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Abstract

Because of the limited processing capacity of eyes, retinal networks must adapt constantly to best present the ever
changing visual world to the brain. However, we still know little about how adaptation in retinal networks shapes neural
encoding of changing information. To study this question, we recorded voltage responses from photoreceptors (R1–R6) and
their output neurons (LMCs) in the Drosophila eye to repeated patterns of contrast values, collected from natural scenes. By
analyzing the continuous photoreceptor-to-LMC transformations of these graded-potential neurons, we show that the
efficiency of coding is dynamically improved by adaptation. In particular, adaptation enhances both the frequency and
amplitude distribution of LMC output by improving sensitivity to under-represented signals within seconds. Moreover, the
signal-to-noise ratio of LMC output increases in the same time scale. We suggest that these coding properties can be used
to study network adaptation using the genetic tools in Drosophila, as shown in a companion paper (Part II).
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Introduction

How do retinal neurons adapt to best encode environmental

light changes to neural responses? Because the capacity of eyes to

capture, process and transmit information is limited, there is an

expectation of efficiency for retinal coding [1,2]. Here, the use of

information theory [3] has helped to formalize such ideas by

predicting efficient models for two important coding problems:

how to shape (i) the static nonlinear input/output relations, i.e.

contrast or characteristic gain, of visual neurons [4] and (ii) their

dynamic filtering properties [5–11] in order to maximize the

information flow of naturalistic light stimuli.

The efficient representation of visual information [1,2] requires

matching of the coding strategy of neurons to the statistical

structure of their stimuli so that the information carried by neural

responses is maximized [2,4,11,12]. It implies that neurons should

strive to utilize their output range equally in different situations,

since a message, in which every symbol is transmitted equally

often, has the highest information content [3,13]. Accordingly,

retinal adaptation should improve coding efficiency by using the

regularity and scale invariance of contrasts and other visual

features in the natural scenes [4,8,10,14]. After learning the

probabilities of encountering such features, optimal adaptation

would then remove any redundancy in the neural output, whilst

allocating increased representation to frequently encountered

features [15]. Experimental tests of this equalization have been

performed, for instance, in the LMCs of the blowfly eye [4], and in

visual relay neurons of thalamus [16]. These studies concentrated

on stationary statistics at bright stimulus conditions (high signal-to-

noise ratio). However, the statistics of natural stimuli are

nonstationary and retinal neurons therefore need to adapt

continuously to the current statistics [8,17,18].

When animals or their eyes move, images of natural scenes

projected on the retinas can change greatly [11]. Changing solar

elevation and weather conditions generate logarithmic luminance

changes; even the reflectance differences within sunlit scenes can

vary over 104-fold [17]. While bright scenes can overwhelm

photoreceptors with redundant information [1,2], in a dim

environment (low signal-to-noise ratio) there is little light

information to gather within behaviorally relevant integration

times, and vision becomes unreliable [19]. The problem of a vast

dynamic intensity range is partially solved by retinal neurons

encoding contrast that is independent of the level of illumination,

but the problem of noise still requires adaptation to changing

statistics [20]. What are the general coding strategies for this

dynamic optimization?

To characterize the general features how retinal neurons encode

naturalistic stimuli at different luminance levels, van Hateren

deduced spatiotemporal filters that maximized transmission of

information through a noisy channel of limited dynamic range

[11]. The filters mimic active gain control of retinal neurons;

integrating at dim illumination (increasing output redundancies),

PLoS ONE | www.plosone.org 1 January 2009 | Volume 4 | Issue 1 | e4307



and differentiating at bright illumination (reducing output

redundancies). He compared them against the responses of Large

Monopolar Cells (LMCs) of the blowfly eye to flashed stimuli in

various light backgrounds (mean adaptation), and found that the

filters approximated the neural outputs. Since then different

statistical and information theoretical methods have been used to

quantify coding in insect photoreceptors for various dynamic

stimuli, including variance and speed adaptation [6,17,21–29].

However, retinal adaptation can be difficult to quantify in

behaviorally relevant time scales. For animals to gather enough

information about the stimulus to execute behavior or make a

successful choice, integration times can span from ,200 ms to

seconds [30,31]. Thus, we need to complement statistical and

dynamical studies [6,20,24]. To partially overcome this problem,

we devised a strategy of repeating a brief naturalistic stimulus

pattern (from 100 ms to 1 s) to retinal neurons while collecting

their voltage responses. We then analyzed neural adaptation to

these stimuli at time scales relevant for behavioral decisions.

An efficient coding system would use its full amplitude and

frequency ranges to code for incoming signals. We therefore

predict that adaptation would serve to adjust these ranges to the

changing statistics of light input. After a transition between two

stimuli with different statistics (such as dark-light transition),

adaptation would adjust the system’s output continuously to best

represent the temporal structure (or local statistics) of the new

stimulus. Here we investigate how Drosophila photoreceptors (R1–

R6) and LMCs, whose graded voltage responses are shaped by a

web of feedforward and feedback synapses [25,32–35], adapt

together in order to best encode information about temporal

patterns in naturalistic light stimuli. Functionally, this system thus

can be viewed as R-LMC-R [25,36] (the cells form a processing

unit in which information travels both forward and backward),

and much of its adaptation considered as network adaptation [36].

By using a protocol of repeated stimulus patterns and recording

intracellularly from R1–R6s and LMCs (Fig. 1A), we observe that

the amplitude distribution of voltages ‘‘flattens’’ and that

frequency spectra ‘‘whiten’’ over time (Fig. 1B, C). Thus, one

would predict that as the system’s sensitivity to local statistics

increases, the distribution of its output, and accordingly its SD

(Fig. 1A), should widen. Experimentally, we find this to be the case

for the LMC output.

We show that adaptation makes coding of visual information in

LMC output more efficient within seconds. It improves sensitivity

to signals, which were initially under-represented in the first

response to a novel stimulus pattern, when encountering this

pattern again. While this improvement follows different time

constants for different luminance levels, it increases the signal-to-

noise ratio in the LMC output about the naturalistic stimulus over

repeated presentations. We further show that this encoding is

insensitive to pattern speed, and needs little re-sensitization.

In this paper, we quantify how adaptation shapes neural

encoding of local stimulus statistics in the Drosophila R-LMC-R

Figure 1. Theories of dynamic optimization of early neural responses by adaptation. A. Neurons in lamina (orange section in the opened
eye) generate responses to a naturalistic light pattern, which is repeated at the centre of mutual receptive field (gray circle) of six photoreceptors (R1–
R6, yellow) and visual interneurons, Large Monopolar Cells (LMCs, one shown in green). These cells sample light information from the same small area
in space (dotted lines). By recording intracellularly from LMCs, the quality of synaptic output can be assessed in vivo. When the light input pattern
(local statistics) is reencountered (repeated), the prior experience of this R-LMC-R system [25,32,34] (named such because of its synaptic feedforward
and feedback connections) should improve its voltage responses (blue, orange and green traces) over time. Note how the size of the responses, and
thus, SD increases, as wider distributions equal greater sensitivity. This could happen during adaptation in two ways, as shown in panels B and C. B.
the responses increase, ‘‘flatten’’ their probability distribution (PDF; blue = 1st, orange = 2nd, green = 3rd s). C. In the frequency domain, changes in the
speed of the responses ‘‘whiten’’ their power. Such redistributions of synaptic output improve the neural information transfer rate, R, over time
(R3 s.R2 s.R1 s).
doi:10.1371/journal.pone.0004307.g001
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system, the consequences of which were not known before in this

system. In a companion paper [36], we have used the genetic tools

of Drosophila to show how synaptic feedforward and feedback

mechanisms in the R-LMC-R system result in this form of efficient

coding of naturalistic light stimulation.

Results

Adaptation occurs continuously in the R-LMC-R system as the

world projects onto the eyes of a behaving fly, but it is not clear how

to best quantify the neural responses so that the underlying

encoding strategies become clear. Our approach here was to

repeatedly present a rich naturalistic contrast pattern with one

second duration to the centre of the receptive field of a single

photoreceptor or LMC. We then analyzed the evolution of their

responses with millisecond time-resolution for each consecutive one

second observation window. The stimulus contained 10,000

intensity values with approximate 1/f statistics [8,17], i.e. it

dominantly represented low stimulus frequencies. While such

stimulation from a fixed point in space ignores spatial processing

normally performed by LMCs [11], it benefits the following analysis

by simplifying the R-LMC-R system into a single processing unit

that lacks lateral communication from the neighboring systems. As

the statistics and signal-to-noise ratio of the input are the same for

each window, we obtain a continuous account of how these neurons

use prior experience to readjust their output.

Adaptation changes neural encoding of repetitive
stimulus with luminance

We recorded intracellular voltage responses of Drosophila

photoreceptors and LMCs to the repeated naturalistic stimulus

[24,25] at different luminance levels (Fig. 2A), in vivo. To keep the

state of adaptation comparable, the cells were dark-adapted for

,30 s before first presenting the stimulus at each luminance level.

In this paper, we present adaptation dynamics of photoreceptor

and LMC output of WT flies at three luminance levels: dim

(1,850), middle (60,000) and bright (1.856106 photon/s), as

calibrated from voltage responses of photoreceptors to single

photons [25]; see also (Fig. S1).

Photoreceptors produced faster and larger depolarizations in

response to brighter stimuli. In LMCs, histamine-gated chloride

channels [37] translated these responses to graded and phasic

hyperpolarizations. At brighter luminance levels the output of

LMCs became increasingly transient, peaking before the photo-

receptor voltages peaked. For the bright stimulus at 25uC, the

time-to-peak of voltage responses in photoreceptors was

47.2616.7 ms (n = 10 cells) and 14.663.3 ms in LMCs (n = 12

cells, mean6SD, p,1025 in Bonferroni-test for means).

From a theoretical point of view [11], the more transient LMC

output is somewhat expected; when the signal-to-noise ratio of

stimulus increases, the R-LMC-R system should adapt from a slow

integrator to a fast differentiator to maximally package light

information into voltage responses through a bandwidth-limited

membrane [11]. However, we did not want to commit to any

coding variables when analyzing the transformations from

photoreceptors to LMCs. For example, because of the noncaus-

ality in the peak times (above), synaptic gain between the

photoreceptor input and LMC output cannot be estimated simply

by comparing their maximum amplitudes, although this simplified

analysis has been used before [38,39]. To provide the least biased

analysis of the communication between these neurons, we chose to

pair the photoreceptor and LMC voltages for each time-bin (or

sampling point), and compare their transformations continuously.

For any given window of time, we can quantify ‘‘input-output’’

transformations by counting the occurrences of voltage pairs

across the whole ‘‘input-output’’ range of the system. We display

the probabilities as a map by using relatively coarse binning

(3.3 mV) as this increases pooled samples and reduces timing jitter,

thereby giving a smooth representation of the recorded ‘‘input-

output’’ dynamics (Figs. 2B–C).

Analysis of joint photoreceptor and LMC statistics during the first

20 s of dim-, middle- and bright-intensity stimuli showed that the

strategy of photoreceptors and LMCs was to increase their

amplitude ranges with brightening stimulation (Fig. 2B). The most

probable photoreceptor-LMC voltage pairs provided an estimate of

the synaptic gain during the given stimulation. The gain varied

dynamically with the stimulus at each luminance; rather than being

a simple static nonlinearity, i.e. a curve, it covered large pear-shaped

areas in these ‘‘input-output’’ maps. A given photoreceptor input led

to a range of different LMC output values, and a given LMC output

could result from different photoreceptor values. Nonetheless, in

agreement with blowfly synapse data [27], the changes in the joint

probabilities demonstrated that synaptic gain adapted with light

intensity, being highest (steepest slope of LMC/R activity) in dim

and lowest in bright stimulation, presumably to encode LMC’s

representation of the given stimulus over a relatively regular voltage

range. Thus, as the environmental light intensity scales logarithmi-

cally, the gain of R-LMC-R system changes accordingly to prevent

saturation, and possibly also to work toward contrast constancy; see

also [17,20,25].

Adaptation changes neural coding of repetitive stimulus
with time

On close inspection, the statistics of the joint photoreceptor and

LMC responses are non-stationary. For example, compare the 1st, 2nd

and 20th s of repeated stimulation at bright luminance level (Fig. 2C).

Adaptation, acting within the first second, reduced the voltage output

of photoreceptors, redistributing their responses over a narrower

voltage range. This trend continued, although less prominently, with

further stimulus repetitions. Thus, adaptation dynamics in the

Drosophila photoreceptors mirrored those seen in blowfly photorecep-

tors under similar naturalistic stimulation [24]. On the other hand, in

LMCs, adaptation caused a significant increase in the amplitude

range of their voltage responses, spreading their probability

distributions. Together these intensity- and time-dependent adapta-

tion components changed the synaptic gain continuously.

Adaptation shapes amplitude distributions dynamically
The ideal representation of light contrasts uses the widest

available range of signal amplitude (‘‘flattening’’), as this provides

the richest combination of patterns for the transmission [4,40].

Figure 1B shows how a system could approximate such coding

scheme. The optimal case for a channel constrained by fixed limits

is to use every amplitude equally often. On the other hand, a

Gaussian distribution is optimal for output from a channel

constrained by a fixed response variance [3,17]. LMC output

probably faces both constraints, set by the reversal potentials of

ions and by power dissipation when the membrane voltage is

driven up and down to encode light stimuli [17]. For naturalistic

light intensity series lasting minutes, the output of blowfly LMCs

approximates a Gaussian distribution [17]. Here, for the much

briefer stimuli at different luminance levels, the LMC output could

not achieve a Gaussian distribution (Fig. 2B–C). Perhaps encoding

was suboptimal because the distribution was not flat either [3,13],

which can happen when there are metabolic, time or processing

constraints or noise exists [41,42].

More important, however, was the observed increase in the

amplitude distribution of LMC output with time (Fig. 2D), which

Network Adaptation in Fly Eye

PLoS ONE | www.plosone.org 3 January 2009 | Volume 4 | Issue 1 | e4307



suggests that neural encoding of the temporal structure of the light

pattern, i.e. local statistics, was improving with each stimulus

presentation. Photoreceptor (left) and LMC (right) probability

density functions (PDFs) for dim, middle and bright stimuli (shown

for bright), and the standard deviations of these distributions

(Fig. 2E), for the first 20 s of stimulation, illustrate how the LMC

output range expanded while the photoreceptor output range was

compressed slightly. These two processes, photoreceptor desensi-

tization and LMC sensitization, occurred with different time-

courses but always accelerated with brightening.

To recapitulate, adaptation to a repetitive naturalistic stimulus

enabled LMCs to generate larger voltage responses from the

diminishing voltage responses of photoreceptors. Therefore, the

equalization of LMC output must have reflected events occurring

in the R-LMC-R system after light-adaptation in photoreceptors,

i.e. post-phototransduction dynamics. Although the equalization

seemed sub-optimal, i.e. the distribution of voltage responses was

neither Gaussian nor flat, it suggested that the neural encoding is

improving over time. In the following sections, we present similar

results in the frequency domain, and importantly, that the signal-

to-noise ratio of LMC output increases in time. These findings

imply that adaptation improves the efficiency to code naturalistic

light changes within seconds.

Adaptation shapes frequency spectra dynamically
To maximize information transmission to the brain, the early

sensory signals should also be coded with minimal correlation

between them, using the available frequency range of the neurons

Figure 2. Adaptation changes neural encoding of repetitive naturalistic stimulus with luminance and time. Voltage responses of R1–R6
photoreceptors and LMCs to a repeated naturalistic stimulus pattern, NS, adapt with light intensity and over time. A. Responses of photoreceptors
(mean6SD, n = 7) and a representative LMC to a 1-s stimulus, during the first stimulus repetitions at different luminance levels. Note that both the
photoreceptors and LMC change their output to the same stimulus, including their maxima (peak responses), over luminance and time. Note also the
contrast patterns that evoke the peak responses are different for the 1st, 2nd and 20th s of stimulation. B. The corresponding probability density
functions (PDFs) for R1–R6s (top) and LMCs (left) and the joint probability density functions, calculated from the first 20 responses. jPDFs are shown as
contour plots, in which hot colors denote high probability. The jPDFs quantify the input-output transformations, characterizing the synaptic
throughput for the given luminance of stimulation. The white lines approximate most probable synaptic gains. C. PDFs and jPDFs are shown for the
1st, 2nd and 20th s of the bright stimulation. Note that the synaptic gain changes over time, highlighted by the inclination of the white lines. Although
the synaptic gain changes over time, the photoreceptor signal changes very little, indicating that most adaptation in the phototransduction occurred
within the first second. D. High resolution PDFs at different times during the bright stimulation show how adaptation changes photoreceptor and
LMC outputs dynamically. PDFs of photoreceptors (left) remain rather intact, while PDFs of LMCs (right) flatten and widen over time (arrows) (cf.
Fig. 1C). E. The time-dependent trends of adaptation in the PDFs are also seen in the SDs of the responses for each experiment (SDs are from the
boxed data, 201–1000 ms in A). Desensitization of photoreceptors output (SDs, left) and sensitization of LMCs output (SDs, right) are fitted by lines or
exponentials, respectively (cf. Fig. S1). LMCs: dim, t1 = 5.42 s; middle, t1 = 3.74 s; bright, t1 = 1.38 s.
doi:10.1371/journal.pone.0004307.g002
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[10,11,13]. Figure 1C illustrates the concept of ‘‘whitening’’. For

the optimal case, i.e. for a message of the highest information

content, every temporal frequency would be used equally often.

How are the changes in the photoreceptor and LMC outputs,

which are seen as dynamic desensitization and sensitization,

respectively, distributed over their limited frequency ranges at

different luminance levels?

The frequency spectrum of the voltage responses of photore-

ceptors and LMCs to dim-, middle- and bright-intensity

stimulation (Fig. 3A) had characteristic 1/frequency behavior of

the stimulus, i.e. low frequency components dominated the

responses (see Materials and Methods) [8,17]. The spectra had

peaks at 10, 40 and 85 Hz, which can further serve as useful

landmarks to facilitate their comparisons. Although the amplitude

and bandwidth of both the photoreceptor and LMC outputs

increased with light intensity, the LMC values were higher.

Photoreceptors dedicated most of their voltage range to follow

bright stimulation up to 40 Hz, while LMCs could still represent

with reasonable voltage values the last landmark frequency at

85 Hz. The boosted frequency-range in the LMC output reflected

adaptive filtering of the synaptic throughput. Figure 3B shows the

frequencies, which were amplified by the synapse, as the ratio of

the LMC and photoreceptor frequency spectra. For dim

stimulation the synapse showed low-pass behavior, but with

brighter stimulation, this shifted toward band-pass by transmitting

higher frequencies [11,27]. These changes were dynamic, as

shown by the cascade plots for each second of bright stimulation

(Fig. 3C). The adaptation to naturalistic stimulation allowed LMC

output to represent middle and high frequencies, but also

increased low-frequency representation of stimulus patterns over

time, while photoreceptor output showed little change, leading to

dynamic but sub-optimal leveling of the synaptic gain over time

(Fig. 3D).

The removal of redundant, i.e. low frequency, information is an

efficient coding strategy for a system with limited bandwidth, as

shown for optimal spatio-temporal filters at high signal-to-noise

ratio of bright luminance [10,11]. On the other hand, if there is an

increased encounter of the same input, i.e. the pattern repeats, then

the system’s best coding strategy is to devote an increased

frequency representation to these newly encountered features

[3,15,43]. Here the input was repetitive, and therefore with less

sampling of natural statistics, contained certain patterns with

uneven frequency spectra. As the R-LMC-R system adapted to

these patterns, its encoding was improved further. By keeping

Figure 3. Adaptation shapes frequency spectra dynamically. Frequency spectra of photoreceptor and LMC voltage responses to repeated
presentations of naturalistic stimulus, NS, vary with light intensity and over time. A. Mean frequency spectra of seven photoreceptors (left) and a
characteristic LMC (right) for the first 20 s of dim, middle and bright stimulation. B. Corresponding synaptic gain changes with light intensity. Notice
the progressive removal of low frequency signals with brightening luminance levels. C. Changes in photoreceptor (left) and LMC (right) frequency
spectra to the repeated bright stimulus during the first 20 s (1st s = black; 2nd s = red; 20th s = green); adaptation affects mostly LMC frequency
spectra in the five first seconds of repeated stimulation. D. Because of the increasing low frequency content (up arrows), synaptic gain spreads more
evenly within the bandwidth over time (arrows). Error bars are SD.
doi:10.1371/journal.pone.0004307.g003
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account of their previous encounters and using that knowledge to

readjust the filtering dynamic, these new statistics were justly

represented in the LMC output. Had the R-LMC-R system

evolved or adapted only to encode these specific features, they

would have been best represented by each of them having an

equal frequency representation in the LMC output. Thus,

encoding of the stimulus seems sub-optimal as the LMC output

never reached that hypothetical equalized distribution.

Adaptation to repetitive stimulus shows scale-invariance
to pattern speed

So far, we have only consider progression of neural encoding

within 1 s snapshots, providing a limited view of fast adaptation

dynamics. To partially overcome this limitation and to test that our

findings were neither biased by the size of the observation window

nor the speed of stimulation, we used different playback velocities

for naturalistic light intensity series (Fig. 4A). Here, the same

stimulus pattern (10,000 intensity values) was repeatedly presented

in different periods of time in a single experiment. The playback

velocity was increased from the slowest to the fastest, ranging from

at 500 Hz for 20 s to 100 kHz for 100 ms, without any delay

between repetitions; cf. [24]. The resulting voltage responses were

sampled with the playback velocity, thereby providing 10,000

samples of data for each pattern speed. These were then used for

calculating the joint statistics (Fig. 4B, contour maps).

In a normalized time scale (Fig. 4B), the voltage responses of

photoreceptors and LMCs showed striking similarities at different

playback velocities of stimulation. This finding implied that neural

encoding in the R-LMC-R system possesses considerable scale

invariance to the speed and statistical structure of the stimulus

[44,45,46], particularly for the LMC output. One can see in the

contour maps, which show joint probabilities, that the size of the

photoreceptor output (horizontal scale) is reduced more than that

of the LMC (vertical scale). The LMC output, overall, seemed to

withstand speed changes well, indicating contrast constancy for all

tested playback velocities of stimulation. Most differences between

the photoreceptor and LMC outputs were probably due to their

dynamic filtering properties; the photoreceptor output typically

low-passing more than the LMC output [25]. Nevertheless, the

scale invariance in the LMC output to the stimulus playback

velocity probably resulted from the limited integration time [25],

and from the self-similarity of time scales in the naturalistic light

intensity series [8,24]. As speeding up, or slowing down, an input

with 1/f statistics will inherently reallocate a relatively similar

power for a given bandwidth, LMCs can integrate responses that

utilize their full voltage range.

We tested next that the relevant play-back velocities and

observation windows (from 1 s to 100 ms) did not influence the

general network adaptation in the R-LMC-R system. An example

is shown for 50 kHz playback velocity (Fig. S2). Many experiments

were done at 19uC, which slow down adaptation, thereby proving

many sample points for which to measure its time constant(s). The

overall adaptation dynamics were similar to recordings with slower

playback velocities and at higher body temperatures, confirming

that our analyses can resolve network adaptation dynamics, at

least from the time scales of 100 ms to tens of seconds.

For adaptation in faster time scales, it is useful to consider the

frequency range of photoreceptors and LMCs. At 25uC, Drosophila

photoreceptors and LMCs cannot effectively follow stimulus

frequencies higher than ,150 Hz (Fig. 3C). For 150–200 Hz

range, their maximum signal-to-ratios are ,0.02 (R1–R6s) and

,0.5 (LMCs); i.e. noise .2–506 signal [25]. Notice that due to

pooling inputs from six photoreceptors (R1–R6), LMCs have

generally a higher signal-to-noise ratio than photoreceptors to

naturalistic stimulation [25]. Clearly the fastest transients at the

start of bright stimuli can occur in the time-scale of 5–20 ms.

However, it is difficult to define when the integration stops and

adaptation starts in the WT responses. Drosophila LMCs cannot

adapt faster than their minimum integration time (5 to 50 ms),

which depends on the mean luminance (Fig. 2A) and ambient

temperature (cf. Fig. S2); see also [36]. Therefore, it is likely that

our analyses, which used variable observation windows for testing

adaptation dynamics at different luminance levels and tempera-

tures, covered much of the relevant time of network adaptation in

the R-LMC-R system for rescaling the LMC output in the natural

environment.

Adaptation changes neural encoding of repetitive
stimulus in all light-dark transitions

In most experiments, we first dark-adapted the cells for ,30 s

before presenting the stimulus. Thus, it was possible that dynamic

optimization of LMC output was just a property of a moderately

dark-adapted R-LMC-R system re-sensitizing after being suddenly

excited by light increments, and that it would not work with light

decrements. To exclude this possibility, we conducted tests in

which the stimulus pattern was instantaneously flipped between

two different luminance states (,1 ms) every 10 s. Figure 5 shows

one such experiment that contained bright and dim stimuli. We

took advantage of the relative speed invariance in network

adaptation (cf. Figs. 4 and S2) by repeating the same pattern

(10,000 contrast values) every 200 ms (Figs. 5A–B). Such high

sampling provided a high resolution account of the adaptation in

the R-LMC-R system between and during the transient luminance

transitions.

The main result is that the network adaptation in the time scale

.100 ms invariably caused sensitization (Fig 5C–E); i.e. it

increased the LMC output in all natural light-dark transitions.

While we expected that brightening would desensitize the

photoreceptor output (black) and dimming would sensitize it

(Figs. 5C–D), the general sensitization of the corresponding LMC

output (Figs. 5C, E, gray) has not been reported before. LMC

output started to increase within 100 ms from the stimulus

transition, regardless whether the new light input was transiently

brightened or dimmed (note that its contrast distribution remains

constant). Importantly, this gain control operated reliably over

large intensity range changes (103-fold in Fig. 5), and showed

dynamics similar to those seen in the cells after dark adaptation

(Fig. 2E). Hence, it appears that network adaptation was striving to

generate a relatively uniform LMC output to naturalistic

stimulation, irrespective of the desensitization/sensitization dy-

namics in phototransduction following light- or dark-exposure.

Adaptation increases signal-to-noise ratio of LMC output
in all light-dark transitions

The arguments of efficient neural encoding are about improving

the statistics of neural responses (signals) to represent relevant

information about the stimulus. However, it was still possible that

the boosted LMC output to repetitive stimulation resulted from an

increase in noise. To rule out this possibility, we further used these

recordings to approximate changes in the signaling performance of

the R-LMC-R system (Figs. 5F–G). We calculated the signal-to-

noise ratio of LMC output to the bright and dim stimulus at

different states of adaptation at 0–3 (SNR#1), at 3.5–6.5 (SNR#2)

and at 7–10 (SNR#3) seconds after each luminance transition.

The first responses at new luminance were disregarded because of

their large variability, while the use of brief data segments (3 s)

minimized the possibility that differences in the signal-to-noise
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ratio estimates would result from the recordings deteriorating.

Notice, however, that neural signal-to-noise ratios [24] are

underestimates, as the noise, i.e. the difference between the signal

(mean response) and individual responses, contains adaptation and

stochastic variability. Therefore, although each signal-to-noise

ratio was calculated using the same amount of data (156200-

points) and averaged over three separate luminance sections to

minimize bias, these enable only relative comparisons.

Nonetheless, we found that the LMC’s signal-to-noise ratio to

bright stimulation was band-passing (Figs. 5F) and low-passing to

dim stimulation (Figs. 5G), in concordance with the general

concept of optimal coding for such inputs [11]. Furthermore, the

Figure 4. Adaptation to repetitive naturalistic stimulation shows scale-invariance to pattern speed. A. The naturalistic stimulus
sequence, NS, repeated at different stimulus playback velocities (bottom trace) and the corresponding intracellular voltage responses of a
photoreceptor (top trace) and a LMC (middle trace). The colored sections highlight particular play-back velocities used for the stimulus during this
continuous recording (yellow: 1 kHz, 10 s observation window; cyan: 3 kHz, ,3.3 s window; magenta: 10 kHz, 1 s window; gray: 30 kHz, ,0.3 s
window). B. The time-normalized shapes of the photoreceptor (above) and LMC (below) output emphasize similar aspects of the stimulus, regardless
of the used playback velocity (here from 0.5 to 30 kHz). The hot-cold color plots show the corresponding synaptic joint probabilities. Note how the
size of the photoreceptor output (horizontal scale) is more reduced than that of the LMC (vertical scale), which remains relatively stable, indicating
contrast constancy for all tested playback velocities of stimulation. The changes in the speed of the naturalistic stimulus (attributable to the time-
scale invariance of 1/f statistics) [24] maintain the power falling within the frequency range of LMC output relatively similar. LMCs can, thus, integrate
voltage responses of a similar size for the same stimulus pattern, much irrespective of its speed. Mean6SD shown, n = 7 repetitions.
doi:10.1371/journal.pone.0004307.g004
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Figure 5. Adaptation improves neural encoding of repetitive naturalistic stimulus in all light-dark transitions. Adaptation sensitizes
LMC output over time, rescaling naturalistic contrast stimulus, NS, to a relatively uniform voltage distribution irrespective of the mean luminance and
preceding dark/light-adaptation. A–B. Panels show five samples of the same bright stimulus pattern and their frequency spectrum, respectively. C.
Typical intracellular voltage responses of a photoreceptor (black) and a LMC (gray) in a WT fly to a 200 ms-long stimulus that was continuously
repeated (cf. individual traces in Figs. S2). Every 10 s, the stimulus was transiently either brightened or dimmed 103-fold for the next 10 s (dim-bright
transitions ,1 ms). As expected, the photoreceptor generates larger responses at bright than at dim luminance, whereas the corresponding
responses of the LMC show less amplitude variations (cf. Fig. 2A). The figure is divided into four columns (1–4) that indicate distinct post-transition
periods: (1) from darkness to bright stimuli, (2) from bright to dim stimuli, (3) from dim to bright stimuli, and again (4) from bright to dim stimuli. D.
Adaptation in photoreceptor output, shown as SD, was calculated for each 200 ms long response to the stimulus over each post-transition period.
Photoreceptor output (mostly due to phototransduction) is desensitized by brightening and sensitized by dimming. The arrows indicate the
corresponding adaptive trends. E. Adaptation in LMC output (attributable to synaptic processing) shown as SD, in respect to D. Apart from the
transient desensitization (,100 ms), LMC output is sensitized both by brightening and dimming, but this rescaling occurs with different speeds (fast
at bright, slower at dim stimuli), similar to LMC output in pre-dark-adapted flies in Fig. 2E. F–G. Signal-to-noise ratio (SNR) of the LMC output for
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signal-to-noise ratio of LMC output increased with repeated

stimulus presentations at both luminance levels, even after the

adaptive trends had mostly subsided (SDs, Fig. 5E). The fact that

SNR#3 is larger than SNR#1-2, during both the dim (Figs. 5F)

and bright (Fig. 5G) stimulation, provides strong evidence that the

signaling performance of the system improves continuously. Thus,

the increase in the LMC’s voltage responses to the stimulus could

not result from increase in noise, but instead it resulted from

increase in signal. Therefore, these findings support the tenet that

by improving neural encoding, adaptation increases the rate of

information transfer to naturalistic stimulation in the R-LMC-R

system.

Adaptation improves neural encoding of repetitive
stimulus over time

Together, our results (Figs. 2–5) imply a dynamic improvement

in the amplitude and frequency representations of naturalistic

stimuli in the voltage responses of LMCs increased with

‘‘flattened’’ and ‘‘whitened’’ output probabilities, respectively.

The time scale of this redistribution depended on luminance but

occurred within seconds, and thus was probably too fast for

trafficking or expressing ion-channel proteins in LMCs [47].

Because LMCs output remained relatively constant at different

luminance level, we consider voltage-dependent changes in the

membrane impedance an unlikely explanation for adaptation; but

see [15,48,49]. With brightening stimulation the total amplitude

range of LMCs increased only by ,25% (best cells: from ,30 mV

to ,40 mV, Fig. 2A), while the time-constant of adaptation varied

4-fold (Fig. 2E). Instead, it is far more likely that the improved

transmission properties of LMCs reflected a gradual increase in

histamine-gated chloride conductance [37].

There are two obvious mechanisms that could modify the

‘‘input’’-conductance of LMCs: (i) an increase in the open-

probability of the histamine receptors, or (ii) an increase in the

histamine release probability, i.e. ligand concentration. Both of

these mechanisms were likely to be continuously adjusted by the

dynamic equilibrium between light- and feedback-mediated

conductances, as the photoreceptor voltage was driven up and

down by light changes. In the companion paper [36], we dissect

these hypotheses by separately manipulating the strength of the

synaptic feedforward (R-LMC) or feedback (L2-R) pathways, and

show that both of these mechanisms are indeed necessary for

improving the temporal representation of naturalistic stimuli in the

R-LMC-R system of the Drosophila eye.

Discussion

This study was aimed at understanding the dynamics of retinal

adaptation to temporal contrast patterns in the Drosophila eye. We

examined the transfer of repeated naturalistic contrast patterns in

the R-LMC-R system that consists of photoreceptors and

interneurons that co-process visual information from one point

in visual space through extensive feedforward and feedback

connections [25,32]. The results show that network adaptation

makes neural encoding of visual information in the R-LMC-R

system more effective over an extensive time-span (.100 ms to

seconds) by boosting under-represented signals in LMC output.

The fact that network adaptation takes place over the tested

intensity range (4 log-units in Figs. 2–3 and S1), with different

stimulus patterns and pattern speeds (Figs. 4 and S2), in

naturalistic light-dark transitions (Figs. 2–3 and 5) and at different

temperatures (Figs. S1 and S2) highlights its physiological

significance for efficient neural encoding in the R-LMC-R system.

In the following discussion, we consider the advantages of using

Drosophila as a model to study neural information processing in the

retinal circuits, and highlight some possible benefits of network

adaptation for the fly vision. We then briefly discuss the different

ways adaptation has been studied previously in action potential

and graded potential systems and the basic assumptions for testing

the ideas of efficient neural encoding. Finally, we comment on the

limitations of our findings.

Drosophila is a good model to study retinal adaptation
The natural advantages of using Drosophila for studying retinal

adaptation are an existing circuit reconstruction from electron

microscopy [32,35], the ability to modify the network using

molecular methods and the possibility to quantify visual behavior

[50–52]. An added benefit of the small Drosophila eye for synaptic

electrophysiology is that its photoreceptors have relatively short

axons, yet the somatic membrane has high resistance [22], which

provides a high length constant. Thus, via high-quality intracel-

lular recordings from photoreceptor somata, it possible to identify

echoes of on-going activity in their synaptic terminals in vivo [25].

Such activity is negligible in conventional sharp microelectrode

recordings from photoreceptors of bigger flies that are leakier [53]

and have longer axons.

Network adaptation improves neural encoding and may
facilitate image constancy for changing conditions

The R-LMC-R system relies upon complex dynamic nonlinear

interactions (Figs. 2B–C, contour maps) to translate vast

environmental luminance changes into voltage responses of

limited size and speed. Similar to blowfly [17,20], we found in

Drosophila that phototransduction performs a logarithmic com-

pression of the naturalistic light intensity series while photorecep-

tor-LMC interactions work toward contrast constancy by

normalizing this signal (Fig. 2A). Importantly, our findings further

showed that adaptation uses previous encounters with the local

stimulus statistics, i.e. their temporal structure, to improve (widen)

the LMC output continuously (Figs. 5F–G). What does this mean

for fly visual behavior?

The Drosophila compound eye - with its ,750 ommatidia –

captures a scene only with relatively low spatial resolution [50,54]

and is expected to produce a ‘‘blurred’’ neural image for the brain

[5]. However, when the image quality at each pixel (Fig. 1A) is

continuously adjusted to its light input, the collective neural image

presented to the brain improves. As in digital processing of

photographic images [40,55], neural images can be made clearer

(or stand out better against the background) by equalizing their

contrast and frequency spectra (Figs. 1B–C ‘‘flattening’’ and

‘‘whitening’’; Figs. 2C–D and 3C–D, respectively) around local

values. As this occurs dynamically across the compound eye, it is

likely to produce a parallelly edited neural ‘‘movie’’ for the fly

bright and dim stimuli, respectively, calculated from 15 consecutive responses, i.e. 3 seconds of data with each response lasting 200 ms. Signal-to-
noise ratios are given at different states of adaptation: just after the luminance transition (SNR#1), in the middle of adaptation to given luminance
(SNR#2) and in the end of the luminance cycle (SNR#3). Signal-to-noise ratio to the bright stimulus is band-passing and low-passing to the dim
stimulus, as predicted for such inputs [11]. In addition, signal-to-noise ratio of LMC output increases with stimulus repetitions, regardless of the
luminance level, implying a dynamic increase in the rate of information transfer of naturalistic stimulation by adaptation.
doi:10.1371/journal.pone.0004307.g005
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brain that may facilitate tracking of visual objects of interest

[56,57] or flow processing [58] in changing conditions.

Interestingly, the recent study by Brinkworth el al. [59] from

blowfly photoreceptors identified that the process of target

detection begins already at these cells; see also [60]. By analyzing

their intracellularly recorded output to a stream of natural image

sequences, they could show that temporal processing by

photoreceptors, even without any spatial interactions, significantly

improved the discrimination of small targets. They then applied a

modified van Hateren-Snippe model of a blowfly photoreceptor

[6,61] to show that such enhancement of target salience could be

explained by temporal nonlinear dynamics. Considering the

similar synaptic layout of the fly compound eyes, and the limited

visibility of the somatic photoreceptor recordings to the synaptic

interactions in the lamina in the blowfly preparation (see above),

perhaps at least part of the improvement for target salience was

due to network adaptation in the R-LMC-R system, as we have

shown here.

Adaptation in action potential and graded potential
systems

In spiking systems, one can simplify complex input-output

transformations into single variable mapping operations for spike

rates, intervals or times, by making the assumption that action

potentials are uniform (or digital) carriers of information; but see

also [62,63–66]. In many sensory systems, when stimulus intensity,

contrast or velocity values are mapped against these variables,

adaptation dynamics of neural spike patterns can be successfully

mimicked with simple linear-nonlinear (LN) models, e.g. a

temporal filter followed by a static transfer function. In some

systems, the spike patterns have been further shown to adapt to

local characteristics of the stimulus statistics, indicating efficient

coding, e.g. [16,18,44,45,67–71].

The same approach of reduction of variables has been also

applied to a graded potential system. In the pioneering study of

efficient coding, it was assumed that the maximum amplitudes in

the graded voltage responses of LMCs encode luminance contrast

values [4]. However, because of the complex information

processing in the R-LMC-R system (Figs. 2–5), neither this

assumption nor the resulting mapping is accurate; see also

[11,17,25,27,72]. The assumption is inaccurate because static

singularities, such as the maximum amplitude of a response,

correlate only weakly even with stationary contrast stimuli [27,72].

Because of network adaptation, the nonstationary R-LMC-R

system shows extensive complexity (Fig. 2B–C). The same

maximum amplitude can be evoked by a shorter pulse of higher

contrast [27,72], and therefore carries relatively little contrast

information in comparison to their true response waveforms, or

even to the rate of rise or fall of the responses [25,28,62,72]. The

mapping is inaccurate, because an arbitrary static nonlinear

mapping function can be selected within a large range of

maximum responses by changing the duration or interstimulus

interval of the contrast pulses - which control the integration of

voltage responses [27,72]. However, none of these mapping

functions can adequately define the complex LMC output to

global or local contrast distributions. See also [17].

Why is network adaptation not static optimization?
For static optimization the original case was made that the

maximum amplitudes of the LMCs’ voltage responses map the

cumulative distribution of natural contrasts (or the global statistics) so

that all response levels are used equally often [4]. Such optimal

mapping required that the synaptic gain function, i.e. the ‘‘charac-

teristic curve’’, would remain unaffected by the R-LMC-R system’s

state of light adaptation [38]. For the given contrast pulses at different

light backgrounds, the ‘‘characteristic curve’’ mapped the evoked

maximum responses of photoreceptors to those of LMCs, although

these peak values have no causal time relationship [27], cf. Fig. 4A.

Notably, even if one uses peak responses for a ‘‘ballpark-estimate’’ of

contrast coding, optimal mapping would always be affected by the R-

LMC-R system’s adaptation state, unless the signal-to-noise ratio was

the same at all luminance levels. The fact that this is not the case is a

good reason for altering the frequency response, particularly

increasing low frequencies at dim and high frequencies at bright

conditions [11,17].

Since then, experimental and theoretical work has shown that

the neural code of LMCs is dynamic and continuous, and it adapts to

changing statistics [11,14,17,21,27,73–75]. Our results here build

on these studies by identifying network adaptation as a neural

mechanism for adjusting the R-LMC-R system’s throughput. As

the synaptic gain is continuously adjusted to the changing statistics

by adaptation (Figs. 2–5), gradual changes in both the voltage and

frequency range of LMCs can improve the neural representation

of contrast information. Of course in real life, neural encoding of

natural stimuli happens both in space and time, wherein the

animal’s sensing and actions are in a closed-loop with the

environment. Furthermore, apart from temporal contrast, we

know relatively little about how the R-LMC-R system contributes

in transmitting other features in the natural scenes, such as colour,

line elements, orientation or motion, to the fly brain, or how the

same network structures may be used for different processing tasks

simultaneously. Thus, such real life encoding of visual information

from natural scenes is likely to be even more sophisticated than

what is currently possible to measure in laboratory conditions

[17,57,59,67,76–86].

The companion paper [36] that focuses on the mechanisms of

network adaptation discusses some of these issues further.

Materials and Methods

Flies
Wild type (WT) Oregon-R and Canton-S strains were used for

recordings; they also provided the controls for the genetic

dissection of the R-LMC-R circuitry in Part II [36]. Flies were

reared on standard medium at 18uC in 12:12 light:dark cycle [87]

and females were selected for electrophysiological experiments 4

days after eclosion. In both of these WT fly stains, adaptation in

the R-LMC-R system to repeated naturalistic light intensity

patterns occurred alike.

In vivo electrophysiology
Flies were prepared in vivo [22] and intracellular voltage

responses of blue-green-sensitive R1–R6s and LMCs were

recorded separately using sharp quartz or borosilicate microelec-

trodes [22,25] (Sutter Instrument Co, USA) of resistance 120–

200 MV. The intraelectrode solution was 3 M KCl for photore-

ceptor experiments, or 3 M potassium acetate with 0.5 mM KCl

for LMCs to sustain their chloride battery [37]. Responses were

amplified by SEC-10L (NPI Electronic, Germany) in current-

clamp mode using ,15 kHz switching rate and low-pass filtered

with light stimuli at 1.5 kHz (Kemo VBF8, UK). During the

experiments, the flies were immobilized within a brass fly-holder,

placed on a Peltier-device [23]. The ambient air temperature was

maintained by air conditioning at 19.060.5uC, whereas the head-

temperature of the flies was set to 2560.5uC (WT Oregon-R) or

19.060.5uC (WT Canton-S) by a feedback-controlled Peltier-

device [23]. 21.5–25.5uC is the preferred temperature range of

both WT Canton-R [88,89] and ort6 mutants [89] used in Part II
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[36]. WT Canton-S flies were tested at 19uC, as this data will be

compared with the transgenic expression of the temperature-

sensitive mutant shibireTS1 in Part II [36].

Intracellular voltage responses and selection criteria
R1–R6 photoreceptors depolarize and LMCs hyperpolarize to

light, making their identification easy [25,90]. In contrast, the

differences in responses between different LMC subtypes are

subtle. The largest and the most central of LMCs, L1 and L2,

share their synapses, whereas synaptic input to more proximal L3

cells is less prominent [35]. In Calliphora, L1 and L2 generate

virtually identical responses in lamina. The responses of L3 are

more hyperpolarized, having the largest off-transients [91]. We

made no attempt to identify different LMC subtypes, but because

L1 and L2 occupy the largest volume it is likely that most

recordings were in them. It is also possible that some responses

were from processes of amacrine cells that share histaminergic

input with L2 and L1 cells [25,92]. Nevertheless, because the

waveforms of hyperpolarizing responses to the same naturalistic

stimulus pattern in Drosophila lamina have rather similar

characteristics, these all were pooled [25].

To prevent poor penetrations or electrodes biasing our analysis,

only stable high quality recordings were used. Such photoreceptors

had resting potentials in darkness ,260 mV and maximum

responses to the tested bright stimulus .35 mV. Their dark-

adapted impulse responses were .40 mV. For the selected LMCs,

the resting potentials were ,230 mV and maximum responses

.15 mV. Note that here we included LMCs with smaller

amplitudes than in our previous study [25] because the response

dynamics of these cells (Figs S1C–H), when normalized, were

practically identical to those of cells with the largest response

ranges (30–45 mV, Figs. S1A–B), and their signal-to-noise ratio to

the repeated stimulus were similarly high. Thus, apart from

reflecting the recording quality, the size of the responses may also

reflect their subcellular locations. For instance, responses in LMC

somata require back-propagation and therefore may be smaller

than those at the synaptic zones. As the somata make larger

microelectrode targets than the synaptic zones, most recordings

should be somatic. More details of the electrophysiology in the

Drosophila eye are in [22,25].

With these criteria, 83.3% of WT Oregon-R LMCs (90/108

experiments) at 25uC and 81.8% WT Canton-S red LMCs (90/

110 recordings) at 19uC, showed increasing adaptive trends in

their responses to the repeated stimulation, i.e. the LMC output to

the same naturalistic light contrast pattern was boosted over time.

Thus, the findings indicate that network adaptation happens

independently of the fly strain or temperature. Figure S1

summarizes the statistical analysis of 54 recordings from the

LMCs of WT Oregon-R at 25uC. In the best series (cf. Fig. S1A),

the adaptive trends always behaved consistently, becoming faster

with brightening stimulation (Fig. S1B). Owing to their high

reliability (Fig. S1C), only the recording series with the largest

voltage responses (.30 mV to the given stimulus pattern at all

luminance levels) were used in Figures 2–3. We had two complete

recording series from single LMCs at seven different luminance

levels (one of them shown in Fig. S1A). Both of these series showed

highly similar adaptation at different luminance levels, but their

maximum voltage ranges were ,40 and ,45 mV, respectively.

However, for not to bias the adaptation metrics and to keep the

probability functions (see below) free of normalization/rescaling

(for easy assessment), we displayed the photoreceptor and LMC

output on the same 50 mV voltage scale and used only recordings

that were collected through identical light adaptation protocols.

All seven photoreceptor series used in Figs. 2–3 were adapted to

the same seven luminance levels in the same order as the

representative LMC series. This procedure, furthermore, kept

their expected signal-to-noise ratios roughly comparable [93].

The presented results (Figs. 2–5) are general and occur also in

recordings with smaller amplitudes [36]; each result is supported

by stable recordings in at least three different cells.

Light stimulation and data collection
NS patterns were selected from the van Hateren natural-

stimulus-collection, http://hlab.phys.rug.nl/archive.html [17],

and we used two different LED-based systems to play them back

to the flies. The distinctive adaptive behaviors of photoreceptors

and LMCs remained unchanged regardless of the stimulator used.

The responsiveness of the cells was also tested with different

naturalistic stimulus sequences (data not shown). Again, this had

little effect of their adaptation trends.

R1–R6 photoreceptors and LMCs were stimulated by light

from high-intensity green LEDs (Marl Optosource, UK, peak

emission: 525 nm). The light stimulation was delivered by a

randomized fiber optic bundle, secured on a Cardan arm system.

This arrangement enabled free positioning of the light source with

equal distance to the eye with the LED output subtending 5u, as

seen by the fly. The brightness of stimulation was changed by

placing neural density filters on the light source. This way the

contrast of the naturalistic stimulus sequence (c =DI/I) remained

constant at all tested stimulus conditions. As the variance of

stimulation increased with mean intensity, a simple adaptation

mechanism, such as intracellular pupil is insufficient to bring

LMCs back to their coding range. Thus, a more complex response

is required for the rescaling of the output (cf. Figs. 2–5). The

intensity range covered 4 log-units [24,25] from ,600 to

,66106 photons/s (I0). Figures show results for dim- (1,850),

medium- (60,000) and bright-light (1.856106 photons/s).

For Figures 2–3, the cells were first dark-adapted for a

minimum of 30 s. The cells were first tested with a dim stimulus

before processing to brighter stimuli. Between the different

luminance levels, the cells were dark adapted for 30 s. However,

we found that the duration of dark-adaptation had relatively little

effect for the brightness-dependent adaptive trends of the LMC

output to repeated naturalistic stimuli, as shown in Figures 4–5

and S2. The fast component of their adaptation was nearly

instantaneous, followed by the slower sensitization to the stimulus

of new luminance. Typically, the stimulus and response were

sampled at the rate of the playback velocity used for the stimulus,

or at 1 kHz. The data was often re-sampled/processed off-line at

1 kHz for the analysis. Stimulus generation, data acquisition and

analysis were performed by Matlab interface BIOSYST [22,24].

For Figure 5, naturalistic stimulation was delivered via a

randomized Y-fiber optic bundle, in which the common-end

pointed to the centre of the cell’s receptive field and the two arms

received separately either the dim or bright stimulus (from two

LED drivers – their light outputs were pre-scaled by neural density

filters). Two LED drivers alternated, generating either dim or

bright sequences of the identical contrast distribution in 10 s

intervals.

Probability density and joint probability functions
We measured the probability density (PDF) and joint probabil-

ity density (jPDF) functions of the photoreceptor and LMC output

to the repeated stimulation by mapping one-to-one their

corresponding voltage values at 1 ms time-resolution over the

evolution of the experiments. The occurrence of single (R1–R6 or

LMC) and paired (R1–R6 and LMC) voltage values were counted

and given as probabilities, either for the duration of the
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experiment (cf. Fig. 2B) or for each 1-s-long stimulus repetition

(observation window, cf. Fig. 2C). Most calculations correlated

seven individual recording series of WT photoreceptors to the best

corresponding LMC series using 50 mV absolute voltage scale

with 3.3 mV resolution. Although the probabilities varied from

one luminance to another and with time, the results were similar

within each WT genotype at a given luminance and moment of

time. Therefore, the probabilities were presented as the means of

such distributions. The synaptic delay (,1 ms) had no effect on

the shown jPDFs.

Because we used observation windows, ranging 0.1–1 s, that

were smaller than the relatively slow adaptation time-courses

studied (t= 1–20 s), PDFs, jPDFs and spectra (see below)

approximate stationarity. These statistical metrics, thus, provide

reliable estimates of synaptic gain changes from one observation

window to another, in which all sampled voltage values were used

for the calculations.

Adaptive trends in continuous recordings
As a simple measure of a changing voltage distribution, we

quantified adaptive trends in a cell’s responsiveness to repeated

stimulation. Here, we took the standard deviation (SD) of the first

20 voltage responses, using the last 8,000 samples (time points) of

each response (10 kHz sampling). If the system’s sensitivity to the

stimulus increases, so as to code more efficiently, the distribution of

its output, and thus its SD, should widen over time: c.f. ‘‘flattering’’

and ‘‘whitening’’ (Figs. 1B–C, respectively). This is indeed the case

for LMC output, for which signal-to-noise ratio increases over

stimulation, while the signal-to-noise ratio of the naturalistic

stimulus remains constant (Fig. 5).

For each genotype, the adaptive trends of their photoreceptors

and LMCs were grouped separately for each tested temperature

and brightness. To make the comparison of these groups immune

to different amplitudes of individual recordings (see Fig. S1), we

used the following procedure. The adaptive trend of each

individual recording was normalized by the SD value of its first

response to the stimulus (at the 1st s), giving the relative change in a

cell’s voltage output over time. Normalized trend = (SDn2SD1)/

SD1, where SDn is calculated from individual responses, n (using

201–1,000 ms), and SD1 from the 1st response to the stimulus. The

mean and its standard error (SEM) of the normalized trends for

each group of cells were then adjusted to mV-scale by multiplying

them with the measured average SD-value of each population at

the first second (Fig. 2E).

Frequency Analysis
The throughput of the R-LMC-R system adapts during

repetitive stimulation. We quantified these changes in frequency

domain by comparing corresponding frequency spectra of

photoreceptor and LMC outputs in WT and mutant flies for the

first 20 s for each second of stimulation. This procedure also kept

mV as the unit, further facilitating comparisons between the raw

data and SDs. To obtain both the suitable range and reliability for

the spectral estimates, the following procedures were used. The

data was re-sampled at 1 kHz and the power spectrum S Ri fð Þj j2T
for each 1 s long response, Ri, was calculated using a 500-point

Blackman-Harris window with 50% overlap, i.e. n = 3 spectral

samples, where | | denotes the norm and Æ æ the average over the

different stretches as in [22]. The square root of the power spectra

then gave the mean frequency spectrum S Ri fð Þj jT for each

response to the repeated stimulus, from 2 to 500 Hz with 2 Hz

resolution (Figs. 3C).

We also analyzed the frequency spectra of photoreceptor and

LMC output for the stimulus of different luminance levels (dim,

middle and bright). Here, all the mean frequency spectra for each

light level were averaged, using all the data from the first to 20

voltage traces, i.e. n = 60 spectral samples. See Fig. 3A.

The ratio between the corresponding mean LMC and

photoreceptor frequency spectra gave the synaptic gain (Figs. 3B

and 3D) function for each stimulus presentation or for each light

level.

Signal-to-noise ratio (Fig. 5), SNR(f), is the ratio between the

signal S S fð Þj j2T and noise S N fð Þj j2T power spectra, | | and Æ æ as

above. The signal power spectrum was calculated from the mean

voltage response, using 15 consecutive 200 ms long responses to

the repeated stimulus with 1 kHz sampling. The noise power

spectra was calculated from the corresponding noise traces, i.e. the

differences between individual responses and signal. Again, these

data chunks were divided into 50% overlapping stretches and

windowed with a Blackman-Harris 4-term window, each giving

three 100-points long samples. These were averaged to improve

the estimates.

In all cases, Matlab’s Fast Fourier Transform (FFT) algorithm

was used to calculate the power spectra.

Supporting Information

Figure S1 Voltage output of WT Oregon-R LMCs to repeated

naturalistic stimuli (NS) at different luminance. Voltage output of

WT Oregon-R LMCs to repeated naturalistic stimuli (NS) at

different luminance. LMC output behaves systematically, although

the size of the responses varies greatly from one cell to another. A.

Intracellular voltage responses of a single exceptionally stable

LMC, measured to a repeated 1-s-long NS at seven different

brightness-levels, each 0.5 log intensity units apart. Responses to

bright (dark green), middle (red) and dim (blue) NS highlighted;

responses to intermediated light levels are shown in black. B. The

SD of these responses (i.e. adaptive trends; each point calculated

from 800 ms long data-sections) to the repeated NS pattern

increases over time, but their rate of rise depends on the luminance

of the NS. C. The adaptive trends of all data to dim, middle and

bright NS at 25uC. Notice the large variation in the size of the

voltage responses. The best data (blue, red and green) is used for

Figure 2 in the main paper; the rest of the data is shown in gray-

scale. D. The mean6SEM of the adapting trends using all data. E.

The mean6SEM of the adapting trends using only the best data.

The trends are well fitted with single exponentials. F. The increase

in response size (or sensitivity) of the best data over the repeated

dim, middle and bright NS given as percentage (mean6SEM); the

trend for each experiment is normalized by its first value. G. The

normalized trends of all the recordings. H. The statistics of the

normalized trends, using all data (mean6SEM). (F–H) Sensitivi-

ty = 100*(SDn2SD1)/SD1; where SDn is calculated from individ-

ual responses, n (using 201–1000 ms), and SD1 from the 1st

response to NS. The fits in E are done using the average SDs of

the best recordings. If instead the traces included in the average

curves are fitted separately, we obtain (mean6SEM):

tbright = 1.5160.19 s (n = 4); tmiddle = 4.4160.96 s (n = 7);

tdim = 6.2762.94 s (n = 4). Furthermore, for all the traces that

allowed adequate fitting we obtain: tbright = 1.9160.21 s (n = 7);

tmiddle = 4.2060.49 s (n = 19); tdim = 4.2661.26 s (n = 11). Here,

only the means of tbright and tmiddle differ significantly (p,0.007;

ANOVA, Bonferoni test). This seems attributable to invariable

quality of the recordings at dim NS. Unlike the best series that

covered the whole brightness range (such as in A), often individual

recordings at dim NS were less stable, capturing only small and

noisy responses, whose trends (G) were highly variable and fitting

unreliable.
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Found at: doi:10.1371/journal.pone.0004307.s001 (1.17 MB TIF)

Figure S2 Photoreceptor and LMC outputs to repeated NS is

independent of the observation window and the speed of

stimulation. A 10,000-points-long NS pattern was repeatedly

presented to a WT Canton-S photoreceptor and LMC at 50 kHz

(200 ms observation window; i.e. the duration of each input and

output) at 19uC. A. Four first voltage responses of a photoreceptor

(n1–n4) evoked by the repeated NS at middle luminance. B.

Photoreceptor output plotted over the duration of the experiment;

the voltage range of R1–R6 is reduced over tens of seconds as the

photoreceptor adapts to the input statistics. C. This drop in the

overall sensitivity is well fitted with two-exponentials. Photorecep-

tor adaptation has a similar decaying trend as seen with the

10 kHz NS (cf. Figs. 2E). D. The first four voltage responses of a

LMC evoked by the same NS. E. LMC output over the duration

of the experiment; the voltage range of the LMC increases

gradually as the R-LMC-R system adapts to the stimulation. F.

LMC output is boosted similar to 1 s NS (cf. Fig. 2E). The increase

in the overall sensitivity of the LMC is fitted with two-

exponentials; the dominant one having a slightly slower value to

data with 1 s window (cf. Figs. 2E), possibly because of the cooler

temperature. In A and E, the relative long delays (20 ms) in the

first responses is attributable to the phototransduction dead-time,

and the inability of the photoreceptor and LMC to respond to fast

changes in the NS, attributable to their relative slow integration

times. Sensitivity = 100*(SDn2SD2)/SD2; where SDn is calculated

from individual responses, n (using 1–200 ms), and SD2 is from the

2nd response to NS (note in D that ,100 ms after the first light

onset, the responses already increase).

Found at: doi:10.1371/journal.pone.0004307.s002 (0.59 MB TIF)
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