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Abstract

The malaria disease has become a cause of poverty and a major hindrance to economic development. The culprit of the
disease is the parasite, which secretes an array of proteins within the host erythrocyte to facilitate its own survival.
Accordingly, the secretory proteins of malaria parasite have become a logical target for drug design against malaria.
Unfortunately, with the increasing resistance to the drugs thus developed, the situation has become more complicated. To
cope with the drug resistance problem, one strategy is to timely identify the secreted proteins by malaria parasite, which
can serve as potential drug targets. However, it is both expensive and time-consuming to identify the secretory proteins of
malaria parasite by experiments alone. To expedite the process for developing effective drugs against malaria, a
computational predictor called ‘‘iSMP-Grey’’ was developed that can be used to identify the secretory proteins of malaria
parasite based on the protein sequence information alone. During the prediction process a protein sample was formulated
with a 60D (dimensional) feature vector formed by incorporating the sequence evolution information into the general form
of PseAAC (pseudo amino acid composition) via a grey system model, which is particularly useful for solving complicated
problems that are lack of sufficient information or need to process uncertain information. It was observed by the jackknife
test that iSMP-Grey achieved an overall success rate of 94.8%, remarkably higher than those by the existing predictors in
this area. As a user-friendly web-server, iSMP-Grey is freely accessible to the public at http://www.jci-bioinfo.cn/iSMP-Grey.
Moreover, for the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-
server to get the desired results without the need to follow the complicated mathematical equations involved in this paper.
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Introduction

Malaria is a potentially fatal tropical disease caused by a

parasite known as Plasmodium. Four distinct species of plasmo-

dium that can produce the disease in different forms: Plasmodium

falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malaria.

Of these four, Plasmodium falciparum, or P. falciparum, is the most

widespread and dangerous. If not timely treated, it may lead to the

fatal cerebral malaria, which remains one of the most devastating

global health crises. Nearly half of the world’s population is still at

risk from its infection. According to the World Health Organiza-

tion’s 2010 World Malaria Report (http://www.who.int/malaria/

world_malaria_report_2010/worldmalariareport2010.pdf), there

are more than 225 million cases of malaria each year, killing around

781,000 people, corresponding to 2.23% of deaths worldwide.

Malaria is more dangerous for women and children. It was stated in

the World Health Organization’s 2011 World Malaria Report

(http://www.who.int/malaria/world_malaria_report_2011/

9789241564403_eng.pdf) that 81% of cases and 91% of deaths

occurred in the African Region, mostly involving children under

five and women with pregnancy. Malaria was usually associated

with poverty; actually it was a cause of poverty and a major

hindrance for economic development. The situation has become

even worse over the last few years with the increase in resistance to

the drugs normally used to combat the parasites that cause the

disease. Therefore, one strategy to deal with the growing malaria

problem is to identify and characterize new and durable

antimalarial drug targets, the majority of which are parasite

proteins [1]. Parasite secretes an array of proteins within the host

erythrocyte to facilitate its own survival within the host cell. These

proteins can serve as potential drug or vaccine targets. However, it

is difficult to experimentally identify the secretory proteins of P.

falciparum owing to the complex nature of parasite. With the

completion of Plasmodium genome sequence, it is both challenging

and urgent to develop an automatic method or high throughput

tool for identifying secretory proteins of P. falciparum.

Actually, some efforts have been made in this regard. In a

pioneer study, Verma et al. [2] proposed a method for identifying

proteins secreted by malaria parasite. In their prediction method,

the operation engine was the Support Vector Machine (SVM)
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while the protein samples were formulated with the amino acid

composition, dipeptide composition, and position specific scoring

matrix (PSSM) [3]. Subsequently, Zuo and Li [4] introduced the

K-minimum increment of diversity (K-MID) approach to predict

secretory proteins of malaria parasite based on grouping of amino

acids. Meanwhile, various studies around this topic were also

carried out [5,6,7,8,9].

In the past, various predictors for protein systems were

developed by incorporating the evolutionary information via

PSSM [10,11,12,13,14,15,16,17,18,19,20]. In the above papers,

however, only the statistical information of PSSM [3] was utilized

but the inner interactions among the constituent amino acid

residues in a protein sample, or its sequence-order effects, were

ignored.

To avoid completely lose the sequence-order information

associated with PSSM, the concept of pseudo amino acid

composition (PseAAC) [21,22] was utilized to incorporate the

evolutionary information into the formulation of a protein sample,

as done in predicting protein subcellular localization [23,24,25],

predicting protein fold pattern [26], identifying membrane

proteins and their types [27], predicting enzyme functional classes

and subclasses [28], identifying protein quaternary structural

attribute [29], predicting antibacterial peptides [30], predicting

allergenic proteins [31], and identifying proteases and their types

[32].

The present study was initiated in an attempt to develop a new

and more powerful predictor for identifying the secretory proteins

of malaria parasite by incorporating the sequence evolution

information into PseAAC via a grey system model [33].

According to a recent review [34], to establish a really useful

statistical predictor for a protein system, we need to consider the

following procedures: (i) construct or select a valid benchmark

dataset to train and test the predictor; (ii) formulate the protein

samples with an effective mathematical expression that can truly

reflect their intrinsic correlation with the target to be predicted; (iii)

introduce or develop a powerful algorithm (or engine) to operate

the prediction; (iv) properly perform cross-validation tests to

objectively evaluate the anticipated accuracy of the predictor; (v)

establish a user-friendly web-server for the predictor that is

accessible to the public. Below, let us describe how to deal with

these steps.

Materials and Methods

1. Benchmark Dataset
The benchmark dataset Bench used in this study was taken from

Verma et al. [2]. The dataset can be formulated as

Bench~ z
[

{ ð1Þ

where z contains 252 secretory proteins of malaria parasite, {

contains 252 non-secretory proteins of malaria parasite, and the

symbol
S

represents the union in the set theory. The same

benchmark dataset was also used by Zuo and Li [4]. For reader’s

convenience, the sequences of the 252 secretory proteins in z

and those in { are given in Supporting Information S1.

2. A Novel PseAAC Feature Vector by Incorporating
Sequence Evolution Information via the Grey System
Theory

To develop a powerful predictor for a protein system, one of the

keys is to formulate the protein samples with an effective

mathematical expression that can truly reflect their intrinsic

correlation with the target to be predicted [34]. To realize this, the

pseudo amino acid composition (PseAAC) was proposed [21] to

replace the simple amino acid composition (AAC) for representing

the sample of a protein. Ever since the concept of PseAAC was

introduced in 2001 [21], it has penetrated into almost all the fields

of protein attribute predictions, such as predicting protein

submitochondrial localization [35], predicting protein structural

class [36], predicting DNA-binding proteins [37], identifying

bacterial virulent proteins [38], predicting metalloproteinase

family [39], predicting protein folding rate [40], predicting

GABA(A) receptor proteins [41], predicting protein supersecond-

ary structure [42], identifying protein quaternary structural

attribute [43], predicting cyclin proteins [44], classifying amino

acids [45], predicting enzyme family class [46], identifying risk

type of human papillomaviruses [47], and discriminating outer

membrane proteins [48], among many others (see a long list of

references cited in [49]). Because it has been widely used, recently

a powerful software called PseAAC-Builder [49] was proposed for

generating various special modes of PseAAC, in addition to the

web-server PseAAC [50] established in 2008.

According to a recent review [34], the general form of PseAAC

for a protein P can be formulated as

P~ y1 y2 � � � yu � � � yV½ �T ð2Þ

where T is a transpose operator, while the subscript V is an integer

and its value as well as the components y1, y2, … will depend on

how to extract the desired information from the amino acid

sequence of P.

The form of Eq.2 can cover almost all the various modes of

PseAAC. Particularly, it can be used to reflect much more essential

core features deeply hidden in complicated protein sequences,

such as those for the functional domain (FunD) information

[51,52,53] (cf. Eqs.9–10 of [34]), gene ontology (GO) information

[54,55] (cf. Eqs.11–12 of [34]), and sequence evolution informa-

tion [3] (cf. Eqs.13–14 of [34]).

In this study, we are to use a novel approach to define the V
elements in Eq.2. As is well known, biology is a natural science

with historic dimension. All biological species have developed

starting out from a very limited number of ancestral species. It is

true for protein sequence as well [56]. Their evolution involves

changes of single residues, insertions and deletions of several

residues [57], gene doubling, and gene fusion. With these changes

accumulated for a long period of time, many similarities between

initial and resultant amino acid sequences are gradually eliminat-

ed, but the corresponding proteins may still share many common

attributes, such as having basically the same biological function

and residing at a same subcellular location. To incorporate this

kind of sequence evolution information into the PseAAC of Eq.2,

let us use the information of the PSSM (Position-Specific Scoring

Matrix) [3], as described below.

According to [3], the sequence evolution information of protein

P with L amino acid residues can be expressed by a 20|L matrix,

as given by

P
(0)
PSSM~

m
(0)
1,1 m

(0)
1,2 � � � m

(0)
1,20

m
(0)
2,1 m

(0)
2,2 � � � m

(0)
2,20

..

. ..
. ..

. ..
.

m
(0)
L,1 m

(0)
L,2 � � � m

(0)
L,20

2
6666664

3
7777775

ð3Þ

where m
(0)
i,j represents the original score of amino acid residue in
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the i-th (i~1,2, � � � ,L) sequential position of the protein that is

being changed to amino acid type j (j~1,2, � � � ,20) during the

evolution process. Here, the numerical codes 1, 2, …, 20 are used

to denote the 20 native amino acid types according to the

alphabetical order of their single character codes [58]. The 20|L

scores in Eq.3 were generated by using PSI-BLAST [3] to search

the UniProtKB/Swiss-Prot database (Release 2010_04 of 23-Mar-

2010) through three iterations with 0.001 as the E-value cutoff for

multiple sequence alignment against the sequence of the protein P.

In order to make every element in Eq.3 within the range of 0–1, a

conversion was performed through the standard sigmoid function

to make it become

P
(1)
PSSM~

m
(1)
1,1 m

(1)
1,2 � � � m

(1)
1,20

m
(1)
2,1 m

(1)
2,2 � � � m

(1)
2,20

..

. ..
. ..

. ..
.

m
(1)
L,1 m

(1)
L,2 � � � m

(1)
L,20

2
6666664

3
7777775

ð4Þ

where

m
(1)
i,j ~

1

1ze
{m

(0)
i,j

1ƒiƒL, 1ƒjƒ20ð Þ ð5Þ

Now, let us describe how to extract the useful information from

Eq.4 via a grey system model. According to the grey system

theory [33], if the information of a system investigated is fully

known, it is called a ‘‘white system’’; if completely unknown, a

‘‘black system’’; if partially known, a ‘‘grey system’’. The model

developed based on such a theory is called ‘‘grey model’’, which is

a kind of nonlinear and dynamic model formulated by a

differential equation. The grey model is particularly useful for

solving complicated problems that are lack of sufficient informa-

tion, or need to process uncertain information and reduce random

effects of acquired data. In the grey system theory, an important

and generally used model is called GM(1,1) [33]. It is quite

effective for monotonic series, with good simulating effect and

small error, as reflected by the fact that using the GM(1,1) model

has remarkably improved the success rates in predicting protein

structural classes [59]. However, if the series concerned are not

monotonic, the simulating effect of the GM(1,1) model would not

be good and its error might be quite large. To overcome such a

shortcoming, in this study we are to use a different grey system

model called GM(2,1) [33], which can be effectively used to deal

with the oscillation series.

To extract the serial information of Eq.4, let us consider the L

components in its j-th column, i.e., m
(1)
1,j m

(1)
2,j � � � m

(1)
L,j

� �
, as

an initial series. Obviously, the j-th column of the Eq.4 is an

oscillation series but not monotonic as in the case investigated in

[59]. To deal with such a problem, instead of the GM(1,1), let us

adopt the GM(2,1) model here. According to the GM(2,1) model

[33], we have the following 2nd-order grey differential equation

with one variable:

a(1)m
(1)
k,jza

j
1m

(1)
k,jza

j
2z(1)(k)~bj

(k~2,3, � � � ,L; j~1,2, � � � ,20)
ð6Þ

where

a(1)m
(1)
k,j~m

(1)
k,j{m

(1)
k{1,j ð7Þ

and

z(1)(k)~
Xk{1

i~1

m
(1)
i,j z0:5m

(1)
k,j ð8Þ

In Eq.6, the coefficients a
j
1 and a

j
2 are associated with the

developing coefficients, and bj the influence coefficient. Actually,

a
j
1, a

j
2, and bj can be expressed as the components of a 3D vector

as given by

Hj~ a
j
1 a

j
2 bj

� �T
(j~1,2, � � � ,20) ð9Þ

in which the components a
j
1, a

j
2, and bj can be directly derived

from the following equation

Hj~(BTB){1BTU ð10Þ

where

B~

{m
(1)
2,j {z(1)(2) 1

{m
(1)
3,j {z(1)(3) 1

..

. ..
. ..

.

{m
(1)
L,j {z(1)(L) 1

2
6666664

3
7777775

ð11Þ

and

U~

a(1)m
(1)
2,j

a(1)m
(1)
3,j

..

.

a(1)m
(1)
L,j

2
6666664

3
7777775

ð12Þ

Accordingly, the V elements in Eq.2 are given by

y3j{2~a
j
1fjw1

y3j{1~a
j
2fjw2

y3j ~bjfjw3

8>><
>>:

(j~1,2, � � � ,20) ð13Þ

where fi (i~1,2, � � � ,20) are the occurrence frequencies of the 20

different types of amino acids in the protein sample concerned,

and w1, w2, and w3 are the weight factors that will be determined

by optimizing the performance of the predictor, and their concrete

values will be explicitly given in the footnote of Table 1.

Substituting Eq.13 into Eq.2, we immediately obtain a feature

vector with V~3|20~60 components. The 60D feature vector

thus derived will be used to represent the samples of protein

sequences for further study.

3. The SVM Operation Engine
In this study, the Support Vector Machine (SVM) algorithm

was adopted to perform the prediction. The SVM software was

implemented from the LIBSVM package [60]. The software thus

obtained provided a simple interface by which the users can easily
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perform classification prediction by properly selecting the built-in

parameters c and g. In this study we searched the optimal

parameters c and g by the grid arithmetic built in the LIBSVM

software, and their optimal values are also explicitly given in the

footnote of Table 1. Meanwhile, the MATLAB windows were

adopted in developing the classifier.

The predictor thus established is called iSMP-Grey, which can

be used to identify whether a protein of malaria parasite is

secretory or non-secretory according to its sequence information

alone.

4. Web-Server and User Guide
To enhance the value of its practical applications, a web-server

for iSMP-Grey was established. Moreover, for the convenience of

the vast majority of experimental scientists, here let us provide a

step-by-step guide to show how the users can easily get the desired

result by means of the web-server without the need to follow the

above mathematical equations for its development and integrity.

Step 1. Open the web server at the site http://www.jci-

bioinfo.cn/iSMP-Grey and you will see the top page of the

predictor on your computer screen, as shown in Fig. 1. Click on

the Read Me button to see a brief introduction about iSMP-Grey
predictor and the caveat when using it.

Step 2. Either type or copy and paste the query protein

sequence into the input box at the center of Fig. 1. The input

sequence should be in the FASTA format. A sequence in FASTA

format consists of a single initial line beginning with a greater-than

symbol (‘‘.’’) in the first column, followed by lines of sequence

data. The words right after the ‘‘.’’ symbol in the single initial line

are optional and only used for the purpose of identification and

description. The sequence ends if another line starting with a ‘‘.’’

appears; this indicates the start of another sequence. The example

sequences in FASTA format can be seen by clicking on the

Example button right above the input box. The maximum

number of query protein sequences allowed for each submission is

10.

Step 3. Click on the Submit button to see the predicted result.

For example, if you use the two query peptide sequences in the

Example window as the input, about 2–3 minutes after clicking

the Submit button, you will see on your screen that the 1st query

protein is a ‘‘Secretory Protein of Malaria Parasite’’, and

that the 2nd query protein 2 is ‘‘Non-Secretory Protein of
Malaria parasite’’. All these results are fully consistent with the

experimental observations.

Step 4. Click on the Citation button to find the relevant paper

that documents the detailed development and algorithm of iSMP-
Grey.

Step 5. Click on the Data button to download the benchmark

dataset used to train and test the iSMP-Grey predictor.

Step 6. The program is also available by clicking the button

download on the lower panel of Fig. 1.

5. Performance Evaluation
In statistical prediction, the following three cross-validation

methods are often used to examine a predictor for its effectiveness

in practical application: independent dataset test, subsampling (K-

fold cross-validation) test, and jackknife test. However, as

elaborated by a recent review [34] and demonstrated by

Eqs.28–32 therein, among the three cross-validation methods,

the jackknife test is deemed the least arbitrary and most objective

because it can always yield a unique result for a given benchmark

dataset, and hence has been widely recognized and increasingly

used by investigators for examining the accuracy of various

predictors (see, e.g., [36,38,39,41,44,47,61,62,63,64,65,66]). Ac-

cordingly, the jackknife test was also adopted in this study to

examine the anticipated success rates of the current predictor.

Also, to use a more intuitive and easier-to-understand method to

measure the prediction quality, the rates of correct predictions for

the secretory proteins of malaria parasite in dataset
P

z and the

non-secretory proteins of malaria parasite in dataset
P

{ are

respectively defined by [67]

Lz~
Nz{mz

Nz
, for the secretory proteins

L{~
N{{m{

N{
, for the non-secretory proteins

8>><
>>:

ð14Þ

where Nz is the total number of the secreted proteins investigated

and mz the number of the secreted proteins missed in the

predicted result; N{ the total number of the non-secreted proteins

investigated and m{ the number of the non-secreted proteins

missed in the predicted result. The overall success prediction rate

is given by [68]

L~
LzNzzL{N{

NzzN{
~1{

mzzm{

NzzN{
ð15Þ

It is clear from Eqs.14–15 that, if and only if none of the

secreted proteins and non-secreted proteins are mispredicted, i.e.,

mz~m{~0 and Lz~L{~1, we have the overall success rate

L~1. Otherwise, the overall success rate would be smaller than 1.

It is instructive to point out that the following equation is often

used in literatures for examining the performance quality of a

predictor

Sn~
TP

TPzFN

Sp~
TN

TNzFP

Acc~
TPzTN

TPzTNzFPzFN

MCC~
(TP|TN){(FP|FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p

8>>>>>>>>>>><
>>>>>>>>>>>:

ð16Þ

where TP represents the true positive; TN, the true negative; FP,

the false positive; FN, the false negative; Sn, the sensitivity; Sp, the

specificity; Acc, the accuracy; MCC, the Mathew’s correlation

coefficient.

The relations between the symbols in Eq.15 and those in

Eq.16 are given by

Table 1. A comparison between iSMP-Grey and K-MID by the
jackknife test.

Predictor Sn (%) Sp (%) Acc (%) MCC

iSMP-Greya 93.25 96.46. 94.84 0.90

K-MIDb 81.75 99.60 90.67 0.83

aThe parameters used: w1~800, w2~35, and w3~800 for Eq.14; c~8 and
g~0:00012 for the LIBSVM operation engine.
bFrom ref.[4].
doi:10.1371/journal.pone.0049040.t001
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TP ~Nz{mz

TN~N{{m{

FP ~m{

FN~mz

8>>><
>>>:

ð17Þ

It follows by substituting Eq.17 into Eq.16 and noting Eq.15

Sn~1{
mz

Nz

Sp~1{
m{

N{

Acc~L~1{
mzzm{

NzzN{

MCC~
1{ mz

Nz z m{

N{

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1z m{{mz

Nz

� �
1z mz{m{

N{

� �r

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð18Þ

As can be obviously seen from the above equation, when

mz~0 meaning none of the secreted proteins was missed in

prediction, we have the sensitivity Sn~1; while mz~Nz

meaning all the secreted proteins were missed in prediction, we

have the sensitivity Sn~0. Likewise, when m{~0 meaning none

of the non-secreted proteins was incorrectly predicted as secreted

protein, we have the specificity Sp~1; while m{~N{ meaning

all the non-secreted proteins were incorrectly predicted as secreted

proteins, we have the specificity Sp~0. When mz~m{~0

meaning that none of the secreted proteins in the dataset z and

non of non-secreted proteins in { was incorrectly predicted, we

have the overall accuracy Acc~L~1; while mz~Nzand

m{~N{ meaning that all the secreted proteins in the dataset
z and all the non-secreted proteins in { were incorrectly

predicted, we have the overall accuracy Acc~L~0. The MCC

correlation coefficient is usually used for measuring the quality of

binary (two-class) classifications. When mz~m{~0 meaning

that none of the secreted proteins in the dataset z and none of

the non-secreted proteins in { was incorrectly predicted, we

have Mcc~1; when mz~Nz=2 and m{~N{=2 we have

Mcc~0 meaning no better than random prediction; when

mz~Nz and m{~N{ we have MCC~{1 meaning total

disagreement between prediction and observation. As we can see

from the above discussion, it is much more intuitive and easier-to-

understand when using Eq.18 to examine a predictor for its

sensitivity, specificity, overall accuracy, and Mathew’s correlation

coefficient.

Results and Discussion

The results obtained with iSMP-Grey on the benchmark

dataset Bench of Eq.1 by the jackknife test are given in Table 1,

where for facilitating comparison the results obtained by the K-
MID predictor [4] on the same benchmark dataset with the same

test method are also given. As we can see from Table 1, the

overall success rate by iSMP-Grey was 94.84% with

MCC~0:90, which are remarkably higher than those by the K-

MID predictor [4].

Moreover, a comparison was also made with the PSEApred
predictor [2]. Although the results by PSEApred as reported by

Verma et al. [2] were also based on the same benchmark datasetP
Bench of Eq.1, the test method used by these authors for

PSEApred was 5-fold cross-validation. As elaborated in [34], this

would make the test without a unique result as demonstrated

below. For the current case, Bench consists of z and {, where

Figure 1. A semi-screenshot to show the top page of the iSMP-Grey web-server. Its web-site address is at http://www.jci-bioinfo.cn/iSMP-
Grey.
doi:10.1371/journal.pone.0049040.g001
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z contains 252 secretory proteins of malaria parasite, and {

contains 252 non-secretory proteins of malaria parasite. Substi-

tuting these data into Eqs.28–29 of [34] with M~2 (number of

groups for classification) and C~5 (number of folds for cross-

validation), we obtain

P~
252!

252{Int 252=5ð Þ½ �!Int 252=5ð Þ!
:

252!

252{Int 252=5ð Þ½ �!Int 252=5ð Þ!

~
252!

252{50ð Þ!50!

� �2

w9:25|10128

ð19Þ

where the symbol Int is the integer-truncating operator meaning to

take the integer part for the number in the bracket right after it.

The result of Eq.19 indicates that the number of possible

combinations of taking one-fifth proteins from each of the two

subsets, z and {, for conducting the 5-fold cross-validation will

be greater than 9:25|10128, which is an astronomical figure, too

large to be practically feasible. Actually, in their study [2], Verma

et al. only randomly picked 100 different combinations from the

possible 9:25|10128 combinations (cf. Eq.19) to perform the 5-

fold cross-validation, yielding 100 different results located within a

certain region. Therefore, in their report, rather than a single

figure but a figures region was used to show their test result. For

example, according to their report (Table 2),

Acc~71:03*92:66%, meaning that the lowest one of the 100

overall success rates obtained by the PSEApred predictor [2] was

71.03%, while the highest one was 92.66%. To make the

comparison of iSMP-Grey with PSEApred [2] under the same

condition with the same test method, we also randomly picked 100

different combinations as done by Verma et al. [2] to perform the

5-fold cross-validation test with iSMP-Grey, and the correspond-

ing results thus obtained are given in Table 2 as well. As we can

see from the table, not only the average rates obtained by the

iSMP-Grey predictor are remarkably higher than those by the

PSEApred predictor [2], but the corresponding region widths by

the former are also significantly narrower than those by the latter,

indicating the success rates by the iSMP-Grey are not only higher

but also more stable than those by the PSEApred predictor [2].

All the above results have indicated that the novel pseudo amino

acid composition formulated via the grey system model GM(2,1)

can more effectively incorporate the protein sequence evolution

information so as to remarkably enhance the success rates of the

iSMP-Grey predictor in identifying the secretory proteins of

malaria parasite. It is anticipated that iSMP-Grey may become a

useful high throughput tool for both basic research and drug

development in the relevant areas.

Supporting Information
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