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This paper demonstrates that collective social dynamics resulting from individual donations can be well described by an
epidemic model. It captures the herding behavior in donations as a non-local interaction between individual via a time-
dependent mean field representing the mass media. Our study is based on the statistical analysis of a unique dataset obtained
before and after the tsunami disaster of 2004. We find a power-law behavior for the distributions of donations with similar
exponents for different countries. Even more remarkably, we show that these exponents are the same before and after the
tsunami, which accounts for some kind of universal behavior in donations independent of the actual event. We further show
that the time-dependent change of both the number and the total amount of donations after the tsunami follows a logistic
growth equation. As a new element, a time-dependent scaling factor appears in this equation which accounts for the growing
lack of public interest after the disaster. The results of the model are underpinned by the data analysis and thus also allow for a
quantification of the media influence.
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INTRODUCTION
The tsunami that infested South-Eastern Asia on 26 December

2004 has not just caused a tremendous death toll and destruction,

but also a huge outpouring of donations worldwide to support

relief for the affected areas. The fact that both the number and

total amount of donations summed up in an unprecedented way

was of course induced by the dimension of the disaster. It also

benefited from social feedback processes, caused by the massive

involvement of the mass media which eventually led to social

herding in donating money.

Herding behavior plays an important role in biological but also

in social systems. It is governing biological swarming [1,2], as well

as investment strategies in financial markets [3.4] r collective

opinion formation [5,6]. The underlying mechanism of transmis-

sion of influence from one individual to another can be found in a

large class of so-called contagion models [7], which also cover

epidemic models [8,9,10], in particular the SIR (susceptible-

infected-recovered) model [11,12]. A prominent example to link

herding behavior and epidemic dynamics is found in the spread

and adoption of innovations [13] and fashion [14]. While many

odels in sociology, economics, and political science [15,16,17,18]

assume a threshold for the adoption of new technologies or

behavior, the SIR model is called an independent interaction

model [7] because contagion occurs with a propability indepen-

dent of the history of exposures.

In this paper, we apply the concept of contageous behavior to

the collective dynamics of donations after the tsunami catastrophe.

Thanks to the availability of a unique database described below,

we are able to quantify these dynamics. The statistical analysis

reveals a power-law behavior for the distributions of donations

with similar exponents for different countries and, even more

remarkably, both before and after the disaster. We further show

that the dynamics of donations follow a logistic growth already

known from models of epidemic spreading. As a new element of

this dynamics, a time-dependent contagion rate appears which

describes the mean-field interaction provided by the mass media.

The considerable decrease of this influence in time accounts for

the growing lack of public interest after the disaster. By deducing it

from the data available, we are able to quantify the influence of the

media reporting about the tsunami.

MATERIALS AND METHODS

Analysis of donation time series
Individual donations, as a voluntary act, may depend on

individual, cultural, organisational and economic conditions and

thus may differ between countries. In order to find out statistical

similarities in the distribution of donations, we investigated three

different time series from donor organizations in Germany (DH,

AH) and Switzerland (GK) summarized in Table 1.

For the largest of these time series (DH), we also compared the

number and amount of donations for an interval of six months

before and after the tsunami (see Fig. 1). The vast relative growth for

both amount/number of donations occured within a period of

3 weeks after the catastrophe (2005/12/26), small peaks in late

January 2005 are due to aggregated donations that have been

collected from larger groups before transferring them to the donor

organization. Because the relative growth of the amount and the

number of donations coincide most of the time, we later model the

dynamics of donations in terms of frequencies only.

From the inset of Fig. 1 we further note that, even if the

donations after the disaster outperform those before by a number

of magnitudes, there are still statistical signs in the data before the

disaster. These can be read to compare the distribution of

donations before and after the tsunami. Fig. 2 depicts the

probability distribution, P(x), estimated from the relative frequen-

cies to find donations of an amount of x or larger, for both time
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intervals. The plots show a clear power-law like behavior of

P xð Þ*x{a ð1Þ

over several orders of magnitude. This indicates the scalefree

nature of donations; i.e., there is no typical amount of donations,

but the full range of possible values can be found with a definite

probability. The plot also indicates that multiples of 10 have a

higher preference.

Interestingly, we find that the exponents a for the given donor

organization (DH) are quite similar both before and after the

disaster. This suggests that although the number and amount of

donations have changed tremendously, their statistical properties

remain almost the same. Consequently, there is an indication for a

kind of universal behavior in donating money. The finding can be

confirmed also for another German donor organization (AH)

which has collected ten times less in terms of number and amount

of donations (see Table 1). Comparing this with the Swiss donor

organization (GK), we find a a similar, slightly lower value of a
again (see Table 1).

Dynamic model of donations
In order to sketch the time dependent evolution of donations after

the disaster shown in Fig. 1, we adopt a very simple epidemic

model [11,12] which was also applied to the adoption of new

technologies [13] and now proves to be sufficient for describing the

observed dynamics in donations. We assume that a fraction y of

the total population N is willing to donate money after the

catastrophe, where y is treated as an exogeneous parameter that

may vary by country (for the tsunami donations, y was about 0.1 in

Switzerland and about 0.08 in Germany). So gives the total

number of possible donators in a country. The number of actual

donators, , is a subset of both N and and changes over time. In

order to model its dynamics, we assume that a potential donator,

P, becomes an actual donator, A, by interacting with individuals

which have already donated. This can be described as a non-local

interaction via a mean field that represents the media. In fact, this

Table 1. Summary of data sets obtained from different donor
organizations: (DH)–‘‘Deutschland hilft’’ (Germany), (AH)–
‘‘Andheri-Hilfe’’ (Germany), (GK)–‘‘Glückskette’’ (Switzerland).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Donor org DH AH GK

Time int 04/07/26–04/12/23 03/12/29–04/06/30 N/A

Atot 209,928 1,587,442 N/A

Ntot 3,160 19,222 N/A

a 1.50160.023 1.17160.004 N/A

Time int 04/12/27 –05/06/24 04/12/27–05/06/30 04/12/27–05/06/17

Atot 126,879,803 2,649,097 225,022,112

Ntot 1,556,626 28,965 768,882

a 1.51560.002 1.27860.006 1.20560.002

mu 8.05560.078 36.36760.900 9.97260.148

tu 1.98560.069 27.77060.956 3.27160.135

m* 7.38960.142 10.25061.440 9.53360.190

t* 1.68760.079 9.48060.666 2.82260.106

Each data set contains the amount of each individual donation together with
the date of donation. gives the total amount of donations (local currency) in the
given time interval (top: before, bottom: after the tsunami), the total number of
donations, respectively. a is the exponent of the power law, Eq. (1) together
with the standard error s. m and t are the fit parameters of Eqs. (2), (3) together
with their standard errors. The two different values of m and t are obtained from
the two different time series for the the number (u) and the amount (*) of
donations.
doi:10.1371/journal.pone.0001458.t001..
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Figure 1. Daily number (blue) and amount (red) of donations shown as a fraction of the total number/amount over a period of one year (mid of
2004 until mid of 2005, time series DH, see Table 1). The inset magnifies the relative growth of number and amount of donations for the half-year
period preceeding the earthquake.
doi:10.1371/journal.pone.0001458.g001

Figure 2. Probability distribution, P(x), estimated from the relative
frequencies to find donations of an amount of x or larger, for both
time intervals before (blue) and after (red) the tsunami (time series
DH, see Table 1).
doi:10.1371/journal.pone.0001458.g002
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assumption is quite appropriate as the mass media homogeneously

and constantly informed about the disaster and its consequences as

well as about the tremendous amount of donations received.

The act of donation is described as a transition of a potential into

an actual donator, . This transition may occur at a gross rate that

depends on a constant c describing the number of interactions per

time interval between P and A and a factor 0#k#1, which is the

probability that such an interaction leads to a donation. The rate

further depends on the fraction , i.e. the probability of a potential

donator to interact with someone who already donated, relative to

the size of the population. Eventually, the dynamics for the transition

of a potential donator also depends on the ‘‘resource’’ , i.e. those

potential donators, who did not donate so far. For the increase of the

number of actual donators, it then follows the dynamics

dNa

dt
~ckf tð Þ Np{Na tð Þ

� �
ð2Þ

Using the abbreviations for the frequency of actual donators f(t) and

for the time scale , we find eventually the dynamics in the form

df tð Þ
dt

~
1

t
f tð Þ 1{f tð Þ½ � ð3Þ

which is known as the logistic equation [19,20]. Integration leads to

the distribution

f tð Þ~ 1

1ze{
t{mð Þ

t

ð4Þ

where m gives the time where the relative growth of f(t) has reached its

maximum. Eqs. 3, 4 have been tested against the empirical data

obtained from the time series of donations. The data were also used

to determine the two ‘‘free’’ parameters m, t of the dynamics (see

Table 1). Figure 3 shows, for the largest data set (DH), both the total

fraction and the relative growth of donations over time. Despite the

very simple dynamics assumed for the model, one realizes a good

agreement between theoretical prediction and empirical findings, in

particular for the steep rise in the beginning and the saturation

phase. The deviations between the estimated fraction and the

empirical curve during the end of January 2005 result from the few

large donations mentioned as small peaks in the relative growth in

Fig. 1.

The data shown in Table 1 indicate that the smallest of the

donor organizations (AH) has a much larger time delay in the

number of donations which is evidently related to the influence of

the mass media. The growth in numbers reached the maximum

only after about 36 days, whereas DH, the largest German donor

organization, reached this maximum after about 8 days. This is

due to the fact that, different from DH, AH was not present in the

TV, but mostly supported by their base donators.

The simple model of donator dynamics assumes that eventually

all possible donators have donated once on an individual basis, i.e.

f(t)R1. It does not consider the subsequent aggregation of

donations or a time dependence of the parameter t describing

the mean-field interaction between potential and actual donators.

We can improve the model further by assuming that the mean-

field interaction slows down in the course of time. This can be

underpinned by extracting the variation of t from the data in such

a way that the theoretical curve matches with the empirical

findings. The result shown in Fig. 4 suggests a time dependence of

1=t~ az b=tð Þz c=tð Þ2
h i

ð5Þ

This implies that either or both of the parameters c and k should

have decreased their value in the early stage, before they almost

reach a saturation level at about 6 weeks after the tsunami. As (ck)

gives the number of successful interactions per time interval, this

means that in the early stage after the disaster people were more

enthusiastic to donate money or could be more easily convinced by

the media, while later became more indifferent. So we see the

decrease of t in time as an indication of a lack of public interest.

Because this interest was mediated by the mass media in a kind of

mean-field dissemination, the decrease can be also seen as a

decreasing influence of the media when reporting about the

aftermath of the disaster and the related donations.

DISCUSSION
The remarkable findings of our investigations are (i) the statistical

similarities in individual donations before and after the tsunami

Figure 3. Fraction of the total number of donations (inset: relative
growth of amount of donations) over time, after the disaster (time
series DH). The blue curves results from fits of Eqs. 3, 4 with
m= 8.0560.07, t= 1.9860.06 (inset: m= 7.3860.14, t= 1.6860.07 )
doi:10.1371/journal.pone.0001458.g003

Figure 4. Decay of the parameter 1/t obtained from empirical data of
time series DH (red), together with the fit (blue) for 1/t (Eq. 5)
resulting in a = 0.0860.01, b = 2.5260.33, c = 21.2760.38.
doi:10.1371/journal.pone.0001458.g004
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disaster, as well as between two different countries, and (ii) that the

collective dynamics of millions of individual donations can be very

well described by a simple epidemic model, which has similarities

also to the adoption of innovations [13] and saturated growth in

biological populations [19]. So, our findings support the idea of

certain universality classes for collective dynamics across scientific

domains.

The applicability of the SIR dynamics shows that the

interaction of the individuals can indeed be modelled by a

mean-field interaction which accounts for the dissemination of

information by the mass media: the disaster event, broadcasted in

the mass media, triggered the first donations, which were then

amplified by the mass media again, broadcasting new information

both about the disaster and donations received. This resulted in

some global feedback dynamics which eventually slowed down

both because of a decreasing public interest and a exhausted

resource (potential donators). While the latter one sufficiently

describes the saturation effect, it was indeed the decreasing public

interest and the related influence of the mass media, covered in the

model by the time dependent parameter 1/t, which allows to

describe the deviations from a simple logistic growth dynamics.
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