

Hs_KCNN4 IK1#7 59-CCGGAAGCUCCGGGAACAATT-39 59-UUGUUCCCGGAGCUUCCGGTG-39 Qiagen

Hs_KCNK2 TREK1#1 59-CGCAUCAUCUCAACAAUCAtt-39 59-UGAUUGUUGAGAUGAUGCGaa-39 Ambion

N/A NC Proprietary nonsense siRNA (AllStars Negative Control) Qiagen

N/A, not applicable; NC, negative control; Manuf., manufacturer.
doi:10.1371/journal.pone.0012304.t002

Figure 1. mRNA expression of Ca2+-activated K+ channels in
human gliomas cell lines and in tissue sample of glioblastoma
multiforme. Relative levels of mRNA expression for BK, IK1 and SK1-3
channels were quantified in U251, U87, and a GBM tissue sample using
reverse transcription quantitative PCR. Expression levels were normal-
ized to the expression of two housekeeping genes, GAPDH (shown in
graph) and ribosomal protein RPL13A. Mean values 6SE of gene
expression in three independent cell preparations for U251 and U81,
and three independent measurements for GBM are shown.
doi:10.1371/journal.pone.0012304.g001
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Therefore, we performed additional Western Blot analysis of the

IK1 protein expression in U251, U87 and GBM cells. Using

commercially available polyclonal IK1 antibody, we identified a

weak immunopositive band of ,46–48 kDa in protein lysates

prepared from all three cell types (Fig. S3). This molecular weight

is very close to the predicted molecular weight of the IK1 protein

(45 kDa).

Effects of BK and IK1 channel blockers on proliferation of
U251 and U87 cells

To explore functional involvement of BK and IK1 channels in

proliferation, we tested the effects of pharmacological inhibitors of

BK and IK1 using two different techniques, Coulter counter and

MTT proliferation assays. Using two alternative approaches was

important because MTT conversion into light-absorbing forma-

zan is mediated by mitochondrial dehydrogenases and may be

affected without changes in cell numbers or viability [42]. In the

FBS-containing media, the BK inhibitor paxilline (10 mM) had no

effect on cell growth, while the IK1 blocker clotrimazole (10 mM)

moderately suppressed cell proliferation of U251 (Fig. 5). The

combination of these two drugs caused a significant reduction of

cell proliferation as measured by both MTT and Coulter counter

assays (Fig. 5 and Fig. S4A). To test whether serum components

may reduce the inhibitory effects of channel blockers, we

performed additional proliferation assays under serum-free

conditions. In OptiMEM medium supplemented with serum

substitute B27, U251 proliferation rates were similar to those in

cells cultured in DMEM plus 10% FBS. In both media we

observed approximately six-fold increases in cell numbers over

48 hrs (data of Coulter counter assays). Under serum-free

conditions the efficacy of paxilline was dramatically increased

(Fig. 5 and Fig. S4B). Furthermore, the combination of paxilline

and clotrimazole produced strong and additive inhibition of cell

growth, reducing it by approximately 70% (Fig. 5, Fig. S4B). The

combination of drugs also induced strong changes in cell

morphology (see Fig. 6A–D). Qualitatively similar data were

obtained in U87 cells, although the latter cells were less sensitive to

the actions of clotrimazole (see Fig. S5 and micrographs in Fig. 6E–

H). To test if drug bio-availability was reduced by the major serum

component albumin, we supplemented serum-free media (Opti-

MEM+B27) with 2 mg/ml bovine serum albumin. Addition of

albumin reverted the inhibitory properties of paxilline and

clotrimazole to the levels seen in serum-containing media,

rendering paxilline completely ineffective (Fig. 5).

We next tested the dose dependency of the effects of paxilline

and clotrimazole on U251 cell proliferation and compared their

efficacy to the specific BK inhibitor penitrem A [43] and the

selective IK1 blocker TRAM-34 [19]. Since high levels of SK2

message were found in both immortalized cell lines and primary

cells, we also tested UCL1848, an inhibitor of SK1, SK2, and SK3

[44]. The BK blockers, paxilline and penitrem A, inhibited U251

proliferation in a dose dependent fashion (Fig. 7). At the highest

tested concentration (30 mM), both agents were cytotoxic, i.e.

reduced cell numbers below seeding densities (Fig. 7A). The IC50

values for both inhibitors were substantially higher than those

reported for inhibition of BK currents. In our hands, paxilline

blocked cell proliferation by 50% at ,13 mM (Fig. 7A), whereas

the reported IC50 for inhibition of the whole-cell currents is

Figure 2. BK channels are functionally expressed in U251 glioma cells. (A) Representative recordings of the whole-cell BK currents elicited
by depolarization step pulses from 280 mV to +140 mV in 20 mV intervals. To prevent concomitant activation of IK1 and SK channels, no Ca2+ was
added into pipette solution. (B) In the same cell shown in (A), whole-cell K+ currents were potently suppressed by the specific inhibitor of BK
channels paxilline (2 mM). (C) Whole cell BK currents in response to depolarization ramps from 280 mV to +140 mV. Representative traces in the
absence or presence of paxilline are shown. (D–F) Results of similar experiments employing another selective BK blocker penitrem A (1 mM).
doi:10.1371/journal.pone.0012304.g002
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,30 nM [45]. Penitrem A was somewhat more effective and

inhibited proliferation with the IC50 of ,3.5 mM (Fig. 7A), but this

value greatly exceeded ,10 nM concentration required for half-

maximal inhibition of the BK activity [45]. The IK1 inhibitors

clotrimazole and TRAM-34 reduced cell proliferation by 50% at

the concentrations of ,6 and 14 mM, respectively (Fig. 7B). These

values were drastically higher than the IC50 of 70 nM (clotrima-

zole) and 20 nM (TRAM-34) that were obtained in electrophys-

iological experiments [19]. The specific blocker of the SK1-3

channels UCL1848 showed no effect on U251 cell proliferation

(Fig. 7C).

The disparity between the IC50 values for inhibition of

proliferation and channel activity may be explained by decompo-

sition of tested compounds in culture media, or by nonspecific

absorption of the drugs during long incubation. To address this

possibility, we tested the inhibitory properties of culture media

containing nominally 10 mM of either paxilline or clotrimazole

after 24-hr incubation in cell proliferation assays. We diluted

aliquots of the inhibitor-containing culture media 10-fold with

electrophysiological bath solution and performed whole-cell patch

recordings. Such dilution was necessary to minimize differences

between cell culture media and bath solution. The final nominal

concentrations of paxilline and clotrimazole were 1 mM. As seen in

Fig. 7D, E, ‘‘aged’’ paxilline and clotrimazole solutions inhibited

BK and IK1 currents by .90% and .70%, respectively. Notably,

at the nominal concentration of 1 mM, neither paxilline nor

clotrimazole affected cell proliferation (compare to the values

indicated by the block arrows in Fig. 7A and B). Thus, the effects

of paxilline and clotrimazole (as well as the other inhibitors) on cell

proliferation are unlikely related to their actions on BK and IK1

activities.

Effects of gene-specific siRNAs on BK and IK1 channel
activity and cell proliferation

We decided to further test the functional involvement of BK

and IK1 in glioma cell proliferation using an alternative approach.

For this purpose, we downregulated BK and IK1 expression using

an siRNA technique. At 48 hrs after transfection, the two BK-

specific siRNAs significantly downregulated BK mRNA expres-

sion levels by 62% and 58% (Fig. 8A, p,0.01). These values likely

underestimate the degree of mRNA downregulation in individual

cells because only 65–80% of the cells were successfully

transfected, as routinely verified by co-transfection with GFP

(see Fig. S6). U251 cells transfected with siRNA targeting the

unrelated K+ channel TREK-1 (KCNK2) did not affect levels of BK

mRNA expression (n = 3, data not shown). The BK siRNA#2 was

used to test for functional suppression of BK channels. As seen in

Fig. 8B, C, the BK siRNA#2 induced a 52% decrease in the BK

current density 72 hrs after transfection (2965 pA/pF for BK

siRNA vs. 6068 pA/pF for negative control siRNA, p = 0.002).

While the BK siRNA#2 successfully downregulated the BK

current densities, neither siRNA#2 nor siRNA#1 affected U251

cell proliferation (Fig. 8D, cell counts performed 72 hrs after

transfection).

Figure 3. IK1 channels are functionally expressed in U251 glioma cells. (A) Representative recordings of the whole-cell IK1 currents elicited
by depolarization step pulses from 2120 mV to +80 mV in 20 mV intervals. Whole cell IK1 currents were activated by clamping pipette [Ca2+] at
750 nM. To prevent concomitant activation of BK currents, 2 mM paxilline was added into bath solution. (B) In the same cell shown in (A), the whole
cell IK1 currents were inhibited by the potent IK1 blocker clotrimazole (2 mM). (C) Whole cell currents in response to depolarization ramps from
2120 mV to +80 mV in the absence or presence of clotrimazole. (D–F) Results of similar experiments employing the selective IK1 blocker TRAM-34
(1 mM).
doi:10.1371/journal.pone.0012304.g003
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Two out of three IK1-specific siRNAs tested by us downreg-

ulated IK1 mRNA levels by 52% and 70% 48 hrs after

transfection, while the third construct proved ineffective (Fig. 8E).

The most effective IK1 siRNA construct (siIK1#7) was further

tested in electrophysiological functional assays. This siRNA

reduced the IK1 current density by 67% 72 hours after

transfection (762 pA/pF for IK siRNA vs. 2164 pA/pF in

negative control transfections, p = 0.003). As in the case of BK

downregulation, the IK1 knockdowns had no effect on prolifer-

ation of U251 cells (Fig. 8H).

Because paxilline and clotrimazole reduced cell proliferation in

an additive fashion, we explored the effects of simultaneous BK

and IK1 downregualtion on rate of U251 cell growth. As in the

case of individual channel knockdowns, a combination of the BK

siRNA#2 and the IK1 siRNA#7 (two constructs that effectively

suppressed BK and IK1 current densities) was ineffective in

inhibiting cell growth (Fig. S7).

Discussion

The main finding of this study is the lack of functional

involvement of the Ca2+-activated K+ channels in proliferation of

U251 and U87 glioma cell lines and primary GBM cells. This

conclusion is at odds with some previous reports that also used

pharmacological agents to assay for functional contribution of BK

and/or IK1 to proliferation. Although all the inhibitors of BK and

IK1 that we tested in this study suppressed glioma cell

proliferation, their effects occurred at concentrations significantly

Figure 4. Functional expression of BK and IK1 channels in primary cells derived from glioblastoma multiforme (GBM). (A)
Representative recordings of macroscopic BK currents in primary cells cultured from surgical sample of glioblastoma multiforme. Currents were
elicited by step pulses from 280 mV to +140 mV. (B) In the same cell shown in (A), the BK blocker paxilline (2 mM) potently inhibited macroscopic K+

currents. (C) Representative traces of K+ currents elicited in response to depolarization ramps from 280 mV to +140 mV in the absence and presence
of paxilline. (D) Representative recordings of the whole-cell IK1 currents activated by step pulses from 2120 to +60 mV. To isolate IK1 currents,
[Ca2+]pipette was clamped at 750 nM and 2 mM paxilline was added into bath solution. (E) The specific IK1 inhibitor clotrimazole (2 mM) potently
suppressed macroscopic K+ currents. (F) Representative traces of K+ currents elicited in response to depolarization ramps 2120 mV to +60 mV in the
absence and presence of clotrimazole. For additional experimental details, see legend to Fig. 2 and Results section.
doi:10.1371/journal.pone.0012304.g004

Figure 5. Effects of the BK blocker paxilline and the IK blocker
clotrimazole on U251 cell proliferation in serum-containing
and serum-free media. Paxilline (10 mM) and clotrimazole (10 mM)
were added to culture media alone or in combination, and rates of cell
proliferation were determined 48 hrs later using an MTT proliferation
assay. Proliferation assays were performed in standard cell culture
medium (DMEM +10% FBS), serum-free OptiMEM medium supplement-
ed with serum substitute B27, or in OptiMEM+B27 additionally
containing bovine serum albumin (2 mg/ml). Quantitatively similar
data were obtained using Coulter counter assay (see Fig. S2). *, p,0.05,
**p,0.01, ***p,0.001 vs. control; ##p,0.01, combination of drugs vs.
paxilline or clotrimazole alone.
doi:10.1371/journal.pone.0012304.g005
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exceeding those needed to block channel function. Downregula-

tion of BK and IK1 activity using siRNA did not cause changes in

cell growth. Therefore, the antiproliferative properties of the BK

and IK1 channel blockers are likely mediated by off target actions.

BK channels are highly expressed in glioma cell lines and in

human glioma tissue [46,47,48,22]. The BK channel expression

correlates with glioma malignancy, with higher levels of the BK

protein seen in more malignant glioma biopsy samples [48]. BK

channels have been implicated in regulation of cell proliferation in

a number of malignant cell lines, such as HeLa and A2780

carcinomas, MCF-7 breast cancer, PC-3 prostate cancer, as well as

in 1321N1 and D54-MG human glioma lines [20,21,23,24,25].

These proliferation studies relied on pharmacological inhibitors of

BK, such as TEA and iberiotoxin. However, more recent

publications, that employed molecular biology techniques and/

or BK channel openers, put forward the opposite idea that BK

channels may have antiproliferative and antitumorogenic proper-

ties. For example, Cambien et al. [29] found that silencing of BK

channels in human osteosarcoma cells strongly increases tumor

load in vivo. In A2780 ovarian cancer cells, the BK opener NS1619

produced potent inhibition of cell proliferation [28]. Our own

results strongly suggest that BK channels do not play a role in

growth of glioma cells in vitro. While the BK blockers paxilline and

penitrem A inhibited proliferation of U251 cells in a dose-

dependent manner, their inhibitory effects were seen at concen-

trations greatly exceeding those necessary for complete channel

block. This points to possible off-target effects of pharmacological

agents. Such conclusion was supported by the results of siRNA

experiments, in which downregulation of BK channel expression

had no impact on U251 proliferation rates. The discrepancy

between our BK data and several other reports in glioma cell lines

may be explained by different conditions employed in cell

proliferation assays. Positive results implicating BK in control of

glioma cell growth have been collected using specific cell growth

conditions, such as elevated extracellular [K+] [20] or serum

deprivation [21]. In other malignant cell types, the effects of BK

blockers could be seen only when cell growth was stimulated with

certain factors such as estradiol [25,24]. Hence, even if BK may

contribute to cell proliferation under specific conditions, its activity

is not a prerequisite for cell cycle progression in glioma cells.

A somewhat surprising finding of our work was the detection of

functional IK1 channels in two established glioma lines, U251and

U87, as well as in primary GBM cells. Although IK1 mRNA is

consistently detected in immortalized glioma cell lines and human

GBM samples, Weaver et al. found no evidence for the IK1 protein

expression in numerous glioma samples and were unable to detect

whole-cell IK1 currents in U251 cells [22]. Nevertheless, Fioretti et

al. recently reported functional expression of the IK1 channels in

GL-15 and U251 lines and in primary GBM cells [49,50,51],

similar to findings in the present work. The disparity between

these findings and the results of Weaver et al. may be due to

differences in conditions employed in electrophysiological exper-

iments. In order to isolate the IK1 currents, we and Fioretti et al.

suppressed the concomitant BK currents by adding BK blockers

into bath solutions. Furthermore, we recorded IK1 currents with

ATP present in the pipette solution, which may strongly enhance

IK1 activity via a PKC- and/or PKA-dependent mechanism

[52,53]. Unlike Weaver et al., we also found weak immunopositive

protein bands at the molecular weight that was very close to the

predicted molecular weight for the IK1 protein. This band was

Figure 6. Representative micrographs of U251 (A-D) and U87 (E-H) cells grown in the presence of BK and IK1 blockers. Cells were
grown in the serum-free OptiMEM media supplemented with serum substitute B27. The BK blocker paxilline (10 mM) and the IK1 inhibitor
clotrimazole (10 mM) were added as indicated. Images of the cells were captured ,48 hrs after addition of channel blockers using Hoffman
modulation contrast optics in Olympus IX71 microscope at 10610 magnification.
doi:10.1371/journal.pone.0012304.g006

BK and IK1 Channels in Gliomas

PLoS ONE | www.plosone.org 8 August 2010 | Volume 5 | Issue 8 | e12304



detected in cell lysates prepared from U251, U87, and primary

GBM cells. Such difference in Western blots results may be due to

the higher sensitivity of antibody that was used in our study.

The detection of the IK1 subtype of Ca2+-activated K+ channels

in glioma cells may be of substantial importance. These channels

have been implicated in tumorogenesis and regulation of cell

proliferation in a number of cell types, including pancreatic and

endometrial cancer cells, non-malignant endothelial and smooth

muscle cells, and bone marrow mesenchymal cells [31,33,54,35].

In in vivo experiments, systemic application of the IK1 inhibitor

clotrimazole was reported to decrease tumor load and prolong

survival in animal models of glioma and melanoma [36,38]. In our

hands, the specific IK1 blockers clotrimazole and TRAM-34

strongly inhibited proliferation of U251 cells. However, as in the

case of BK blockers, their effective concentrations strongly

exceeded those that were necessary for complete inhibition of

the IK1 currents. Moreover, siRNA downregulation of IK1 did

not affect cell proliferation. Recently, Sciaccaluga et al. discovered

a critical role for the IK1 channels in chemotactic motility of

glioblastoma cells [51]. In this latter study, downregulation of IK1

expression using shRNA completely inhibited cell migration in

response to the chemokine ligand CXCL12 in several glioblastoma

cell lines and primary GBM cells, suggesting a possible role of IK1

in glioblastoma invasiveness [51].

Overall, our data provide strong evidence against a requirement

for the Ca2+-activated K+ channels BK and IK1 for proliferation of

U251 cells, and likely other glioma cells. Further work is needed to

define the mechanisms responsible for the antiproliferative effects of

pharmacological inhibitors of BK and IK1, such as paxilline,

penitrem A, clotrimazole, and TRAM-34. Our results suggest that

strong caution should be taken when interpreting positive results

obtained with pharmacological ion channel blockers and that such

experiments should be supplemented with molecular biology studies

targeting expression of proteins of interest.

Figure 7. Blockers of the Ca2+-activated potassium channels BK and IK1 suppress proliferation of U251 cells in a dose dependent
fashion. (A) Dose response curves for the effects of the BK channel inhibitors, paxilline and penitrem A, on proliferation of U251 cells. Arrow
indicates concentration of paxilline that was used to block K+ currents in the electrophysiology experiments presented in (D). (B) Dose response
curves for the effects of the IK1 channel inhibitors, clotrimazole and TRAM-34, on proliferation of U251 cells. Arrow indicates concentration of
clotrimazole that was used to block K+ currents in the electrophysiological experiments presented in (E). (C) Dose response curves for the effects of
the selective SK1-3 channel blocker UCL1848 on proliferation of U251 cells. (D) Effect of the ‘‘aged’’ paxilline on the whole-cell BK currents. Cell
proliferation medium containing 10 mM paxilline was collected after 24-hr incubation in cell proliferation assays, diluted 10-fold with
electrophysiological bath solution, and used for inhibiting BK currents. Nominal concentration of paxilline was 1 mM (indicated by arrow in (A),
to compare proliferation and electrophysiology data). Representative of three experiments. (E) Effect of the ‘‘aged’’ clotrimazole on the whole-cell IK1
currents. Cell proliferation medium containing 10 mM clotrimazole was collected after 24-hr incubation in cell proliferation assays, diluted 10-fold, and
used for inhibiting IK1 currents. Nominal concentration of clotrimazole was 1 mM (indicated by arrow in (B)). Representative of three experiments. (F)
Comparison of normalized effects of the ‘‘aged’’ paxilline and clotrimazole on the whole cell K+ currents to their effects on cell proliferation. Inhibition
of BK and IK1 currents was calculated as average inhibition of the whole K+ cell currents at +140 and 0 mV for BK and IK1, respectively.
doi:10.1371/journal.pone.0012304.g007
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Supporting Information

Figure S1 The BK blocker charybdotoxin (100 nM) potently

suppresses whole-cell K+ currents in U251 glioma cells. For

methodological details see Methods and legend to Fig. 2 in the

main text.

Found at: doi:10.1371/journal.pone.0012304.s001 (1.34 MB EPS)

Figure S2 U87 glioma cells express typical IK1 currents that

were potently suppressed by the IK1 blocker clotrimazole (2 mM).

For methodological details see Methods and legend to Fig. 3 in the

main text.

Found at: doi:10.1371/journal.pone.0012304.s002 (1.19 MB EPS)

Figure S3 Western blot analysis of the IK1 protein expression in

glioma cell lines and primary glioblastoma cells. Protein lysates

(20 mg/lane) of primary glioblastoma (GBM), U87, and U251 cells

were separated by sodium dodecyl sulfate polyacrylamide gel

electrophoresis, transferred to the PVDF membrane and probed

with polyclonal anti-IK1 antibody as described in Materials and

Methods. Immunopositive signal was detected and digitized using

chemiluminescence ECLplus reagent kit (GE Healthcare/Amer-

sham Biosciences) and luminescent image analyzer LAS-4000

(FujiFilm Medical Systems, Stamford, CT). Bars and numbers on

the left indicate positions of molecular weight standards (MW).

Weak immunopositive band indicated by asterisk was detected at

the molecular weight of ,46–47 kDa that is close to the predicted

molecular weight of the IK1 protein (45 kDa).

Found at: doi:10.1371/journal.pone.0012304.s003 (0.35 MB EPS)

Figure S4 Effects of paxilline and clotrimazole on proliferation

of U251 cells in serum-containing and serum-free media measured

using two alternative cell proliferation assays. (A) Effects of

paxilline (10 mM) and clotrimazole (10 mM), or their combination

on proliferation of U251 in media containing 10% FBS. Cells were

treated with pharmacological inhibitors for 48 hrs and rates of

proliferation were quantitatively assessed using Coulter Counter

(white bars) and MTT (grey bars) assay. Plating cell density is

indicated by dashed line. (B) Effects of paxilline (10 mM) and

Figure 8. Effects BK and IK1 gene silencing on macroscopic K+ current densities and proliferation rates in U251 glioma cells. (A)
Effect of the BK-specific siRNAs on BK mRNA expression levels. U251 cells were transfected with negative control siRNA (NC) or two different siRNAs
targeting BK (si1-BK, and si2-BK). 48 hrs post transfection, mRNA levels were quantified and normalized to housekeeping genes GAPDH and RPL13A
using reverse transcription qPCR. Data are the mean values 6SE of 3-5 independent transfections. (B) Representative traces of whole-cell BK currents
measured at 72 hrs after transfection with negative control siRNA (NC) or siRNA targeting BK (si2-BK). (C) Average BK current densities in U251 cells
transfected with negative control (NC) or si2-BK siRNAs, as compared to non-transfected cells (WT). BK current density was measured as paxilline-
sensitive K+ currents at +140 mV. Data are the mean values 6SE from 11-17 cells per group. **p,0.01, vs. negative control and non-transfected cells.
(D) Effect of transfection with negative control (NC) or BK siRNAs (si1-BK, si2-BK) on proliferation of U251 measured 72 hrs post transfection using
Coulter counter assay. Data are the mean values 6SE of 3 independent cell transfections. (E) Effect of the IK1-specific siRNAs on IK1 mRNA expression
levels. mRNA levels were quantified and normalized to housekeeping genes GAPDH and RPL13A 48 hrs after transfection with negative control siRNA
(NC), and three different siRNAs targeting IK1 (si5-IK1, and si6-IK1, si7-IK1. Data are the mean values 6SE in 3 independent transfections. (F)
Representative whole-cell K+ currents measured 72 hrs after transfection with negative control siRNA (NC) or IK1siRNA (si7-IK1). (G) Average IK1
current densities in cells transfected with negative control (NC) or si7-IK1 siRNAs, as compared to non-transfected cells (WT). IK1 current density was
measured as clotrimazole-sensitive K+ currents at 0 mV with 2 mM paxilline added to bath solution. Data are the mean values 6SE from 14-15 cells
per experimental group, and n = 6 in WT. **p,0.01, vs. negative control and non-transfected cells. (H) Effect of nucleofection with negative control
siRNA (NC), or IK1-siRNA (si5-IK1, si6-IK1, si7-IK1) on cell proliferation measured 72 hrs post nucleofection using MTT assay. Data are the mean values
6SE of 3 independent cell transfections.
doi:10.1371/journal.pone.0012304.g008
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clotrimazole (10 mM) or their combination on proliferation of

U251 cells in serum-free media supplemented with serum

substitute B27. Cell proliferation was quantified using Coulter

Counter (open bars) or MTT assay (grey bars). (C) Effects of

paxilline (10 mM) and clotrimazole (10 mM) or their combination

on proliferation of U251 cells in serum-free media supplemented

with serum substitute B27 and bovine serum albumin. Prolifera-

tion rates were measured using MTT proliferation assay. Data are

the mean values 6SE of proliferation normalized to controls in the

same experiments. **p,0.01 vs. control; **p,0.05 vs con-

trol;***p,0.001 vs. control.

Found at: doi:10.1371/journal.pone.0012304.s004 (0.41 MB EPS)

Figure S5 Effects of paxilline and clotrimazole on proliferation

of U87 cells in serum-containing and serum-free media. (A) Effects

of paxilline (10 mM) and clotrimazole (10 mM) or their combina-

tion on proliferation of U87 in media containing 10% FBS. Cells

were treated with pharmacological inhibitors for 48 hrs and rates

of proliferation were quantitatively assessed using MTT assay.

Data are the mean values of proliferation 6SE normalized to

controls in the same experiments. (B) Effects of paxilline (10 mM)

and clotrimazole (10 mM) or their combination on proliferation of

U87 cells in serum-free media supplemented with serum substitute

B27. Data are the mean values of proliferation 6SE normalized to

controls in the same experiments. **p,0.01 vs. control;

***p,0.001 vs. control.

Found at: doi:10.1371/journal.pone.0012304.s005 (0.39 MB EPS)

Figure S6 Representative images of U251 cells transfected with

the GFP-expressing plasmid using amaxa nucleofection protocol.

Images of the same field were acquired using Olympus IX71

Hoffman modulation contrast optics (A) and GFP fluorescence (B)

72 hrs after nucleofection at 10610 magnification. Transfection

efficacy varied between 60–90% in various cell preparations.

Found at: doi:10.1371/journal.pone.0012304.s006 (1.24 MB EPS)

Figure S7 Double knockdown of BK and IK1 K+ channels does

not affect proliferation of U251 glioma cells. Effect of transfection

with negative control (NC), BK-specific siRNA #2 (siBK), IK1-

specific siRNA#7 (siIK1) or combination of BK- and IK1-specific

siRNAs (siBK+siIK1) on proliferation of U251 measured 72 hrs

post transfection using MTT proliferation assay. Data are the

mean values 6SE of 3 independent cell transfections.

Found at: doi:10.1371/journal.pone.0012304.s007 (0.32 MB EPS)
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