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Abstract

Background: Computational biology contributes to a variety of areas related to life sciences and, due to the growing impact
of translational medicine - the scientific approach to medicine in tight relation with basic science -, it is becoming an
important player in clinical-related areas. In this study, we use computation methods in order to improve our understanding
of the complex interactions that occur between molecules related to Rheumatoid Arthritis (RA).

Methodology: Due to the complexity of the disease and the numerous molecular players involved, we devised a method to
construct a systemic network of interactions of the processes ongoing in patients affected by RA. The network is based on
high-throughput data, refined semi-automatically with carefully curated literature-based information. This global network
has then been topologically analysed, as a whole and tissue-specifically, in order to translate the experimental molecular
connections into topological motifs meaningful in the identification of tissue-specific markers and targets in the diagnosis,
and possibly in the therapy, of RA.

Significance: We find that some nodes in the network that prove to be topologically important, in particular AKT2, IL6,
MAPK1 and TP53, are also known to be associated with drugs used for the treatment of RA. Importantly, based on
topological consideration, we are also able to suggest CRKL as a novel potentially relevant molecule for the diagnosis or
treatment of RA. This type of finding proves the potential of in silico analyses able to produce highly refined hypotheses,
based on vast experimental data, to be tested further and more efficiently. As research on RA is ongoing, the present map is
in fieri, despite being -at the moment- a reflection of the state of the art. For this reason we make the network freely
available in the standardised and easily exportable .xml CellDesigner format at ‘www.picb.ac.cn/ClinicalGenomicNTW/temp.
html’ and ‘www.celldesigner.org’.
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Introduction

Rheumatoid Arthritis (RA) is a complex disease involving a yet

unknown number of genes, and affecting a large number of

organs, tissues and sites across the body. It is affecting

approximately 1% of the population worldwide [1], with this rate

rising for the first time in 40 years, as reported at the American

College of Rheumatology meeting in San Francisco (CA, USA) in

2008. RA is a systemic autoimmune disease causing recruitment

and activation of inflammatory cells, synovial hyperplasia, and

destruction of cartilage and bone. A complete loss of mobility and

functioning can be the final evolution of the disease [2]. Although

RA involves the synovial joints, it presents several systemic features

as, in fact, several other organs are affected including skin, lungs,

kidneys, blood vessels and heart [3–6]. Because of its complexity,

having a broad, systemic perspective on the biological functions

activated and the molecular pathways involved in the disease is of

crucial importance.

In this direction several types of approaches and data platforms

can be used for investigation. Genome-Wide Association studies

(GWAs) scan the whole genome in search of loci susceptible to

carry mutations related to RA (only as a sample of very recent

studies [7–9]). Gene microarray data have contributed greatly to

pathogenesis and to the identification of biomarkers for diagnosis,

to patient stratification and prognostication of RA [10]. Other

studies join the information from these 2 approaches and compare

differentially expressed genes with genome-wide association studies

to better predict candidate susceptibility genes of RA [11].

Furthermore, some signal transduction pathways have also been

identified as being involved in the disease progression and in the

effects of therapies of RA. The TGF-b pathway, for example,

shows broad, constitutive alternation in Rheumatoid Arthritis

Synovial Fibroblasts (RASFs) [12] and the NF-kB pathway has

been inhibited during the anti-TNF-a therapy by etanercept [13].

The signal transduction pathways in RA and some of the

important proteins of these pathways have been identified as drug
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targets to treat RA [14–16]. However, due to the complex

interactions of these pathways, treatments that target only one

protein may not be very effective. Besides the relevance of proteins

as targets, a recent study has also shown that miR-155 was up-

regulated during the treatment with TNF-a in RASFs [17]. This

implies that some microRNA may be involved in RA progression.

Due to the complexity of RA, however, the interaction among all

of these molecules and pathways is still obscure. This is highly

relevant in the identification of new therapies, as in fact, some of

the most common drugs used to treat RA, such as MTX

(Methotrexate), can cause liver, lung and kidney damage, as well

as strong immunodepression. To avoid these important side effects

and to develop more specific and useful drugs, the whole structure

of the molecular networks involved in RA needs to be studied and

clarified. The identification and analysis of this complex map

cannot be performed without the help of computational biology.

Hence we present here a comprehensive map for RA that

combines together the molecules and pathways that were so far

found to be associated with RA, based on systemic, high-

throughput data, and made available following the format

suggested by CellDesigner [18], a popular and successful standard

for the exchange of cellular maps [19].

To date, the most abundant source of high-throughput,

systemic, genome-wide data is still represented by microarrays

for gene expression, although soon this may be replaced by more

quantitative information from mRNAs sequencing [20,21]. For

this reason, in order to build a comprehensive map of the

processes ongoing in RA, we chose to construct a molecular map

based on the results of high-throughput analyses. In fact, despite

the growing availability of proteomic data and their promising

applications, the throughput remains lower and limited to a

number of validated targets [22]. In order to give a systemic

description of the relationships among the genes and pathways

known to be involved in RA, we merged the information of all

available papers related to high-throughput experiments (mRNA,

miRNA) on RA ( [11–13,17,23–46]). Using these information and

further data available from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) ‘http://www.genome.jp/kegg/’, we build a

comprehensive cell-level interaction map. Visually, we present this

molecular-interaction map as a gene regulation map and a

protein-protein interaction map, linked by a number of transcrip-

tion factors. We then use network analysis methods to analyse the

map as a whole and tissue-specifically. In Figure 1 we present a

schematic view of the study framework.

Basically, our map uses the information retrieved from the

results of functional genomic analyses on RA (in the form of

differentially expressed genes), as a blueprint for the construction

of a more detailed interaction map based on assessed literature (in

the form of pathways). It is very clear that such a map is likely to

include a number of false positives, since the differential expression

Figure 1. Framework of building and analysis of molecular interaction map. Pale-yellow = data collection and map building (materials and
methods), pale green = map analysis (results), grey = biological interpretation (results), blue = discussion.
doi:10.1371/journal.pone.0010137.g001
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of genes may not correspond to the effective presence of the

corresponding protein. However, the additional layer of informa-

tion retrieved from pathways stored in literature shows that the

reconstructed map is able to identify hubs that are known targets

of current RA treatments, and to suggest interesting new targets.

Moreover, one of the preeminent characteristics of in silico

modeling and analysis is to offer ‘cheap’ working hypotheses to

be subsequently tested in vitro and in vivo. In this respect our

analysis highlights the importance of proteins that have already

been identified as relevant in the evolution of RA, giving more

insight into their potential role, and in particular into their ability

to affect neighboring pathways and functions. This type of analysis

indicates potential new markers in the diagnosis and/or

monitoring of RA, that is markers that could be loaded, for

example, on board of point-of-care diagnostic tools, based not only

on genomic (DNA) screens [47], but also on functional genomic

(mRNA) screens [48]. Generally, the mRNAs on which we base

our analysis are identified as relevant under different biological

conditions, such as healthy versus diseased subjects, RA versus

other immune diseases, or comparing subjects before and after

treatment. The experiment samples are also from different tissues,

such as peripheral blood mononuclear cell (PBMC), synovial

fibroblasts and cartilage.

A range of network analysis methods have been successfully

applied in multiple studies in an attempt to understand the

structure of interaction networks, or the effect that single genes or

molecules have on such networks (see [49–53] for example). In the

‘Analysis of Molecular-Interaction Map and Network Modules’

section of this paper we use network analysis methods to

understand the systemic interactions of molecules involved in

RA. We begin by determining the topological parameters of the

network and analysing the structure of the map as a whole. Many

biological networks display scale-free properties [54–58], which

means that they contain fewer nodes that have many connections

to other nodes’ hubs. Targeting hubs enables one to reach several

other nodes in a shorter time frame than would be possible by

targeting nodes at random. On the downside, the presence of hubs

in scale-free networks means that the network can be more easily

destroyed if the hubs are removed. We use the degree distribution,

which describes the number of links per node, to identify hubs and

to determine if the network is scale free (if it is, then the degree

distribution follows a power-law distribution). We then consider

whether the hubs in the molecular-interaction map have known

biological relevance. Further to understanding the structure of the

network through the presence of hubs, we decompose the network

into modules according to its structure. We expect the network to

have a bow tie structure [56], which means that it can be

separated into four components: a central part containing strongly

connected components, an IN component containing nodes from

which the central component can be reached, an OUT

component containing nodes that can be reached from the central

component and a fourth component containing all other nodes.

Within the central component of the bow tie structure, we can

identify topologically relevant cycles of nodes. A cycle in this sense

is a group of nodes that are connected to each other such that the

links between nodes form a cycle containing all nodes. Definition

of cycles in a cell can represent biologically significant features,

such as feedback in the cell, which is an important way for the cell

to regulate different biological mechanisms, such as protein-

protein interactions, gene-regulation or metabolic pathways

[59,60]. We use the relevant cycles and consider the paths

attached to them, thus creating separate modules from the

interaction-network whose core components are a closed cycle.

We then look for biological relevance in these newly defined

modules. We determine if the modules produced show similarities

to biological modules (in the sense that they may act as an

independent sub-system or perform a specific biological function

in the cell) [50]. This module analysis helps one to decompose the

complex network and furthermore identify the pathways involved

in RA. By careful dissection of the pathways, novel therapeutic

interventions designed to block signaling may be developed.

Several potential targets, including MAP kinases and NF-kB, are

already being explored. Analysis of the interaction network

without any amount of decomposition will not give a full

understanding of its structure, which is important for thorough

biological interpretation.

Given that transcription factors have been shown to be potential

drug-targets, and that it has also been shown that it is possible to

modulate some transcription factors through signaling cascades,

our attention is drawn the transcription factors in our network. In

‘The Role of Transcription Factors’ we investigate whether the

transcription factors present in our network also have important

topological properties, in the sense that they link topologically

distinct parts (i.e. different modules) of the network. If this is the

case, then it may be possible to influence the different topologically

important parts of the cell, by concentrating on specific

transcription factors.

Further to analysis of the interaction map as a whole, in section

‘Analysis of Tissue-Specific Networks’ we also present the results of

a tissue-specific analysis. Here we consider whether there are

topological and biological differences in the way in which various

tissue types act within the cell with respect to RA. By assigning a

species tag to each node in the molecular-interaction map, we

produce five tissue-specific sub-maps (Blood Peripheral Blood

Mononuclear Cell (Blood_PBMC), Blood Peripheral Blood

Mononuclear Cell plus Polymorphonuclear leukocytes (Blood_

PBMC_PMN), cartilage, Synovial Fibroblast and synovial Poly-

morphonuclear leukocytes (synovial_PMN)). Of these five sub-

maps, we are only able to achieve meaningful topological results

for three (Blood_PBMC, Synovial Fibroblast and cartilage), due to

the small amount of data used to build the remaining two sub-

maps. For these three larger sub-maps, we pay particular attention

to the identification of hubs by tissue type, and to areas where

there is an overlap between tissue types. The results from this part

of the study enable us to comment on whether there exist tissue

specific markers that could play a role in the diagnosis of RA.

Throughout the analysis, we constantly are required to return to

the literature in order to determine if the topological results have

any biological significance. We present our findings and identify

areas for further research.

Results

The results section can be broken down as shown in Figure 1. In

the first, and largest, section we present the results from the

analysis of the molecular-interaction map as a whole and broken

down into topologically significant modules as previously dis-

cussed. In this first section, we determine the biological relevance

of hubs in the molecular-interaction map as well as in the three

largest modules. We find, on the whole (and particularly for the

molecular-interaction map when it is analysed before any sort of

decomposition), that the hubs in the molecular-interaction map

are already known drug targets. This is consistent with the role of a

hub in a network and is therefore of no surprise. Interestingly,

however, only one of the hubs in the molecular-interaction map is

a transcription factor, implying that the transcription factors that

act as a bridge between the gene-regulatory and the protein-

protein interaction maps, do not directly link a large number of

RA Molecular Map
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nodes. The role of hubs, as well as explanation for the biological

significance of each of the modules, is then presented. Next, we

consider the transcription factors present in the molecular-

interaction map and discuss the role of these transcription factors

from a biological point of view. Finally, we present the results from

the tissue-specific analysis.

Figure 2 shows the molecular-interaction map as displayed in

CellDesigner 4.0.1. The map is separated into a protein-protein

interaction (A) and a gene regulation map (B). The two maps are

linked by transcription factors identified from the molecular-

interaction map (discussed below). The resulting map has a total of

273 proteins, which are represented in 348 distinct chemical

species (248 of them are located in the cytoplasm, 44 in the

membrane, 21 in the nucleus, 25 in the outside of the membrane,

4 in the mitochondrion, 1 in the cytosol, 4 in the endoplasm

reticulum, 1 in the golgi apparatus) and 255 reactions and

regulations (among them, 24 protein associations, 3 protein

dissociations, 160 state transitions, 47 transcriptional regulations,

10 protein translations, 7 transportations, 2 known_transition_omitted,

indicating an indirect interaction, and 2 unknown_transitions,

indicating interactions predicted but not validated from literature

[24]). The genes associated with RA distribute almost every

organelle of the cell including Golgi apparatus, endoplasmic

reticulum and mitochondrion.

Analysis of Molecular-Interaction Map and Network
Modules

Molecular-Interaction Map. The systemic network of

interactions was first analysed as a whole and then decomposed

in to topologically significant modules. The map and all

modules are available for public use at ‘http://www.picb.ac.cn/

ClinicalGenomicNTW/temp.html’. The original network, which

has a total of 776 nodes and 886 edges, displays scale-free

properties, as expected from a biological network [56], with the in-

and out-degree distributions having power law exponents of

approximately 2.394 and 2.479 (R2 value of 0.951 and 0.948)

respectively. The network consists of 23 connected components,

with each node having an average of 2.281 neighbours (network

density 0.003). We can therefore conclude that the network is not

well-connected. Analysis of shortest path frequency shows that the

mean shortest path length is approximately 16.042

(variance = 75.80) and network diameter (maximum length of

shortest path) of 48. Using node degree to identify network hubs,

we identify six protein hubs (AKT2, EGFR, IL6, MAPK1,

RAC1,2 and TP53). An example of a protein hub (TP53), and its

connections, is shown in Figure 3.

Biological Relevance of Hubs in the Molecular-

Interaction Map. We describe in this section the biological

properties of the hubs in the whole map. Interestingly, they are all

related to RA therapy.

AKT2 is a putative oncogene encoding a protein belonging to a

subfamily of serine/threonine kinases, containing SH2-like

domains. Itis related to various kinds of antitumor drugs such as

cetuximab, erlotinib, gefitinib and lapatinib. All of these drugs are

associated with the EGFR inhibitor pathway, which plays an

essential role in regulating cell division and death [61]. AKT2 is

the hub of Module 4 and belongs to 20 different pathways (except

hsa04912, 04650, 04810, 04540, 04320 and 04670, see below).

AKT2 is also one of the synovial genomic targets of bucillamine,

Figure 2. Molecular-interaction map for Rheumatoid Arthritis. A = protein-protein interaction map, B = gene regulation map. The two maps
are joined by transcription factors.
doi:10.1371/journal.pone.0010137.g002
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mostly used as treatment in Japan to reduce pain in RA patients

[45].

EGFR is a transmembrane glycoprotein that is a member of the

protein kinase superfamily. This protein is a receptor for members

of the epidermal growth factor family. EGFR is a cell surface

protein that binds to epidermal growth factor. Binding of the

protein to a ligand induces receptor dimerization and tyrosine

autophosphorylation and leads to cell proliferation. It is associated

with some drugs to treat neoplasms such as canertinib [62],

cetuximab [63] and cisplatin [64,65].

IL6 (interleukin 6) encodes a cytokine that functions in

inflammation and the maturation of B cells. The protein is

primarily produced at sites of acute and chronic inflammation,

where it is secreted into the serum and induces a transcriptional

inflammatory response through IL6a receptor. The functioning of

this gene is implicated in a wide variety of inflammation-associated

disease states, including susceptibility to diabetes mellitus and

systemic juvenile RA. It has been found that the functional

dynamics of IL6 might be crucial for the outcome of etanercept

therapy and the particular role of IL6 in RA is presently

considered in therapeutic interventions that target IL6 or its

receptor [13]. The expression of IL6 is also reduced in RASFs

treated with trichostatin A and ultrasound [26]. IL6 was also

inhibited by SB-203580, a p38 MAPK inhibitor, in IL1B treated

broblast-like synoviocytes (FLS) cells [31]. IL6 had also been

reported to be associated with immunosuppressive effects of

glucocorticoids. Dexamethasone was found to be a potent

inhibitor of IL6 gene in connective tissue-type cells from the

synovium of patients with RA [66]. This was mainly because

dexamethasone can decrease the mRNA stability of IL6 gene [67].

MAPK1 is a member of the MAP kinase family. MAP kinases

act as an integration point for multiple biochemical signals, and

are involved in a wide variety of cellular processes such as

proliferation, differentiation, transcription regulation and devel-

opment. The activation of this kinase requires its phosphorylation

by upstream kinases. Upon activation, this kinase trans-locates to

the nucleus of the stimulated cells, where it phosphorylates nuclear

targets. It is also related to some immune regulative drugs, such as

cetuximab, and drugs used to treat cancers, such as isoproterenol

[68], erlotinib and sorafenib [69].

RAC1 and RAC2 are GTPases which belongs to the RAS

superfamily of small GTP-binding proteins. Members of this

superfamily appear to regulate a diverse array of cellular events,

including the control of cell growth, cytoskeletal reorganization, and

the activation of protein kinases. It has been shown that

Azathioprine-generated 6-Thio-GTP can prevent the development

of an effective immune response via blockade of Vav activity on RAC

proteins [70]. Azathioprine is also a drug used to treat RA [71].

TP53 responds to diverse cellular stresses to regulate target

genes that induce cell cycle arrest, apoptosis, senescence, DNA

repair, or changes in metabolism. It is a DNA-binding protein

containing transcription activation, DNA-binding, and oligomer-

ization domains. TP53 is postulated to bind to a p53-binding site

and activate expression of downstream genes that inhibit growth

and/or invasion, and thus function as a tumor suppressor.

Methotrexate is an antimetabolite and antifolate drug used in

treatment of cancer and autoimmune diseases. It acts by inhibiting

the metabolism of folic acid. In vitro studies have shown that

methotrexate caused single- and double-strand DNA breaks is

associated with TP53 [72–74]. The p53 pathway was also found to

be affected by bucillamine, which, as said above, is mainly used as

a treatment in Japan to reduce pain in RA patients [45].

Network Modules. By considering relevant cycles in the

interaction network (see Materials and Methods), we were able to

Figure 3. Cytoscape view of Module 10, with TP53 hub highlighted (red). n = nucleus, p = phosphorylation, g = gene, r = RNA, ’ = active.
doi:10.1371/journal.pone.0010137.g003
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decompose the interaction network into 11 network modules

whose core components were represented by such cycles within

the interaction network. A final 12th module was created from

weakly connected components that were disjoint from all other

modules. Table 1 gives the results from a topological analysis of all

modules. Hubs were identified in the three largest modules

(Modules 1,2 and 4) as discussed below.

Module 4 is the largest module with 292 nodes and 334 edges.

It has a density of 0.008 and in- and out-degree distributions that

can be fitted to power-law distributions with exponent values of

2.009 and 2.352 respectively (corresponding R2 values 0.961 and

0.939). Module 4 has six protein hubs: AKT2, MAPK1, EGFR,

CRKL, GNAI3 and FGFR1. Module 2 is the next largest

module, with 173 nodes and 182 edges. The density of Module 2

is 0.012 and its in- and out-degree distributions also have a good

fit to the power-law distribution (R2 values of 0.96 and 0.989),

with exponent values of 2.269 and 3.043 for in- and out-degree

respectively. Module 2 has two protein hubs, namely MAPK14

and IL6. The third largest module, Module 1, has 111 nodes and

120 edges. The density of this module is 0.019. Due to the smaller

number of nodes with high degree, the fit of a power-law to the

degree distributions for Module 1 is less accurate, with R2 values

dropping to 0.843 and 0.862 for in- and out-degree distribution.

Module 1 has only two protein hubs, MAPK8 and the complex

containing RAC1 and RAC2. As the size of other modules

quickly decreases, with approximately half of the modules

containing fewer than 50 nodes, we do not discuss their

topological features here.

Biological Relevance of Hubs in Modules. Module hubs

that are also hubs in the molecular-interaction map (namely AKI1,

MAPK1, EGFR, IL6 and RAC1, RAC2) are not re-discussed in

this section.

FGFR1 (Module 4) is a membrane protein. It is a member of

the fibroblast growth factor receptor (FGFR) family, where amino

acid sequence is highly conserved between members and

throughout evolution. The extracellular portion of the protein

interacts with fibroblast growth factors, setting in motion a cascade

of downstream signals, ultimately influencing mitogenesis and

differentiation. This protein is associated with palifermin, which is

human keratinocyte growth factor used to treat mucositis. GNAI3

(Module 4) is associated with some antidepressants such as

citalopram, fluoxetine, paroxetine and sertraline.

MAPK14 (Module 2) is also a member of the MAP kinase

family, already described above. This kinase is activated by various

environmental stresses and proinflammatory cytokines. The

activation requires its phosphorylation by MAP kinase kinases

(MKKs), or its autophosphorylation triggered by the interaction of

MAP3K7IP1/TAB1 protein with this kinase. The substrates of

this kinase include transcription regulator ATF2, MEF2C, and

MAX, cell cycle regulator CDC25B, and tumor suppressor p53,

which suggest the roles of this kinase in stress related transcription

and cell cycle regulation, as well as in genotoxic stress response.

Since this protein is one of most important members involved in

the RAF/MEK/ERK signaling pathway, MAPK14 is associated

with sorafenib, which is a drug used for the treatment of advanced

renal cell carcinoma (primary kidney cancer) and advanced

hepatocellular carcinoma (primary liver cancer). Sorafenib is a

small molecular inhibitor of Raf kinase, PDGF (platelet-derived

growth factor), VEGF receptor 2 & 3 kinases and c-Kit, the

receptor for stem cell factor. A growing number of drugs target

most of these pathways. The originality of sorafenib lays in its

simultaneous targeting of the Raf/Mek/Erk pathway [69].

MAPK8 (Module 1) is a member of the MAP kinase family (see

above). This kinase is activated by various cell stimuli, and targets

Table 1. Topological Analysis of Modules and Tissue Maps.

Network Node Edge Comp Nei Path Dia Den Din Dout Rin Rout

Main 776 886 23 2.28 16.04 48 0.003 2.39 2.48 0.95 0.95

Mod 1 111 120 1 2.13 10.71 26 0.019 1.6 2.73 0.84 0.86

Mod 2 173 182 1 2.10 15.67 39 0.012 2.269 3.043 0.96 0.99

Mod 3 75 85 1 2.27 5.83 14 0.031 1.714 2.389 0.85 0.92

Mod 4 72 82 1 2.28 5.85 14 0.032 1.664 2.286 0.85 0.81

Mod 5 12 16 1 2.67 3.33 7 0.242 1.063 1.661 0.87 0.75

Mod 6 43 48 1 2.23 3.08 8 0.053 1.664 2.635 0.89 0.95

Mod 7 11 11 1 2 3.32 7 0.2 1.807 1.807 1 1

Mod 8 4 4 1 2 2 3 0.667 na na na na

Mod 9 20 23 1 2.3 2.40 6 0.121 1.07 1.594 0.84 0.88

Mod 10 53 59 1 2.23 4.71 12 0.043 2.175 1.576 0.93 0.88

Mod 11 6 6 1 2 2.2 4 0.4 na na na na

Mod 12 74 49 25 1.32 1.76 4 0.018 2.605 4.492 0.78 1

B_PBMC 450 428 65 1.90 6.09 20 0.004 2.279 2.964 0.97 0.91

B+PMN 3 2 1 1.33 1.33 2 0.667 na na na na

Cart 50 30 21 1.2 2.37 6 0.024 2.634 3.7 0.987 1

SF 301 236 75 1.57 3.98 12 0.005 2.951 4.129 0.97 0.95

S_PMN 16 10 6 1.25 2.36 6 0.083 1.585 na 1 na

Node = Number nodes, Edges = Number edges, Comp = Number of connected components, Nei = Average number of neighbours, Path = Average shortest path,
Dia = network diameter, Den = Network Density, Din = In-degree distribution power law exponent, Dout = Out-degree distribution power law exponent, Rin = R2 value
for in-degree distribution power-law fit, Rout = R2 value for out-degree distribution power-law fit, Main = cell interaction map, Mod = Module, B_PBMC = Blood_PBMC,
B+PMN = Blood_PBMC plus PMN, Cart = cartilage, SF = Synovial Fibroblast, S_PMN = Synovial_PMN.
doi:10.1371/journal.pone.0010137.t001
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specific transcription factors, and thus mediates immediate-early

gene expression in response to cell stimuli. The activation of this

kinase by tumor-necrosis factor alpha (TNF-a) is found to be

required for TNF-a induced apoptosis. This kinase is also involved

in UV-radiation induced apoptosis, which is thought to be related

to cytochrome c-mediated cell death pathway. This protein is

related to many antineoplastic drugs such as cetuximab, erlotinib

and sorafenib [69]. This protein is also a potential target for

therapeutic treatment of metabolic syndrome. MAPK8 activation

in adipose tissue can cause insulin resistance in the liver [75].

Module Analysis. Using DAVID [76] (see Materials and

Methods) and adopting both false discovery rate (FDR) and

Bonferroni (FWER) correction to control the number of false

positives, we were able to perform a pathway analysis on proteins

involved in Modules 1, 2, 3, 4, 6 and 10. A table giving the full set

of results for Modules 1, 2, 3, 6 and 10 is available in the Table S1

(Module 4 is discussed separately below - see also Table 2).

Module 1 contains 56 proteins, of which we obtained

information about 50 proteins (the other 6 proteins were not

enrolled during the process of this DAVID pathway analysis).

Among these 50 proteins, 17 proteins are involved in the Toll-like

receptor signaling pathway, 14 proteins belong to Leukocyte

transendothelial migration and 18 proteins come from the MAPK

signaling pathway. Module 2 contains 80 proteins. Sixty-four of

which were selected in the pathway analysis. Among these 64

proteins, 45 proteins are involved in the Toll-like receptor

signaling pathway, 27 proteins belong to the MAPK signaling

pathway, 16 proteins are associated with apoptosis and 16 proteins

come from cytokine-cytokine receptor interaction. In Module 3,

23 proteins out of 30 proteins have been enrolled in the pathway

analysis. According to the statistical significance, 8 proteins are

related to the Toll-like receptor signaling pathway. Module 4 is the

biggest module, containing 112 proteins. The DAVID pathway

analysis of Module 4 showed 104 proteins distributed among 26

different pathways (see Table 2). In Module 4 there are 43 proteins

from the MAPK signaling pathway, 36 proteins from focal

adhesion, 23 proteins from the ErbB signaling pathway, and some

cancer associated pathways such as leukemia, prostate cancer and

colorectal cancer (Table 2). There are 23 proteins in Module 6, 22

proteins have been selected by the DAVID pathway analysis. Of

these, 13 proteins are involved in the natural killer cell mediated

cytotoxicity, 11 proteins are related to the T-cell receptor signaling

pathway and 10 proteins belong to focal adhesion. In Module 10,

the p53 signaling pathway has been highlighted by the DAVID

pathway analysis, in which 11 proteins have been enrolled.

Most of these pathways have been found to be playing

important roles in RA. For example, the Toll-like receptor

signaling pathway is shared by Modules 1, 2, 3 and 4. The Toll-

like receptors (TLRs) signaling pathways are membrane-bound

receptors which are expressed in innate immune cells, such as

Table 2. Module 4 Pathway.

Pathway Count List Total Bonferroni FDR

hsa04010:MAPK signaling pathway 43 104 5.05E-23 3.15E-22

hsa04510:Focal adhesion 36 104 9.43E-20 5.88E-19

hsa04012:ErbB signaling pathway 23 104 2.40E-15 1.50E-14

hsa05220:Chronic myeloid leukemia 21 104 4.46E-14 2.78E-13

hsa05215:Prostate cancer 22 104 6.69E-14 4.22E-13

hsa04664:Fc epsilon RI signaling pathway 20 104 6.25E-13 3.90E-12

hsa05210:Colorectal cancer 21 104 6.92E-13 4.32E-12

hsa05211:Renal cell carcinoma 19 104 1.52E-12 9.47E-12

hsa05213:Endometrial cancer 16 104 5.26E-11 3.28E-10

hsa05212:Pancreatic cancer 18 104 1.20E-10 7.48E-10

hsa04620:Toll-like receptor signaling pathway 20 104 3.40E-10 2.12E-09

hsa04912:GnRH signaling pathway 19 104 8.54E-10 5.33E-09

hsa05214:Glioma 15 104 1.53E-08 9.53E-08

hsa04650:Natural killer cell mediated cytotoxicity 20 104 2.58E-08 1.61E-07

hsa05223:Non-small cell lung cancer 14 104 2.99E-08 1.87E-07

hsa04910:Insulin signaling pathway 20 104 5.09E-08 3.17E-07

hsa05218:Melanoma 15 104 1.14E-07 7.09E-07

hsa04810:Regulation of actin cytoskeleton 24 104 1.57E-07 9.81E-07

hsa04370:VEGF signaling pathway 15 104 1.70E-07 1.06E-06

hsa05221:Acute myeloid leukemia 13 104 8.77E-07 5.47E-06

hsa04660:T cell receptor signaling pathway 16 104 9.01E-07 5.62E-06

hsa04540:Gap junction 16 104 1.05E-06 6.54E-06

hsa04662:B cell receptor signaling pathway 12 104 0.00007 0.0004

hsa04320:Dorso-ventral axis formation 8 104 0.0007 0.004

hsa04670:Leukocyte transendothelial migration 14 104 0.0008 0.005

hsa04210:Apoptosis 12 104 0.0009 0.006

hsa = homo sapiens, FDR = false discovery rate.
doi:10.1371/journal.pone.0010137.t002
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macrophages and dendritic cells. TLRs signaling plays an

important role in the activation and direction of the adaptive

immune system by the up-regulation of co-stimulatory molecules

of antigen presenting cells. The activation of the TLRs signaling

pathway can trigger the activation of the MAPK and NF-kB

pathways. Evidence is emerging that certain TLRs play a role in

the pathogenesis of infectious and/or infammatory diseases. For

example TLR4, which has also been mentioned in the tissue map

analysis, is one of the most studied members of TLRs. TLR4 is a

possible receptor for endogenous factors released during tissue

injury and infammation, such as hsp60 [77]. One study has shown

that TLR2 and TLR4 are expressed by RA synovial membrane

cells and are able to up-regulate inflammatory cytokine produc-

tion, which promotes the inflammatory and destructive process in

RA [78]. There is considerable evidence from rodent models that

activation of the TLRs can induce or exacerbate inflammatory

arthritis, and TLR2 deficient animals exhibited a significantly

reduced severity of arthritis [79].

The MAPK signaling pathway has been found to be involved in

Modules 1, 2 and 4. Some of the members of MAPK signaling

pathway have been identified as hubs in the topological analysis.

MAPK is a key signal transduction pathway of inflammation,

which shuttles information about inflammatory stimuli to the cell

nucleus. All the MAPK signaling pathways in these 3 modules are

triggered by IL1B, which is an important mediator of the

inflammatory response and is involved in a variety of cellular

activities, including cell proliferation, differentiation, and apopto-

sis. IL1B is also a hub in the cartilage tissue map (see below). The

MAPK pathway plays an important in the development and

progress of RA. For example, cartilage damage is a hallmark of

RA. It is based on increased proteoglycan loss as well as

attachment and invasion of inflammatory tissue into the cartilage,

which leads to its structural disintegration. Production of matrix

metalloproteinases (MMPs) by synovial tissue appears to be a key

prerequisite for synovial tissue to invade and destroy cartilage.

Synthesis of MMPs is regulated through multiple MAPK families,

suggesting that a blockade of MAPK might have structural benefit

in arthritis [80,81]. Activation of stress kinase pathways ERK,

JNK, and p38 MAPK is a typical feature of chronic synovitis

during RA, and several proinflammatory mediators use the

signaling of these stress kinase pathways [82].

The other pathways are connected to immunity and inflam-

mation, focal adhesion, apoptosis and cancers. Most of the hubs

mentioned above are members of these pathways. For instance,

the p53 pathway has been mentioned in the hubs and

transcription factor analysis. The diversity and complexity of the

pathways involved in these modules confirms that RA is a complex

systemic disease.

The Role of Transcription Factors
We identify 5 transcription factors in the global interaction

network: FOS, FOXO1, NFAT5, NFKB1 and TP53. These

transcription factors are important because not only do they link

the gene regulation map with the protein-protein map as shown in

Figure 2, but they also link different modules obtained from the

decomposition of the map.

FOS is one of the leucine zipper proteins that can dimerize with

proteins of the JUN family, thereby forming the transcription

factor complex AP-1. As such, the FOS proteins have been

implicated as regulators of cell proliferation, differentiation, and

transformation. In some cases, expression of the FOS gene has also

been associated with apoptotic cell death. Most of the genes

encoding inflammatory cytokines and matrix-degrading MMPs

are under the control of c-Fos/AP-1, and it plays a very important

role in the destruction of arthritic joints [83]. In the decomposition

of the interaction map, FOS appears in Module 2 only and

MAPK14 catalyzes the activation of FOS. FOS links Modules 1, 2

and 4 and MAPK14 also links Modules 1 and 2. Neither however,

are hubs in the large map. FOS is not in a closed cycle. FOS

belongs to Toll-like receptor signaling pathway and the MAPK

signaling pathway in Module 1 and Module 2. In Module 4, FOS

is also involved in T-cell and B-cell receptor signaling pathways.

The Toll-like receptor signaling pathway and MAPK signaling

pathway are also very important pathways in the module pathway

analysis. FOS therefore not only links the modules, but also links

the important pathways of these modules. The T-cell and B-cell

receptor signaling pathway also play an important role in the

immune effect.

FOXO1 belongs to the forkhead family of transcription factors

that are characterized by a distinct forkhead domain. It may play a

role in myogenic growth and differentiation. Unphosphorylated

active FOXO family proteins promote transcription of genes that

regulate cell-cycle progression and survival, including CDKN1B

[84], FASLG and BCL2L11 [85], which also have been listed in

the map. The relationship between FOXO1 and RA has been

studied in [86–88]. All of the aforementioned studies showed that

FOXO1 contributed to the inflammation and bone destruction in

the affected joints of patients with RA. Here, FOXO1 appears in

the largest module, Module 4. It is connected to AKT2 and AKT2

inhibits the phosphorylation of FOXO1. AKT2 is not included in

a strongly connected component in Module 4 but it has second

highest degree in Module 4 and is therefore a hub. AKT2 also

appears in Module 10. Neither AKT2 nor FOXO1 belong to any

cycles in Module 4. FOXO1 only appears in the pathways of

Module 4, it is associated with prostate cancer and insulin

signaling pathway.

NFAT5 is a member of the nuclear factors of the activated T-

cells family of transcription factors. This family plays a central role

in inducible gene transcription during the immune response. In

RA, NFAT5 mRNA is expressed in proliferating RASF but not in

nonproliferating RASF. Furthermore, NFAT5 mRNA is expressed

in RA synovium - but not in normal individuals - as well as at sites

of bone destruction. NFAT5 could therefore be related not only

with proliferation, but also with the activation and invasion of

RASF in vivo [46]. NFAT5 links Modules 1 and 9. Despite the fact

that Module 1 is relatively large (92 nodes), in the global

interaction network NFAT5 has a degree of only 3, so it is not a

highly connected node. In Module 9, it is linked to PTGS2 via

activation of PTGS2, and PPP3CB can active NFAT5. In Module

1, NFAT5 is linked to genes FOS and JUN, which are both

involved in relatively large cycles of genes (the main cycle that

forms Module 1). Module 1 can be decomposed into 7 non-unique

cycles, each cycle containing approximately 20 nodes. FOS

appears in 4 of these cycles and JUN in the other 3. This suggests

that the NFAT5 transcription pathway is closely linked to a small

number of genes that have a potentially high influence on one of

the largest modules, implying that perturbations made here could

potentially affect a larger part of the cell. NFAT5 is not related to

any pathway in the module pathway analysis.

NFKB1 is a transcription regulator that is activated by various

intra- and extra-cellular stimuli such as cytokines, oxidant-free

radicals, ultraviolet irradiation, and bacterial or viral products.

Activated NFKB1 trans-locates into the nucleus and stimulates the

expression of genes involved in a wide variety of biological

functions. Inappropriate activation of NFKB1 has been associated

with a number of inflammatory diseases while persistent inhibition

of NFKB1 leads to inappropriate immune cell development or

delayed cell growth. NFKB1 dependent gene expression in
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peripheral leukocytes is highly correlated with RA activity as

measured by DAS28-CRP. Expression of many genes responds

differentially to anti-TNF-a versus MTX, suggesting fundamen-

tally different effects on the NF-kB pathway [89]. NFKB1 links

Modules 1 and 2. In Module 1, NFKB1 and CCL4 work together

to activate the transcription of PTGS2 in the global interaction

map, which forms part of the same cycle as JUN, mentioned

above. In Module 2, NFKB1 is linked to two reactions

(re99:transcription and re40:heterodimer_association). The het-

erodimer_association of NFKBIA and NFKB1 is included in a

large cycle in Module 2. In the global interaction network, genes

that are directly connected to NFKB1 (inclusive) have small degree

(,4) and therefore are not hubs. NFKB1 is related to the Toll-like

receptor signaling pathway and the MAPK signaling pathway in

Module 1. In Module 2, NFKB1 is involved in the apoptosis

pathway as well as the above two pathways. NFKB1 is distributed

among several pathways in Module 4 involving the MAPK

signaling pathway, chronic myeloid leukemia, pancreatic cancer,

the Toll-like receptor signaling pathway, acute myeloid leukemia,

T-cell and B-cell receptor signaling pathway and apoptosis.

TP53 is in Module 10. It is connected to three genes: TP53 in its

active state in the nucleus (through state_transition), TPPP (TPPP

can phosphorylate TP53) and MDM2 (MDM2 can inhibit the

activation of TP53). TP53 has a degree of 10 in both Module 10

and the global interaction network. It does not link two modules in

our analysis, but is the hub of Module 10. Figure 3 shows the

nodes and connections in Module 10, with the TP53 hub

highlighted in red. The biological relevance of TP53 was discussed

in ‘Biological Relevance of Hubs in the Molecular-Interaction

Map’. TP53 only appears in the pathway of Module 10, where it is

the key member of the p53 pathway.

Analysis of Tissue-Specific Networks
The global interaction map was decomposed in to 5 sub-maps

according to tissue type. The Blood_PBMC_ PMN (PBMC

Peripheral Blood Mononuclear Cell, PMN Polymorphonuclear

leukocytes) and the synovial_PMN sub-networks contain 3 and 16

nodes respectively. We consider these two maps to be too small for

topological analysis.

The Blood_PBMC sub-network of the RA network is the largest

of the 5 tissue-specific networks, with 450 nodes and 428 edges.

This sub-network is sparse, with a network density of 0.004, and

an average number of 1.898 neighbours. Both the in- and out-

degree distributions can be fitted to a power-law, with exponents

of 2.279 and 2.964 (R2: 0.972 and 0.914 respectively), suggesting

the network displays scale-free properties. Figure 4A shows the

out-degree distribution for Blood_PBMC map. Using degree

distribution to find hubs, this network has five protein hubs

(AKT2, RAC1,2, TP53, GNAI3 and CROP) with out-degree

greater than 3. AKT2, RAC1,2 and TP53 are also hubs in the

global interaction network (see above). GNAI3 is a hub of Module

4 as discussed above. CROP is not a drug target.

The Synovial Fibroblast sub-network contains 301 nodes and

236 edges. It is also a sparse network (though slightly less so than

the Blood_PMBC sub-network), with a network density of 0.005.

In- and out-degree distributions have power-law exponents of

2.279 and 4.129 (R2: 0.97 and 0.953 respectively). Figure 4B

shows the out-degree distribution for the Synovial Fibroblast map,

with the power-law fitted to nodes with non-negative degree. The

out-degree distribution gives rise to three protein hubs, namely IL6

and TLR2 and TLR4 (the number of hubs is reduced here due to

the higher power-law exponent), with out-degree greater than 2.

IL6 is discussed above and TLR2 is not a drug target. However,

TLR4 is a member of the Toll-like receptor (TLR) family, which

plays a fundamental role in pathogen recognition and activation of

innate immunity. The TLR family recognises pathogen-associated

molecular patterns (PAMPs) that are expressed on infectious

agents, and mediates the production of cytokines necessary for the

development of effective immunity. TLR4 is the main receptor for

Lipopolysaccharide (LPS) and is most abundantly expressed in

placenta, and in myelomonocytic subpopulation of the leukocytes.

It has been shown that in cells expressing the 299D-399T TLR4,

LPS activated the transcription factor NFkB and increased the

expression of IL6 and TNF-a. These affects were reduced by

pretreatment of the cells with pravastatin or simvastatin [90].

The cartilage network is small, with 50 nodes and 30 edges. The

network density is 0.024. A power-law distribution can be fitted to

the in- and out-degree distributions, with exponents of 2.634 and

3.7 (R2: 0.987 and 1 respectively). See Figure 4C for out-degree

distribution with fitted power-law. This network also has two

protein hubs, IL6 and the complex containing IL12A, TNF, IL1B

and IL6 (out-degree = 2). TNF is a multifunctional proinflamma-

tory cytokine that belongs to the tumor necrosis factor (TNF)

superfamily. This cytokine is mainly secreted by macrophages. It

can bind to, and thus functions through, its receptors

TNFRSF1A/TNFR1 and TNFRSF1B/TNFBR. TNF is involved

in the regulation of a wide spectrum of biological processes

including cell proliferation, differentiation, apoptosis, lipid metab-

olism, and coagulation. This cytokine has been implicated in RA,

insulin resistance and cancers. TNF-blocking strategies are widely

used in the treatment of RA. Three anti-TNF agents are registered

for use in RA: etanercept, infliximab and adalimumab [91,92].

One study has also shown that dexamethasone (DEX) contributed

to the downregulation of MAM-induced IL1B and TNF-a gene

expression [93]. The expression of TNF was inhibited by histone

deacetylase (HDAC) in affected synovial tissue [94]. In addition,

the relationship between TNF and methotrexate in RA has also

been studied [95]. IL1B is a member of the IL1 cytokine family.

This cytokine is produced by activated macrophages as a

proprotein, which is proteolytically processed to its active form

by caspase 1 (CASP1/ICE). IL1B is an important mediator of the

inflammatory response, and is involved in a variety of cellular

activities, including cell proliferation, differentiation, and apopto-

sis. Glucocorticoids, such as DEX, inhibit interleukin IL1B

because DEX markedly decreases the stability of IL1B mRNA.

DEX was also found to be a potent inhibitor of IL1-induced

expression of the IL6 gene in connective tissue-type cells from the

synovium of patients with RA. Inhibition of the formation of

proinflammatory cytokines, including IL1B and TNF, is a

mechanism by which glucocorticoids exert anti-inflammatory

effects. Inhibition by glucocorticoids of the expression of IL1B in

antigen-presenting cells could decrease the capacity of the cells to

stimulate the proliferation of T-lymphocytes. This activity could

explain the immunosuppressive effects of glucocorticoids [66]. It

has been shown that the effect of MTX treated on RA is associated

with the genotype of IL1 gene. IL1RN*3 polymorphism is

associated with active disease in RA patients who do not respond

to methotrexate treatment, while IL1RN*long allele is associated

with the worst responses to methotrexate therapy in RA patients

[96]. IL12A is not a drug target.

Overlap Between Tissue Types. In order to be able to

comment on whether there are significant topological (and hence

potentially biological) differences between tissue types, we

considered those nodes that appear in multiple tissue types. For

all nodes that appeared in two or more tissues, we identified those

nodes that had different topological properties in different tissues

i.e. they are linked to different nodes in different tissues. If these

nodes prove to be both topologically and biologically significant,
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we can draw conclusions on the necessity of targeting different

tissues in the diagnosis and treatment of RA. In total, we found 58

nodes present in multiple tissue types (Table 3) - 57 in two different

tissue types, and one node in three different tissue types. Of these,

29 nodes had identical nearest neighbours in both tissue types

(7 isolated nodes) and 29 had different nearest neighbours

in different tissue types. A biological analysis of the nodes and

their corresponding pathways highlighted several important

overlapping nodes as discussed below. A full list of overlapping

nodes is given Table S2 and Table S3.

The interaction between CCNB1 and CDC2 links the

Blood_PBMC map and Synovial Fibrobalst map together.

CCNB1 is a regulatory protein involved in the G2/M phase of

mitosis. CDC2 is a member of the Ser/Thr protein kinase family.

The kinase activity of this protein is controlled by cyclin

accumulation and destruction through the cell cycle. The

phosphorylation and dephosphorylation of CDC2 also play

important regulatory roles in cell cycle control. The complexes

between CCNB1 and CDC2 form the maturation-promoting

factor (MPF), which is essential for G1/S and G2/M phase

transitions of eukaryotic cell cycle [97]. It has been shown in vitro

[98] that in synovial cells, the over-expression of CCNB1 and

CDC2 leads to aberrant mitosis, recognizable by abundant

cytoplasm, large pale nuclei and prominent nucleoli with

karyotypic alteration. These features are all typically found in

synovial cells adjacent to the affected cartilage and bone of the

joint in human RA and experimental animal models of arthritis.

This also confirmed that rheumatoid synovial cells are ‘tumor-like’

in behaviour [99–101]. It should be noted that the cycle

containing CCNB1 (Blood_PBMC) and CDC2 (Synovial Fibro-

blast) is a significant cycle both in the Blood_PBMC and Synovial

Fibroblast tissues. Identification of this cycle could help us to

identify the key regulatory process in the development and

progression of RA.

The complex containing PB_IKK b, PB_IKK c and CHUK, in

the largest component of the Blood_PBMC tissue map, links to the

Synovial Fibroblast tissue map. This node is a NF-kB complex,

which is a key transcription factor involved in the regulation of

immune responses and apoptosis. Both in vivo and in vitro studies

indicate that NF-kB signaling plays an important role in the

development and progress of RA. Patients with RA present

constitutively high serum levels of pre-inflammatory cytokines,

including TNF-a, IL1 and IL6, which are NF-kB target genes,

suggesting activation of this pathway in the course of RA disease.

Some activated NF-kB members such as NFKB1 and RelA were

found in the nuclei of cells from synovial tissue in RA patients,

whereas these transcript factors were not detected in the nuclei of

cells from normal synovial tissues [102]. Furthermore, the

expression of NFKB1 in synovial tissue was highest at the

cartilage-pannus junction, which is a site that is most likely to be

associated with joint erosion [103]. Apart from the increased

concentration of the active NF-kB in synovium, its binding to

DNA was found to be much stronger in RA compared to

osteoarthritis patients [104]. NF-kB is a potential drug target for

the treatment of autoimmune diseases. Indeed, a number of novel

therapeutic strategies that aim at the specific inhibition of key

elements in NF-kB pathway have been developed. For example,

Decoy oligodeoxynucleotides (ODNs), short double stranded

DNAs containing a consensus sequence for the NF-kB binding

sites, specifically block NF-kB binding to the target genes and are

effective in the down-regulation of pro-inflammatory cytokine

gene expression in vitro [105]. Apart from the specific NF-kB-

directed therapies, a variety of drugs used in the conventional

treatment of autoimmune diseases have effects on NF-kB activity.

Glucocorticoiks are an example of commonly used therapeutics

that can modulate the NF-kB pathway through several mecha-

nisms mentioned in [106].

In the tissue map, TLR2 and TLR4 are shared by the

Blood_PBMC tissue map and Synovial Fibroblast tissue map. In

different tissue types, the various TLRs exhibit different patterns of

expression. TLR2 and TLR4 are expressed most abundantly in

peripheral blood leukocytes. TLRs were first suggested to have a

role in RA in response to a pathogen initiating the disease [107].

Expression of TLR2 and TLR4 has been shown to be increased in

the synovial tissue of RA patients compared with healthy donors or

osteoarthritis samples [108,109]. Analysis of synovial tissues of

patients with RA revealed TLR2 expression in the synovial lining

on fibroblasts as well as on macrophages [110]. TLR2 was found

to be up-regulated by TNF-a and inhibited by SB-203580 [31].

Furthermore, evidence for a TLR4 ligand in the serum and

synovial fluid of RA patients has been observed. Serum and

synovial fluid from RA patients stimulated TLR4 expressing CHO

cells to up-regulate CD25, but the serum and synovial fluid from

the healthy donors had no effect on CHO cells. In contrast, the

expression of TLR4 in systemic sclerosis (SSc) and systemic lupus

erythematosus (SLE) is lower than it is in RA. Furthermore, the

serum from SSc and SLE patients cannot stimulate TLR4

expressing CHO cells to up-regulate CD25, which suggests that

TLR4 could be a specific biomarker for RA [111]. TLR4 was also

found to be associated with the response to rituximab, which is

used in the treatment of many lymphomas, leukemias, and some

autoimmune disorders [36]. The LY96 protein appears to be

associated with TLR4 on the cell surface and confers responsive-

ness to lipopolysaccyaride (LPS), thus providing a link between the

receptor and the LPS signaling pathway. So the interaction

between LY96 in synovial tissue and TLR2 or TLR4 in the

PBMC may indicate that the interaction between these two tissues

in RA is mediated by the TLR signaling pathway. Synovial

fibroblasts and macrophages activated by the recognition of

microbial components or endogenous ligands by TLRs up-

regulate the expression of proinflammatory cytokines, chemokines,

and tissue destructive enzymes. In a hypothetical feedback loop,

endogenous TLR ligands generated by the inflammatory processes

may result in chronic stimulation of synovial cells [112].

Figure 4. Out-degree distribution for different tissue types, fitted to power law (red line). A) Blood_PBMC (231:45x{2:964), B) Synovial
Fibroblast (201:76x{4:129), C) Cartilage (26x{3:7). Nodes with zero degree are not included in the fitting of the power-law.
doi:10.1371/journal.pone.0010137.g004

Table 3. Number of nodes shared by different tissue types.

Tissue type B__PBMC B+PMN Cart SF S__PMN

B__PBMC 450 0 6 25 0

B+PMN 0 3 0 3 0

Cart 6 0 50 21 0

SF 25 3 21 301 4

S__PMN 0 0 0 4 16

B_PBMC = Blood_PBMC, B+PMN = Blood_PBMC plus PMN, Cart = Cartilage,
SF = Synovial Fibroblast, S_PMN = Synovial_PMN. Some nodes were assigned to
multiple tissue types. Nodes that could not be identified by tissue type were
not included in this part of the analysis.
doi:10.1371/journal.pone.0010137.t003
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The nodes IL1B, IL1RN, MMP1, MMP3 and TNF that

overlap between synovial and cartilage tissue, as well as the nodes

CCNB1, CDC2, CDK7, CCNH, IKKb, IKKc and CHUK are

all involved in inflammation and immune reactions.

Discussion

In this study we have successfully reconstructed and analysed a

systemic network of interactions of the processes on-going in

patients affected by RA. The network has been analysed

topologically and biologically as a whole and by tissue type. The

topological results show that the network is sparse, with a large

number of connected components and a low number of average

neighbours. Although the network follows a power-law distribu-

tion as expected, the power-law exponents are higher than is

expected of a biological network (typically between 2.0 and 2.4).

This means that the probability of a node having k connections is

slightly lower than expected, resulting in fewer hubs that have a

high degree. The low-density of the network, and the lower

number of hubs with high degree makes the network particularly

robust to change. These results, however, should be interpreted

with some caution as they imply that the number of links in the

network is likely to be less than the number of links that truly exist.

We strongly encourage readers to add to the map where possible.

The analyses should be re-run once significantly more links have

been added. This, however, may take time and the map presented

here can be considered as comprehensive as possible at the time of

study.

In this study, we have also been interested in determining if the

topologically important aspects of the network have biological

significance. Hub proteins often have special biological properties:

they tend to be more essential than non-hub proteins [113] and

they are found to play a central role in modular organisation of the

protein interaction network [114]. Furthermore, hub proteins may

also be evolutionarily conserved to a larger extent than non-hubs

[115]. As a result, hub proteins can be used as targets to design

new drugs. Although not all topologically significant results can be

explained biologically, we have found that many of the hubs

identified are already drug targets for RA. This may be partly

explained by the fact that these proteins and genes are well

referenced and so finding the links associated with these genes is

relatively easy. It is interesting to note that there do exist definite

topological and biological links for the RA network, implying that

the map presented here can be used to further understand how

drugs influence RA at the molecular level. For example, from the

topological analysis alone we can speculate that the ability to affect

the rest of the network by targeting drugs at the hubs is likely to be

reduced by the aforementioned topological characteristics.

One application of the map could be to determine the likely

affect of targeting specific genes in the map, and to understand the

effect that different drugs (that target nodes in the map) have on

the rest of the network. Furthermore, those parts of the map that

were topologically important, but that currently seem to have little

biological relevance should be investigated further. It has been

shown that drug-target proteins have higher connectivity and

quicker communication with each other in a protein-protein

interaction network [116], suggesting that the hubs that seem to

have little biological relevance today may be potential targets for

future research. Through the topological analysis of this RA

network, CRKL has been identified to be a hub of Module 4. As

far as searching Pharmaccogenomics Knowledge Base website

‘http://www.pharmgkb.org/index.jsp/’, we did not find that this

protein has been used as any drug target. CRKL, containing SH2

and SH3 domains, had been shown to activate the RAS and JUN

kinase signaling pathways. Proteins with this kind of domain-

mediated protein-protein interaction are required for the trans-

mission of proliferative signals that are initiated by tyrosine

kinases. Peptidomimetic ligands based on the sequence of target

proteins for SH2 and SH3 domains may represent new

compounds for the therapy of proliferative diseases that are

dependent upon constitutively activated tyrosine kinases [117].

Via the pathway analysis, we also found that CRKL is associated

with a number of pathways, for instance, the MAPK signaling

pathway, chronic myeloid leukemia and the regulation of the actin

cytoskeleton pathways. Most of these pathways are related to the

immune and inflammation reactions. So it is reasonable here to

suggest that CRKL could be an interesting candidate as potential

new drug target for the treatment of RA. This is consistent with

the recommendation in [118].

Topologically speaking, it would seem that perturbations

targeted at specific areas of the network will die out quickly and

changes in concentrations would have to be stronger in order to

reach secondary modules, if at all possible. This occurs because the

average shortest path length in the interaction network is longer

than expected, but as the network is not well-connected and hence

the number of connected nodes is small, the power of this

calculation will not be high for this network. It is also important to

note that although mean path length is used as a measure in

biological networks, the reader should keep in mind that as the

data are scale-free, so there is skewness. Further, in the transition

from CellDesigner v4.0.1 used to draw the map, to Cytoscape [119],

used to analyse the network (see Materials and Methods), reaction

between genes and proteins are transformed from part of a link to

an actual node, this means that the shortest path that can exist

between a gene and a protein that interact is always 2, rather than

1 as may be seen in other interaction networks. It also means that

the number of links for some nodes is reduced as they are forced to

be channeled via such a reaction node. Consequently, the

clustering coefficient, which can be considered in a topological

analysis, cannot be calculated for the network studied here. It is

beyond the scope of this project to correct this but it should be

considered as an area of future research.

With the exception of the cartilage sub-map, the topological

patterns seen in the interaction map as a whole can also be seen in

the tissue sub-maps (see Table 1). For both the Blood_PBMC and

the Synovial Fibroblast map the density is low and the power-law

exponents, particularly for the out-degree distribution, are higher

than is expected for a biological network. From Figure 4, it is clear

that all three sub-maps have few nodes with degree higher than 2,

particularly in the cartilage sub-map (Figure 4C)), which has no

proteins of degree larger than 2. The low number of hubs in the

graphs implies that, from the analysis of these three sub-maps, we

are not able to identify many potential drug target sites within each

tissue type. The higher density in the cartilage sub-map could be

explained by the low number of nodes in the map. It is to be

expected that Blood_PBMC has a higher number of hubs because

there is more data available for blood tissue than other tissue types.

Despite this, there was little topological difference between the

Blood_PBMC and Synovial Fibroblast sub-maps, suggesting that

there is no topological evidence to recommend that targeting one

tissue type over the other is advantageous. However, the different

expression levels of nodes in different tissue types might suggest

otherwise. Although there is a relatively high amount of overlap

between different tissue maps, only some of the overlapping nodes

were shown to be biologically significant. In particular we note the

existence of the CCNB1:CDC2 cycle in the Blood_PBMC and the

Synovial Fibroblast tissues, which could lead to identification of the

key regulatory process in the development and progression of RA if
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investigated further. We also note the existence of TLR2 and TLR4

in both Blood_PBMC and Synovial Fibroblast as significant as this

overlap may lead us to conclude that the interaction between the

two tissue types is mediated by the TLR signaling pathway.

We have successfully been able to use network analysis methods

to identify biologically important areas of the network, including

hubs. This supports previously published hypotheses that there is a

relationship between biologically and topologically significant

areas of molecular interaction maps. Without network analysis it

would be impossible to visualize such important nodes or clusters

in such a complex graph as the one studied here. Although the

results presented here can be considered preliminary, they are, to

our knowledge, the first representation of a systematic map for

RA. The molecular interaction map improves our ability to

understand the molecular mechanism involved in RA on the

whole.

Materials and Methods

Data
Using the search terms ‘rheumatoid arthritis AND microarray

AND expression profiling’, an intensive literature search of papers

based on high-throughput RA experiments (mRNA, miRNA) was

done in order to identify genes, proteins and small molecules that

relate to RA. The animal studies of RA and the expression

profiling performed using techniques other than microarray are

deleted. Finally, 28 peer-reviewed articles had been enrolled

[11–13,17,23–46] and combined with data publicly available in

the KEGG database ‘http://www.genome.jp/kegg/’ in order to

further identify genes involved in RA and to aid reconstruction of

gene pathways. A total of 273 proteins, 58 genes, 46 RNAs, 5

simple molecules, 1 ion and 1 antisense RNA involved in RA were

identified using this method. (See Table S4 for a tabulated

summary of the literature.)

Construction of the Molecular-Interaction Network
Using the data obtained, the general molecular interaction

network was created in CellDesigner v4.0.1 [18]. Initially, connections

were built among all the molecules (proteins, genes, RNAs, simple

molecules, ions and antisense RNA) presented in the literature

studied. In some cases, detailed regulatory relationships between

different molecules, such as activation, inhibition and phosphoryla-

tion were available, enabling the re-construction of part of the RA

map. In the case where molecules were identified in the literature, but

their interactions not identified (i.e. the nodes are isolated in the RA

map), we searched the KEGG PATHWAY database for missing

connections. Here, every molecule was input as a query term and a

list of different pathways that it is involved in was obtained. For each

pathway map, we were able to obtain information about the

molecule’s neighbours, as well as the relationships among them. If the

neighbours of the queried molecule were also related to RA, then they

were added to the interaction map. Otherwise, this information was

not included. In different pathways, it may occur that the neighbours

of the queried molecule differ. In such cases, each path is treated

independently and included in the map according to the method

described above. Where no interaction information was available

from either the literature or KEGG database, the molecules were

excluded from the map.

The resulting RA map is a directed network between molecules

involved in RA, where each node represents a single molecule and

links between two nodes may represent state transition (the

transition of one node from one state to another state, namely

activation, inhibition or phosphorylation), transcription, transla-

tion or transport. Where the transition occurs in both directions

between two nodes, two directed links (one in each direction) are

used. Other types of links can only occur in one direction.

Network Decomposition and Analysis
The molecular interaction map was imported into Cytoscape

v2.6.3 for decomposition and topological analysis. Based on work

previously published [120], the network was decomposed, as

described below, into modules using the Cytoscape plugin BiNoM

[121]. It should be noted here that activation or inhibition

between two proteins in Celldesigner is represented as a node in

Cytoscape. These nodes are given ‘re’ as a prefix, followed by an ID

number assigned by the software.

As we expect the graph to have a bow tie structure [56], we first

separate the map in to three sub-maps; namely a central cyclic

part that contains strongly connected components (SCC), an in-

component and an out-component. (All strongly connected

components of the central-cyclic part were extracted using the

standard Tarjan’s algorithm, implemented in BiNoM.) The in-

and out-components contain those parts of the map from which

the central cyclic component can be reached (IN) and those that

can be reached from the central cyclic component (OUT). The

central cyclic part may contain several disjoint strongly connected

components. Since feedback is one of the ways that an organism

uses to regulate different biological networks, we decomposed the

central cyclic part into relevant cycles, where a relevant cycle is

defined as a cycle that is not the sum of shorter cycles [122].

Definition of relevant cycles can provide information about

feedback within the network.

As each cycle is not necessarily unique, we merged those cycles

that shared more than half of their nodes. This produced the core

components for 11 modules that may be of biological, as well as

topological, interest.

Given the core components of the 11 potentially important

modules that we wish to analyse, we reintroduced the nodes (and

components of nodes) that were in the IN and OUT sub-maps.

When each module is merged with the IN and OUT sub-maps,

only the connected parts are kept. Where components were not

disjoint (i.e. were connected to multiple modules), the component

was manually assigned to the module with which the majority of

nodes were connected. If a component was connected to two

different modules by the same number of nodes, it was assigned to

the largest module. The union of all of the modules was then

compared to the original graph to identify those nodes that had

not been assigned to a module. This gave rise to a 12th module

containing 13 connected components and 12 isolated nodes, that

were disjoint from all other modules. The components in this

module appear in the outer-section of the bow tie structure. The

12 modules vary greatly in size, with the number of nodes varying

from 4 to 292 nodes. This implies that the original map has at least

one large cluster of nodes, which is not well connected to other,

smaller clusters. All modules can be downloaded in Cytoscape

format at: ‘www.picb.ac.cn/ClinicalGenomicNTW/temp.html’.

Once the network had successfully been decomposed, we used the

Cytoscape plugin, NetworkAnalyzer [123], to run a topological analysis

on each of the 12 modules. The topological properties that we

consider to be of most biological interest here are given in Table 1.

If the networks that we analyse are scale-free (i.e. they fit a

power-law distribution), then their topology should be determined

by a few highly connected nodes (hubs), that link the rest of the

less-connected nodes to the system. Biologically speaking, nodes

that can be identified as hubs in a network may lead us to be able

to more readily identify important pathways in this complex

network. We use both the in- and out-degree to identify hubs in

the original map as well as in the larger of the 12 modules.
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Biological Interpretation. We analysed the outputs from the

topological analyses in order to determine if there was any biological

significance in the topological results, in particular we use the

Pharmaccogenomics Knowledge Base website ‘http://www.

pharmgkb.org/index.jsp/’ and corresponding literature to determine

if the nodes that were identified as being topologically important are

also associated with drugs that are used to treat RA. Furthermore, we

use DAVID (The Database for Annotation, Visualization and

Integrated Discovery, [76]) ‘http://david.abcc.ncifcrf.gov/home.

jsp’, which provides a comprehensive set of functional annotation

tools for investigators to understand biological meaning behind large

list of genes, to obtain KEGG pathway information of Module 1,

Module 2, Module 3, Module 4, Module 6 and Module 10. The

remaining five modules are too small to be able to obtain meaningful

results. In the analysis, we control at the 0.01 level the number of false

positives using two statistics: False Detection Rate (FDR) and

Bonferroni correction (FWER).
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