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Abstract

BED estimates of HIV incidence from cross-sectional surveys are obtained by restricting, to fixed time T, the period over
which incidence is estimated. The appropriate mean recency duration (VT ) then refers to the time where BED optical
density (OD) is less than a pre-set cut-off C, given the patient has been HIV positive for at most time T. Five methods, tested
using data for postpartum women in Zimbabwe, provided similar estimates of VT for C = 0.8: i) The ratio (r/s) of the number
of BED-recent infections to all seroconversions over T = 365 days: 192 days [95% CI 168–216]. ii) Linear mixed modeling
(LMM): 191 days [95% CI 174–208]. iii) Non-linear mixed modeling (NLMM): 196 days [95% CrI 188–204]. iv) Survival analysis
(SA): 192 days [95% CI 168–216]. Graphical analysis: 193 days. NLMM estimates of VT - based on a biologically more
appropriate functional relationship than LMM – resulted in best fits to OD data, the smallest variance in estimates of VT ,
and best correspondence between BED and follow-up estimates of HIV incidence, for the same subjects over the same time
period. SA and NLMM produced very similar estimates of VT but the coefficient of variation of the former was .3 times as
high. The r/s method requires uniformly distributed seroconversion events but is useful if data are available only from a
single follow-up. The graphical method produces the most variable results, involves unsound methodology and should not
be used to provide estimates of VT . False-recent rates increased as a quadratic function of C: for incidence estimation C
should thus be chosen as small as possible, consistent with an adequate resultant number of recent cases, and accurate
estimation of VT . Inaccuracies in the estimation of VT should not now provide an impediment to incidence estimation.
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Introduction

The BED Capture Enzyme Immuno-Assay (BED-CEIA or

simply BED) measures the increasing proportion of anti-HIV-

1 IgG in total IgG following HIV seroconversion [1]. HIV positive

cases are classified as ‘recent’ seroconverters if they have a

normalized optical density (OD) below a given cut-off on the BED

assay. In principle the estimation of HIV incidence, i.e., the rate of

occurrence of new infections, is a straightforward process using

such a test, involving only enumerating the recent infections in a

cross-sectional survey.

In practice, however, application of the BED method has

resulted in over-estimates of HIV incidence [2]. Part of the

problem with the application of the method is that there is no

general agreement on how best to define the total times that

patients spend in the recent state during their lives, let alone how

best to estimate their mean value [3,4].

The situation has clarified recently, however, with the

demonstration that it is neither necessary nor desirable to estimate

the mean recency duration over the whole life of a patient [5,6].

Instead we should estimate the mean time spent in the recent state,

i.e., the mean recency duration, during the time that patients have

been HIV positive for at most some pre-defined time T. In this

paper we investigate a number of approaches to the estimation of

the mean recency duration for the BED method under this

simplified scenario.

In so doing we investigate whether there is an optimum way of

estimating the mean recency duration or whether several

estimating procedures provide similar answers and whether, then,

simple approaches will provide adequate answers. We also ask

how estimates of the mean recency and incidence are affected by

our choice of cut-off and whether these effects differ with our

choice of estimation method.

Since all of the methods investigated below have been used

previously in the literature, we do not in general attempt to

provide formal statistical justification for their use, except where

we have suggested modifications to the methods. Instead we

contrast the resulting estimates in terms of their means and

variances under different sets of input conditions, and then discuss

under what conditions there could be reasons for preferring some

estimators over others.

Methods

Data
Mean recency duration was estimated from data produced

during the Zimbabwe Vitamin A for Mothers and Babies

(ZVITAMBO) Trial, in Harare, Zimbabwe. All details regarding
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the study design, data collection and ethical clearance have been

described previously [2,5,7].

Briefly, between October 1997 and January 2000, 14,110 women

and their babies were recruited within 96 hours of giving birth,

tested for HIV at recruitment and at follow-up visits at 6-weeks, and

3, 6, 9, 12 …. 24-months. All available HIV positive samples from

seroconverting mothers and from mothers who tested HIV positive

at baseline, or at the 12-month visit, were tested by BED: subsets of

these data were used to estimate mean recency duration. The time

distribution of seroconversions during the first 12-months postpar-

tum was also used to estimate HIV incidence [8,9].

Incidence Estimation Using the BED
For BED data obtained from the analysis of cross-sectional

survey data, two independent derivations [5,6] suggest that a

weighted average of the incidence rate over some pre-defined time

T is best estimated by:

ÎI~
R{eP

(VT{eT)N
ð1Þ

where ÎI has units T21, P and N are the numbers of seropositive

and seronegative clients in the sample taken at time T, R the

number of infections classified as recent, e is the probability that a

case tests as a recent infection given that the case has been HIV

positive for time .T, and VT is the mean recency duration for

those cases that have been alive and testing recent by BED while

HIV positive for time # T: VT has the same units as T. R, VT and

e are functions of the pre-set OD cut-off (C). The variance of ÎI
takes account of uncertainties in the estimates of both VT and e, as

detailed in [6]. When e= 0 or, equivalently, when no adjustment is

made for e:

ÎI0~
R

VT N
ð2Þ

Estimating the Mean Recency Duration
For pre-defined time T and cut-off C, set at levels convenient to

the experimenter, we wish to estimate the mean time (VT ) that a

case spends in the recently-infected state (i.e., with BED optical

density,C) while alive and infected for at most time T: formally

VT may be termed a restricted mean survival time with

VT~E( min (Y ,T)), where Y is the time to crossing C. Without

loss of generality, we take T as one unit of time, specifically one

year for the ZVITAMBO study. Values of both VT and e are

required in order to estimate the incidence from BED data

obtained from cross-sectional surveys. The value of e can be

estimated in a given situation from a sample of cases known to be

HIV positive for time .T. Estimates of VT were obtained using

five different methods:

i) Proportion of recent infections among seroconverters,

r/s [6]. For cases that are HIV negative at time 0 and tested

again at time T, VT=T gives the probability that a seroconverter

tests recent by BED – assuming a uniform distribution of

seroconversion events over [0,T] [6]. It follows that, if s is the

number of HIV positive cases observed at time T, among those

HIV negative at time 0, and r is the number of these

seroconverters that test recent by BED, given an OD cut-off of C:

V̂VTrs~r=s ð3Þ

Notice that r here is the number of women testing recent at time

T only among women who were HIV negative at baseline,

whereas, more normally as in Equations (1) and (2), R refers to the

number testing recent in a population cross sectional survey.

It has been argued that a good estimate for the mean recency

duration will ensure equality between BED and follow-up

estimates of incidence (ÎIf ) if both estimates are made over an

identical period (T ), using the same subjects [5]. Thus, taking

ÎIf ~ÎI0, substituting in (2) and re-arranging, we get the mean

recency duration, given a follow-up incidence rate of ÎIf :

V̂VT ,f ~
r

ÎIf N
ð4Þ

with variance given by:

var(V̂VT ,f )~
r2var(1=ÎIf )

N2
ð5Þ

where an approximation to var (1=ÎIf ) is derived using the delta

method.

The ratio

V̂VT ,j=V̂VTrs~
r

ÎIf N

s

r
~

s

NÎIf

ð6Þ

is again independent of r and thus of C and has a numerical value

close to one. The ratio r/s in (3) should thus provide an estimate of

the mean recency duration that is close to the estimate that would

be required to ensure equality between follow-up and BED

estimates of incidence.

ii) Linear mixed model (LMM) [1,2]. Transformation of

the unbalanced longitudinal data produces a linear mean structure

and allows, by solving for t, the estimation of the time (w(i) for case

i) between the time at which OD begins to increase above baseline,

Table 1. The numbers of independent BED tests provided by
the 353 women who seroconverted during follow-up in the
ZVITAMBO Trial, when either no exclusion criteria were
applied, or where case were excluded if either there was only
s = 1 sample per case, or the maximum time (tmax) between
the last negative and first positive HIV tests was greater than
120 days.

Inclusion criterion

BED samples per case All tmax #120 days s.1

1 167 –

2 89 28

3 35 25

4 21 17

5 24 17

6 8 5

7 8 7

8 1 1

Total 353 100

doi:10.1371/journal.pone.0049661.t001

Estimating the Mean Recency Duration
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Figure 1. Fits to the BED OD data for a single seroconverting mother from the ZVITAMBO Trial. Predicted values obtained from: A. LMM.
Linear regression of the square root of OD values against log time (t) since the last HIV negative test (Equation (7)). B. NLMM (U). Fitting the non-linear
function given by Equation (8) to the untransformed BED OD data. C. NLMM (L). Fitting the non-linear function given by Equation (9) to the log-
transformed BED OD data. D. Using the fit described in C, but now plotting loge(OD) on the ordinate.
doi:10.1371/journal.pone.0049661.g001

Estimating the Mean Recency Duration
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Figure 2. Fits to the BED OD data for ZVITAMBO mothers providing at least six BED samples following seroconversion. Fitting the
non-linear function given by Equation (9) to the log-transformed BED OD data for 12 different women in the ZVITAMBO Trial who provided either six
or seven separate BED results following seroconversion, and where the time between last negative and first positive HIV tests was at most 120 days.
Plots of loge(OD) against estimated time since seroconversion.
doi:10.1371/journal.pone.0049661.g002

Estimating the Mean Recency Duration
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and the time it reaches the OD cut-off (C) [1,2]. Changing optical

density for each individual i is modeled as:

ffiffiffiffiffiffiffiffiffiffi
ODij

p
~AizBi ln (t0

ij)zeij ð7Þ

where Ai and Bi are constants containing fixed and random

effects, t0ij is the time at observation j since the last HIV negative

test and the eij are independent and identically distributed normal

errors. The LMM approach to fitting these data studied changes

over time within subjects and for the entire group. Each recency

duration is defined as the time spent in the recent state, with the

upper limit restricted to T. Bootstrap techniques were applied to

these individual estimates to obtain the mean and confidence

intervals for the mean recency duration (V̂VTL
), with the provisos

noted above.

iii) Non-linear mixed model. (NLMM) [10]. Sweeting et al.

[10] modeled changing BED optical density for each individual i,

at observation j, as:

ODij~aiz(bi{ai) exp ({citij)zeij ð8Þ

where ai, bi and ci are constants, tij is the time since

seroconversion and the eij are independent and identically

distributed normal errors. The date of seroconversion is assumed

to be uniformly distributed between the dates of last negative and

first positive HIV tests. Individual recency durations were obtained

by using an inverse prediction technique [10]. A Bayesian

approach using Markov Chain Monte Carlo (MCMC) methods

is implemented to estimate the posterior distribution of the recency

duration for each individual, with the upper limit restricted to T.

Similarly, the distribution of the mean recency duration is

obtained using the MCMC iterations. The mean recency duration

(V̂VTNL
) and credibility interval are obtained from this distribution.

This method assumes that the underlying biomarker process

increases monotonically. Due to measurement error, the observed

measurements will fluctuate around the underlying trajectory and

will not increase monotonically.

We investigated a variant of this function:

log (ODij)~aiz(bi{ai) exp ({citij)zeij ð9Þ

where ci.0, ai.bi and the eij are independent and identically

distributed normal errors. This function also approaches an

asymptote for large t and has the further property that it goes to

zero as t R 2‘.

iv) Survival analysis (SA) [9,10]. Assuming no underlying

parametric model for the recency duration, the SA approach is

followed when recognizing the data as being double interval

censored. The exact times of seroconversion and of reaching a pre-

defined OD cut-off are not known, but intervals for each are

obtained from the data. This creates an interval of the shortest and

longest possible recency durations for each individual. Sweeting

et al. [10] used such data to calculate the upper and lower bounds

of the cumulative distribution function for the recency duration.

They found this to be of little practical use and did not pursue the

method to provide mean values of the recency duration.

They also noted that carrying out a univariate survival analysis

of the double interval censored data, as if they were single interval

censored, assumes an incorrect likelihood function. We consider

Figure 3. Mean recency durations, estimated using different methods, as a function of the BED pre-set optical density cut-off (C).
Mean recency durations (with 95% confidence intervals) estimated using: A. Non-linear mixed modeling (NLMM); linear mixed modeling (LMM); the
proportion of recent infections among seroconverters tested at one year postpartum (r/s). B. Survival analysis (SA); graphical analysis (Graph). NLMM
estimates, included in both A and B as a reference, increased quadratically with C: OD = 264.4C2+275.3C+17.4 (R2.0.999). The dotted line indicates
the greater variability inherent in the graphical method of estimation.
doi:10.1371/journal.pone.0049661.g003
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an alternative approach where we approximate the time of

seroconversion to be the mid-point between the times of the last

negative and first positive HIV tests. Given that, for our data, the

maximum time between these tests was set at 120 days (average 83

days), the average error in the assumed date of seroconversion

should be small. The data are then single interval censored and

Turnbull’s modification of the Product-Limit Estimator yields a

survival function which, when integrated over [0,T], provides a

mean recency duration (V̂VTS
)and corresponding confidence

intervals. SA has the advantage of having no parametric

assumptions, but the disadvantage that it does not use information

on the shape of the increase in OD with t.

v) Graphical method [1]. For seroconverting cases that

have been HIV positive for less than time T, the mean recency

duration was estimated from a scatter plot of BED OD values and

the time (tS) since seroconversion, estimated here as the mid-point

between the last negative and first positive HIV tests. For a given

choice of C we seek a recency duration (V̂VTG) that produces an

equal number of cases where: i) tS,(V̂VTG) and OD$C and ii)

where (V̂VTG)ƒtsvT and OD,C – i.e., which results in equal

values of the sensitivity and specificity over time T [3].

Data Analysis
Data were analyzed using Microsoft Excel, R version 2.14.1

[11] and WinBUGS 14 [12]. The code used to produce the

NLMM estimates was that used in [10].

Results

HIV and BED Test Results at Baseline and Follow-up
Of 14,110 women recruited, 9562, 4495 and 53 mothers tested

HIV negative, positive and indeterminate, respectively. During

follow-up, 353 of the initially HIV negative mothers were seen to

seroconvert: the numbers of times that each of these cases was

seen, and tested for HIV and for BED optical density (OD), are

shown in Table 1.

At 12-months postpartum, 6829 of the baseline HIV negative

cases were retested: 6595 still tested HIV negative and s = 234

tested positive. All of the HIV positive cases were tested using BED

and r = 123 of them had an OD,0.8 – i.e., they tested ‘‘recent’’ at

the commonly used OD cut-off. Of the baseline HIV positive

cases, 3010 were seen again at 12-months and all were confirmed

as still HIV positive. Of these cases, 2749 were tested using BED

and 142 of them had an OD,0.8, i.e., tested ‘‘recent’’, despite

having been HIV positive for at least one year.

The r/s estimator used only the above HIV and BED test data

Figure 4. Graphical approach for estimating the mean recency
duration. The graph shows a scatter plot of all BED OD values
obtained from seroconverting women from the ZVITAMBO study,
where the time between the last negative and first positive HIV tests
did not exceed 120 days and where the woman provided at least four
HIV positive samples. Horizontal line marks a pre-set OD cut-off of 0.8;
vertical lines mark a pre-set cut-off of T = 365-days and a line whose
position can be varied until the number of points in rectangles A and B
are the same. Points in the other four rectangles are not used in this
estimating procedure.
doi:10.1371/journal.pone.0049661.g004

Table 2. Mean recency duration for seroconverting
postpartum women in the ZVITAMBO Trial, estimated using
five different approaches.

Method

Mean recency
duration
(95% CI) (days) Coefficient of variation (%)

i. NLMM 196 (188–204) 2.0

ii. LMM 191 (174–208) 4.7

iii. Survival analysis 192 (168–216) 6.4

iv. Ratio r/s 192 (168–216) 6.4

v. Graphical 193 –

The optical density cut-off was fixed at 0.8 for all methods, minimum of two
samples per case were required and the maximum allowable time between the
last negative and first positive HIV tests was 120 days.
doi:10.1371/journal.pone.0049661.t002

Table 3. Mean recency duration for seroconverting
postpartum women in the ZVITAMBO Trial, estimated using
non-linear mixed modeling (NLMM), as a function of the
minimum number of samples (NS) allowable per client and
the maximum period (t0) allowed between the last negative,
and first positive, HIV tests; n denotes the resulting number of
clients included in the test.

t0 (days) NS n Mean recency (95% CrI) (days)
CoV
(%)

80 2 32 176 (165–187) 3.2

80 3 27 179 (166–191) 3.5

80 4 23 193 (179–207) 3.7

120 2 100 196 (188–204) 2.0

120 3 71 199 (191–208) 2.2

120 4 47 194 (183–205) 2.9

160 2 109 193 (185–200) 2.0

160 3 78 196 (188–204) 2.1

160 4 51 192 (182–202) 2.6

The optical density cut-off was fixed at 0.8 for all estimates. The coefficient of
variation (CoV) is defined as the standard error of the estimate divided by the
mean, expressed as a percentage.
doi:10.1371/journal.pone.0049661.t003
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from baseline and twelve months. The other four methods used all

of the qualifying data available from follow-up. For mixed effects

modeling and survival analysis a minimum of S = 2 samples per

patient are required: there were 186 such cases (Table 1). To

minimize uncertainty regarding the time of seroconversion it is,

moreover, necessary to limit the maximum time (tmax) allowed

between last negative and first positive samples [2]: initially tmax

was set at 120 days. The above selection criteria resulted in a

sample of 100 women (Table 1), who were used to compare the

performance of the LMM, NLMM, SA and graphical estimators.

Sensitivity of the estimates of VT to these selection criteria was

investigated by varying S between 2 and 4 and tmax between 80

and 160 days. Estimates were obtained for OD cut-offs (C) ranging

from 0.4 to 1.2.

Estimates of the Mean Recency Duration
i) Estimates using r/s. Previously published survival anal-

ysis of the follow-up HIV test data provided an estimate of the

probability (J ) of seroconverting during the first year postpartum

of 3.4% (95% CI: 3.0%–3.8%) or, equivalently, an instantaneous

incidence rate (I) of 3.46% per year (95% CI: 3.05%–3.87%),

approximating I from I = 2ln(12J ), and using the approximation

that the incidence is constant over the interval [0,T] [8,9].

Of the cases testing HIV negative at baseline, and then tested

again at 12-months, N = 6595 tested HIV negative. Seroconver-

sion was detected among s = 234 of these cases, and r = 123 of

these tested recent by BED when using a cut-off of C = 0.8. For this

cut-off it is confirmed that the mean recency duration provided by

Equations (3) and (4) are closely similar, as expected:

(V̂VTrs )~
r

s
~

123

234
~0:527 years~192 days

½95% CI 168{216 days�

(V̂VT ,f )~
r

ÎIf N
~

123

0:0346|6595
~0:540 years

~197 days ½95% CI 174{220 days�

Accordingly, further reports will contrast only (V̂VTrs
) to the

estimates provided by the regression, survival analysis and

graphical approaches.

ii) & iii) Linear and non-linear mixed modeling. Figure 1

provides an illustration of the fits achieved using the functions in

Equations (7), (8) and (9) to data for the single ZVITAMBO

seroconverting woman who provided BED samples at eight

separate time points post-seroconversion. While all of the functions

provide reasonable fits to these data, Equation (7) predicts that OD

R ‘ both as t R ‘, and as t R 0 (Figure 1A). Equation (8)

matches biological observations better, in that the OD approaches

a finite asymptote as t R ‘. However, OD R 2‘ as t R 2‘ so

that the predicted value of the OD can be negative for small

positive values of t (Figure 1B). This property could be avoided by

insisting that bi.0, but the function still goes to 2‘ as t R 2‘ and

has an inappropriate shape in the neighborhood of t = 0. Equation

(9) has the property of approaching finite asymptotes for both large

and small times: OD R exp(ai) as t R ‘, and OD R 0 as t R 2‘.

Unlike Equation (8) therefore, it never predicts negative values of

OD and provides better fits to the data in the neighborhood of

t = 0 (Figure 1C), matching the observation that there is a delay,

following seroconversion, in the increase in BED optical density.

Figure 1D shows the same fit as for Figure 1C but plotting

loge(OD) on the ordinate.

The likely form of the increase of the BED optical density with

time since seroconversion can only be well judged from results for

those individuals who are seen a number of times over an extended

period. Figure 1D and Figure 2 shows plots for all thirteen cases in

the ZVITAMBO data set where seroconverting subjects provided

at least six independent BED results, and where the time between

last negative and first positive HIV tests was at most 120 days. All

cases were followed up for more than a year and 8/13 followed for

more than 18 months, and in all cases Equation (9) provided a

good fit to the data for individual clients (Figure 2). For 33/47

(70%) of cases where there were at least four BED results,

Equation (9) provided a better fit to the data than Equation (8):

accordingly, results are only presented below for fits using

Equation (9).

BED data for all qualifying seroconverting cases were analyzed

using LMM and NLMM. For the NLMM method, estimates of

(V̂VT ) increased quadratically for C varying between 0.4 and 1.2.

For C,0.6 the LMM estimates were significantly lower than those

from the NLMM, but there were no significant differences

between the estimates for C = 0.6–1.2 (Figure 3A). The r/s

estimates did not differ significantly from either the LMM or

NLMM estimates for C#1.0, although the point estimates were

consistently lower than the NLMM estimates and diverged

increasingly from them for C.1.0. The major differences between

the estimators lay in the coefficient of variation (CoV, i.e., the

standard error divided by the mean), which was, on average, 2.3

Figure 5. The relationship between the long-term false-recent
rate (e) and the pre-set optical density cut-off (C) in the
ZVITAMBO Trial. The value of e was estimated as the proportion of
cases with a BED OD,C among women tested at T = 12-months
postpartum, given that they had previously provided a positive HIV test
at baseline. Error bars indicate the 95% confidence intervals.
doi:10.1371/journal.pone.0049661.g005
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and 3.2 times as high for the LMM and r/s estimates, respectively,

as for the NLMM estimates.

iv) Survival analysis. For estimates at each C#1.0 there

were negligible differences (on average 1.9%) between the SA and

NLMM estimates (Figure 3B). The average CoV for the SA

estimate was, however, .3 times as high as for the NLMM

estimates.

v) Graphical method. Figure 4 provides an example of the

use of this method. For a given choice of the OD cut-off, C, the

vertical line, shown at t = 193 days in Figure 4, is moved along the

Figure 6. HIV incidence, estimated using BED, with the mean recency duration estimated using four different methods. HIV incidence
(with 95% confidence intervals) among women during their first year postpartum in the ZVITAMBO Trial, calculated using estimates of the mean
recency duration from non-linear mixed modeling (NLMM), linear mixed modeling (LMM), survival analysis (SA) and graphical analysis (Graph).
doi:10.1371/journal.pone.0049661.g006

Figure 7. HIV incidence, estimated using BED, with the mean recency duration estimated using five different methods. HIV incidence
(with 95% confidence intervals) in women during the period prior to their recruitment into the ZVITAMBO Trial. A. Non-linear mixed modeling
(NLMM); linear mixed modeling (LMM); survival analysis (SA). B. The proportion of recent infections among seroconverters tested at one year
postpartum (r/s); graphical analysis (Graph). Results for NLMM included for comparison.
doi:10.1371/journal.pone.0049661.g007

Estimating the Mean Recency Duration
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time axis until the numbers of points in rectangle A (those cases

that have been infected for at least t days, but less than T = 365

days and test as recent infections, with BED OD,C) is the same as

those in rectangle B (those cases that have been infected for a

period less than t, but test as long-term infections with BED

OD$C).

Whereas it was not possible to provide confidence intervals for

this simple method the estimates of VT are markedly more

variable than those provided by the LMM, NLMM and SA

methods (Figure 3A, B). This variability, and the approximately

step-wise increase in VT with increasing C, results from the regular

timing of follow-up visits in the ZVITAMBO Trial, which

produced approximate vertical alignment of many of the readings

in Figure 4. This effect was particularly noticeable for times close

to seroconversion.

At the commonly used cut-off of C = 0.8 the mean of the

estimates from all five methods was 193 days (range 191–196

days), with all estimates differing by ,2% from this figure and with

an average deviation of 0.8%. None of the four estimates for which

it was possible to provide 95% confidence intervals differed

significantly from each other (Figure 3, Table 2). The CoV for the

NLMM estimate was, however, less than a half of that for the

LMM estimates and less than one third of that for the SA and r/s

estimates (Table 2).

Sensitivity of the Estimates of VT to Data Selection
Estimates of the mean recency duration were fairly insensitive to

the way in which data were selected. When the minimum

allowable number of samples per client was varied between 2 and

4, and tmax between 80 and 160 days, the estimates of VT estimated

using NLMM differed by at most 8% from the mean of the

estimated values (Table 3).

Variation of the False Recent Rate with the OD Cut-off C
Whereas we have, for completeness, examined the way in which

various estimators perform over a large range of C, it is also clear

that the long-term false-recent rate (e) increases with C. In the case

of the ZVITAMBO Trial, e increases quadratically with changes

Figure 8. Variability in BED HIV incidence estimates as a
function of optical density cut-off (C). The coefficient of variation
for BED HIV incidence estimates obtained using the ZVITAMBO baseline
data, as a function of the pre-set optical density cut-off (C). Incidence
calculated using Equation (1) with values of VT estimated by NLMM.
doi:10.1371/journal.pone.0049661.g008

Figure 9. Distribution of BED optical density among women at recruitment into the ZVITAMBO Trial.
doi:10.1371/journal.pone.0049661.g009
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in C between 0.1 and 1.5 (Figure 5). Given that a central aim of

estimating procedures such as BED is to minimize the value of e, it

will make sense to use the lowest value of C consistent with other

considerations (see below).

Incidence Estimates as a Function of C and the Mean
Recency Estimation Method

1. Incidence over the first 12-months postpartum. BED

data from the ZVITAMBO Trial, for women testing HIV positive

both at baseline and at 12-months postpartum, were used to

estimate e. Data for these cases cannot therefore be used to obtain

BED estimates of incidence over this period, since this incidence

estimate, obtained from Equation (1), involves using the estimated

value of e.
BED estimates of the incidence over this period can, however,

be obtained legitimately via Equation (2), which does not involve e,
as long as we use only the BED data for seroconverting women

who tested HIV positive at 12-months postpartum. It is then

possible to compare the follow-up estimate of incidence (ÎIf ), shown

as a horizontal line in Figure 6, with estimates arising from

Equation (2) for varying values of C, and the appropriate values of

VT , obtained using different estimators. Incidence estimates

appropriate to the r/s estimate of VT are not shown since these

are, as evident from Equation (6), a constant multiple of ÎIf .

For all values of C tested, the NLMM estimates of incidence

showed the smallest deviation from the follow-up estimate of

ÎIf = 3.46%, varying only between 3.23% and 3.50%: the SA and

NLMM estimates were closely similar for all C #1.0. For C = 0.8,

0.9 and 1.0 incidence estimates arising from the use of all methods

differed from each other, and from ÎIf , by amounts that were small

compared to the size of the confidence intervals. For C,0.8 the

LMM and graphical methods varied more substantially from

NLMM and SA estimates (Figure 6).

Despite the differences in CoVs between the estimates of VT

arising from the NLMM, LMM and SA methods, there was little

difference between the sizes of the confidence intervals for the

incidence estimates. The sizes of these latter intervals are thus

dominated by counting errors arising from the use of the incidence

estimator defined by Equation (2).

2. Incidence over the year prior to birth. The way in

which our choice of C, and thus of VT and e, affects incidence

estimates can also be tested using the ZVITAMBO baseline BED

data since these data were not used in the estimation of either VT

or e. In this case, however, there is no follow-up incidence estimate

for comparison, since baseline marked the first time that any of the

ZVITAMBO subjects had been seen in the study.

The contrasts between estimating methods seen in the

postpartum incidence estimates are, as expected, largely repeated

for the baseline analysis (Figure 7) with the graphical method

showing the greatest variability with changes in C, and with

differences between the estimates from other methods all small by

comparison with the size of the confidence intervals.

For the NLMM method, which produces estimates of VT with

the smallest CoVs, the CoVs of the resulting incidence estimates

also change in a regular manner with increasing C and show a

minimum value for C,0.8 (Figure 8). That is to say that the value

of C commonly used in the application of the BED method is also

associated with the smallest coefficient of variation.

The consistent trend in the baseline HIV estimates with changes

in C are different from those seen in the 12-months postpartum

results (cf Figures 6 and 7) where the NLMM estimates of

incidence were largely independent of C. The source of the

variation in the baseline estimates appears to lie in the distribution

of the baseline optical density data (Figure 9), which show a small

local peak for C in the region 0.6–0.8, and a sharp increase in

frequency at C<1.2. Any particular choice of C results in the

estimation of incidence over a particular time period prior to

sampling and the distribution of BED optical density in Figure 9

suggests that incidence is not uniform over the period leading up to

parturition.

Discussion

Which Estimator?
For C in the neighborhood of 0.8 there is little difference

between the values of VT arising from any of the five estimators

tested here. However, at all values of C tested, NLMM estimates of

VT had markedly smaller variance than the LMM, SA and r/s

estimates. As such the NLMM method provides the best available

approach for estimating VT , for data sets such as those from the

ZVITAMBO study where there is sufficiently detailed information

to support meaningful regression analysis. Only the NLMM and

LMM methods use information on the changes in BED optical

density with time since seroconversion and, accordingly, provide

estimates with lower variance. The NLMM is markedly superior to

the LMM in this regard, being based on a more appropriate

functional relationship, with sensible limits for large and small

times post-HIV infection. This ensures better fits to the data and

markedly smaller variation than for the LMM. NLMM should

accordingly always be used in preference to LMM.

Estimates of VT from the simple graphical method show the

greatest variability and, as demonstrated above, are strongly

dependent on the time distribution of the seroconversion events.

There are, moreover, methodological objections to the use of the

method: the data involve repeated measurements from a number

of individuals, and each measurement is used to define a

probability. The data are thus clearly correlated; for example if

an individual’s data point is ‘‘false recent’’, the next is also likely to

be ‘‘false recent’’. Moreover, measurements become less frequent

with increasing time since last negative HIV test. For all of the

above reasons, the graphical method should be used, if at all, only

to provide first approximations of VT .

The r/s method is dependent on the assumption of a uniform

distribution of seroconversion events across the period [0,T] and,

as is evident from Figure 9, there can sometimes be serious

violations of this assumption. On the other hand, it is noteworthy

that the baseline incidence estimates (Figure 7) from the r/s and

the NLMM methods were closely similar and showed the same

pattern of changes as C was varied between 0.4 and 1.2. Moreover,

in situations where follow-up of individual seroconverting cases is

not as extensive as in the ZVITAMBO Trial, the relative

advantage of regression approaches for the estimation of VT will

be diminished and the r/s method would provide a reasonable

alternative.

Our findings support previous work suggesting that the use of

SA will be problematic for estimating VT [10]. Even when we used

an approximation, which under-estimates the variance of the

estimate, the coefficient of variation for the SA estimates was

markedly larger than that for the NLMM method. As with the r/s

method, however, the relative advantage of the NLMM method

will be reduced in the situation where there is limited follow-up of

individual clients. We checked this by trimming the ZVITAMBO

data to exclude, for each client, all but the first BED sample and

the sample taken closest to 12-months postpartum. The SA

estimate derived using these data differed by ,2% from the

estimate obtained using the full data set, and the coefficient of

variation was only marginally larger. The NLMM method does
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not provide a meaningful confidence interval with these minimal

data.

Which Cut-off?
For values of the OD cut-off between C = 0.6 and 1.2 the BED

estimates of incidence over the 12-months postpartum period,

obtained using the NLMM estimates of VT , accord closely with

the follow-up estimate of about 3.46% per year. These results

provide strong support for this method of estimating VT , but do

not suggest which cut-off should be preferred. This question is

better answered by considering the BED estimates arising from the

ZVITAMBO baseline data – which mirrors more closely the

cross-sectional surveys encountered in practice, where there tends

to be a preponderance of cases with long-term infections. It is then

necessary to adjust the BED incidence estimates for the long-term

false-recent cases, calculating incidence using Equation (1).

The choice of cut-off is then decided by a trade-off of the

advantages of increasing C such that we observe a greater number

of recent cases (R), and decreasing C such that we reduce the value

of e (Figure 5). The net result of such changes sees the CoV of the

baseline incidence estimates showing a well-marked minimum

(Figure 9) suggesting that there is no reason to change from the

value of C = 0.8 currently in common use.

Which Incidence Estimate?
Notwithstanding the results of the previous section, the NLMM

estimates of baseline HIV incidence in Figure 9 vary between

4.5% and 6%, depending on the chosen value of C. In

understanding the reasons for this variation it is important to

remember that, as C is increased, HIV incidence is averaged over

progressively longer periods. Moreover, two independent things

are happening: i) VT is changing, in a manner that is determined

by the properties of the test, and is independent of the distribution

of the BED OD values in the cross-sectional sample being

analyzed: ii) The number of cases counted as recent is changing, at

a rate which is a function of the pattern of seroconversions prior to

the sampling time.

Thus, with reference to Figure 9, the rate of accumulation of

cases classified as recent becomes progressively more rapid as C

increases to 0.6, and then progressively less rapid for C increasing

between 0.6 and 1.2. These changes are reflected in changes in

HIV incidence with C (Figure 7), consistent with the idea that the

rate of acquisition of new infections was not constant over the

period prior to a woman’s enrollment in the ZVITAMBO Trial.

This is unsurprising given that enrollment occurred within 96

hours of parturition, so all women were in the same synchronized

physiological state and BED data are reflecting events during the

preceding pregnancy. Indeed, since C = 1.2 corresponds to

VT ,260 days (Figure 3), just short of the approximate mean

duration of human gestation, the distribution of BED values for C

between 0 and 1.2 basically reflects events during most of

pregnancy.

The results in Figure 7 are consistent with the idea that

acquisition of HIV infection is relatively low shortly before birth. It

is not unreasonable to think that sexual activity, and thus the risk

of HIV infection, is reduced at this late stage of pregnancy,

compared with the middle stages of pregnancy. Similarly, the

sudden jump in frequency at C = 1.2 coincides approximately with

the time that the women became pregnant – which is the only time

that we can be absolutely certain that they had all had unprotected

sex and were thus at risk of HIV infection.

On the above interpretation, the results in Figure 8 reflect true

changes in the pattern of HIV infection in the year prior to birth

for women in the ZVITAMBO Trial. Similar situations are likely

to occur in other sampling scenarios. Most women making a first

antenatal clinic visit, for example, are likely to be at a similar stage

of pregnancy, and seroconversion events in the year prior to the

test may be expected to be distributed in a distinctly non-uniform

way.

Limitations
We caution that the present study is based on the application of

various methods to a single set of data, all derived from

postpartum women, from a single city in Zimbabwe and all

infected with a single clade of HIV. The results apply, moreover,

only to the BED method. Similar studies are needed to establish

the extent to which our results can be generalized in other settings

and using other bio-marker methods.

Conclusion
The estimation of the mean recency duration for cases which

have been HIV positive for some defined finite period T proves

much less problematic than previous attempts to estimate the life-

time mean recency duration [1,2,3]. The estimation of mean

recency durations should not thus be seen as a major obstacle to

the use of biomarker methods for estimating HIV incidence,

providing that good care is taken with sample collection and

analysis. The more serious problems lie in: (i) accurately estimating

the false-recent rate for every population where a particular

method is being used: (ii) the development of bio-marker methods

with markedly lower false-recent rates than those typical of the

BED.
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