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Abstract

An efficient algorithm that can properly identify the targets to immunize or quarantine for preventing an epidemic in a
population without knowing the global structural information is of obvious importance. Typically, a population is
characterized by its community structure and the heterogeneity in the weak ties among nodes bridging over communities.
We propose and study an effective algorithm that searches for bridge hubs, which are bridge nodes with a larger number of
weak ties, as immunizing targets based on the idea of referencing to an expanding friendship circle as a self-avoiding walk
proceeds. Applying the algorithm to simulated networks and empirical networks constructed from social network data of
five US universities, we show that the algorithm is more effective than other existing local algorithms for a given
immunization coverage, with a reduced final epidemic ratio, lower peak prevalence and fewer nodes that need to be visited
before identifying the target nodes. The effectiveness stems from the breaking up of community networks by successful
searches on target nodes with more weak ties. The effectiveness remains robust even when errors exist in the structure of
the networks.
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Introduction

Epidemics could lead to a serious loss in life and have a huge

impact on the economy, as we witnessed during the outbreaks of

SARS (severe acute respiratory syndromes) in 2003 and H1N1

Influenza A virus in 2009 [1–3]. The problem of preventing an

epidemic in time is of great importance and it has attracted much

attention from researchers across different fields [4–12]. While

immunization and quarantine are the two basic measures [13–15],

finding an efficient way of identifying the targets to be immunized

or quarantined so as to suppress an infection effectively remains a

pressing issue [16].

The hubs, individuals with high centrality, in complex networks

are commonly believed to be the most influential nodes as they

could affect their many neighboring nodes [17]. Kitsak et al.

pointed out that the nodes with a high k-shell are more influential

spreaders in some real networks [18]. Undoubtedly, it is important

to identify such influential nodes, but an effective method would

require global information about the network structure. In these

global strategies, the influential hubs can be identified by centrality

measures, such as the degree centrality [19,20], eigenvector

centrality [21], and betweenness centrality [22,23]. Such global

strategies, however, become impractical for large-scale networks.

Another type of method requires only local information. The

acquaintance immunization strategy (henceforth labeled as ACQ)

[24] in which random acquaintances of randomly chosen nodes

are immunized is an example of local search algorithms. ACQ was

shown to be an efficient algorithm for large-scale networks with

broad-degree distributions [24].

Community structure at the mesoscale level is ubiquitous in a

variety of real complex systems [25,26] such as Facebook [27,28]

and Twitter [29], which plays an important role in the dynamics of

epidemics [30–35]. In the presence of communities, the weak ties

connecting a pair of nodes belonging to different communities,

called the bridge nodes [36–38], provide the pathways for

information and diseases to propagate from one community to

another. These bridge nodes were found to be more important

than the hubs in diffusing information through community

networks [39–41]. Therefore, identifying the bridge nodes in

community networks are crucial in preventing epidemic outbreaks

[42–44]. Deterministic and stochastic algorithms have been

designed to search for the bridge nodes [45]. Chen et al. [46]

proposed an immunization strategy based on an equal graph

partitioning algorithm to identify the minimum group that

separates a network into several clusters of approximately equal

size. The role of the minimum separator group is similar to that of

the bridge nodes connecting different communities. The algorithm
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is effective in that only a small immunization ratio is needed,

which is the fraction of immunized nodes. However, the algorithm

requires the structural information of the whole network. Similar

to other global strategies, it becomes impractical due to the high

computing cost and, more fundamentally, the lack the complete

information in large networks. Salathe and Jones [45] proposed

the community bridge finder (CBF), which is a stochastic algorithm to

search for the bridge nodes based only on local structural

information, and found that the method is more efficient than

immunization strategies targeting different kinds of hubs.

Community networks typically exhibit a heterogeneous distri-

bution in the number of weak ties originating from a bridge node

[36,47]. In the worldwide air traffic network, for example, bridge

nodes can be divided into four classes: nonhub connector nodes,

nonhub kinless nodes, connector hubs, and kinless hubs [48]. It

was found that immunizing bridge hubs that connect a community

to many other communities could protect a network efficiently

against epidemics [49]. Identifying the bridge hubs with a larger

number of weak ties, however, is quite challenging as the

mesoscopic-scale community structure is difficult to resolve for

large-scale networks [50]. It is against this backdrop that we

propose an immunization strategy that identifies the bridge hubs

by random walks in an expanding friendship circle. The strategy,

which we call bright-hub detector (BHD) relies only on local

structural information. We compare results obtained by BHD with

ACQ and CBF strategies and find that it performs better in

simulated networks and empirical community networks generated

from real data. Simulation results also show that our strategy has

the merit of being robust against noise.

Results

To illustrate the community structure in real-world networks

and the necessity of an algorithm that focuses on identifying the

bridge hubs, we have analyzed the heterogeneity of bridge nodes

in the networks of students in five universities in the US using

Facebook data. Details on constructing the networks from data are

given in the Materials and Methods section. Figure 1 shows the

cumulative probability density P(kw) that a bridge node has a

degree kw or higher in the students’ Facebook networks of Caltech,

Princeton, Georgetown, Oklahoma, and North Carolina. The

distributions indicate that it is important to identify the bridge

nodes with more weak ties, in addition to identifying only the

bridge nodes as in CBF.

We present results of three different strategies (ACQ, CBF and

BHD) on choosing immunizing nodes in simulated and empirical

community networks within the susceptible-infected-recovered

(SIR) epidemiological model. Briefly, simulated networks of

different modularity Q are generated by randomly connecting

communities, which are themselves random networks, following

the algorithm in Ref. [45]. Empirical networks are constructed

from Facebook data of students in each of five US universities,

with a link defined by two students being online friends and

belonging to the same dormitory or the same major in the same

year of study. Table 1 lists the properties of these empirical

networks. Details about network construction, the three strategies,

and SIR dynamics are given in the Materials and Methods section.

The ACQ, CBF and BHD strategies rely only on local structural

information. In ACQ [24], a node is randomly picked and then a

neighbor of the chosen node is randomly selected for immuniza-

tion. The algorithm has a higher chance to immunize the hubs. In

CBF [45], a step forward in a self-avoiding walk is checked for a

bridge between communities by examining the existence of links

or paths from the neighbors of the last node back to the nodes

visited in the trail of the self-avoiding walk. The node before

crossing the bridge is then identified as the bridge node and

immunized. In addition, the supplementary rule of immunizing a

node that has been visited twice by self-avoiding walks would pick

up some hubs. Here, we implemented CBF as given in Ref. [45].

The bridge-hub detector (BHD) that we proposed in this paper

extends the self-avoiding searching scheme to examining the overlap

and the existence of links from all the neighbors of the last node

back to the union of the friendship circles of all the nodes in the trail of

the walk. A pair of nodes, a bridge node and a bridge hub, are

searched for immunization via a self-avoiding walk (Readers are

referred to the Materials and Methods section for more

information). In the SIR model, the parameters b and m are the

transmission rate and the recovery probability, respectively. The

extent of an epidemic is characterized by the final epidemic ratio

R, the fraction of the population ever infected at the end of the

epidemic, and the peak prevalence Im, the highest density of

infected nodes in the population at a time during the epidemic.

To compare the performances of ACQ and CBF with that of

BHD, we have carried out the SIR dynamics on simulated

networks with different modularity. For a given immunization

coverage f , i.e., fraction of immunized nodes, the final epidemic

ratio R is obtained for each of the three strategies. The differences

RACQ{RBHD and RCBF{RBHD would indicate the performance

of ACQ and CBF relative to BHD. Figure 2 shows the differences

for various combinations of the modularity Q and coverage f . The

differences are positive over most of the Q-f space, with BHD

leading to about 6:1% (2:8%) of fewer nodes being infected than

ACQ (CBF). The results indicate that BHD is, in general, more

effective in suppressing an epidemic. There are patches in the Q-f
space that BHD is out-performed by ACQ and CBF. This is

particularly apparent for networks with a strong community

structure characterized by a high modularity. For example, both

ACQ and CBF perform better in networks with Q[[0.95,0.97]. In

these cases, an epidemic outbreak is mostly restricted in a local

community and thus the better strategies are those that could

Figure 1. Cumulative distributions of the number of weak ties
in five empirical networks. For every network, the community
structure is detected by the method proposed by Newman and Girvan
[55]. Weak ties and bridge nodes are then identified. The number of
weak ties emanating from each bridge node is recorded to give the
cumulative distribution. Results are shown for students’ networks for
Caltech (red squares), Princeton (green circles), Georgetown (blue up
triangles), Oklahoma (cyan down triangles) and North Carolina
(magenta diamonds).
doi:10.1371/journal.pone.0083489.g001
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confine and suppress an epidemic to within the community that

the outbreak starts. Immunizing the hubs with large degrees as in

ACQ and CBF can prevent epidemic spreading within a

community more efficiently. BHD spends some of the immuni-

zation coverage on removing nodes that belong to neighboring

communities rather than the community of the outbreak itself and

this becomes less effective in saving the nodes within the outbreak

community from infection than ACQ and CBF.

Figure 3 shows the results of RACQ{RBHD and RCBF{RBHD

obtained for the empirical networks. In most cases, the final

epidemic ratio is smaller for BHD than ACQ and CBF. For

example, RBHD is on average 8:5% (6:0%) smaller than RACQ

(RCBF ) for the Caltech network, 4:3% (2:3%) smaller for the

Princeton network, and 3:2% (2:2%) smaller for the Georgetown

University network. For the Oklahoma University network, RBHD

is about 3:0% (1:4%) smaller than RACQ (RCBF ) when the

immunization coverage is not too small, e.g. f ~20% (f ~22%).

Similarly, RBHD is about 2:9% (1:0%) smaller than RACQ (RCBF ) at

f ~20% (f ~26%) for the North Carolina University network. In

the Oklahoma and North Carolina networks, BHD is out-

performed by CBF when the immunization coverage is low. The

ability of CBF to immunize the bridge nodes and some hubs makes

it more effective in networks with a high assortativity and

heterogeneity. As shown in Table 1, the degree assortativity r
and heterogeneity H are &0:327 (&0:217) and &8:240 (&6:941)

for the Oklahoma (North Carolina) University network. For an

immunization coverage of f&20%, BHD performs better in all

empirical networks than both ACQ and CBF, with a maximum in

RACQ{RBHD near this coverage. When the coverage is higher

(e.g. f w20%), the differences in R for the three algorithms

diminish, as the many immunized nodes would tend to be effective

in breaking up a community and suppress an epidemic regardless

of the algorithm. The results for the differences in peak prevalence

are given in Figure S1 and the features are essentially the same as

those in Figure 3.

Whether an algorithm is effective in preventing an epidemic is

closely related to its effectiveness in breaking up the network after

immunizing or removing a certain fraction of nodes [51]. Let

Ga(f ), with a denoting ACQ, CBF and BHD, be the size of the

giant component of the resulting network using the algorithm a
and an immunization coverage f , and G(0) be the size of the giant

Table 1. Structural Properties of the five empirical networks.

Network N E M Q r H C SdT SkT

Caltech 647 7,047 13 0.675 0.187 6.517 0.443 3.166 21.784

Princeton 5,580 156,935 8 0.817 0.039 6.366 0.298 4.316 56.252

Georgetown 8,183 245,510 42 0.814 0.106 6.280 0.268 4.218 60.005

Oklahoma 13,515 276,126 67 0.774 0.327 8.240 0.266 4.108 40.862

North Carolina 15,425 332,314 70 0.779 0.217 6.941 0.233 4.346 43.086

Structural properties including the network size (N), number of edges (E), the community number (M), modularity (Q) [55], degree assortativity (r) [56], degree
heterogeneity (H = Sk2T/SkT2)), clustering coefficient(C), average shortest path length (SdT) and average degree (SkT) are tabulated for each of the five empirical
networks.
doi:10.1371/journal.pone.0083489.t001

Figure 2. Comparison of efficacy of immunization algorithms in simulated networks. The difference in the final epidemic ratios (a) (left
panel) RACQ{RBHD between ACQ and BHD, and (b) (right panel) RCBF {RBHD between CBF and BHD, are shown for simulated networks with
different network modularity Q and immunization coverage f . The colors indicate the differences in percentages (see color codes). Results are

obtained by averaging over 2|103 realizations for each pair of Q and f values. The parameters associated with the SIR dynamics are b~0:08 and
m~0:2.
doi:10.1371/journal.pone.0083489.g002

Immunization Strategy for Community Networks
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component of the network before applying an immunization

algorithm. The relative difference DG(f )=G(0)~½GACQ=CBF (f ){

GBHD(f )�=G(0) is a measure of how effective BHD breaks up a

network relative to ACQ (and CBF). Figure 4 shows the results of

DG(f )=G(0) for the five empirical networks. The positive

DG(f )=G(0) values in almost all the cases indicate that BHD is

more effective. The results show a similar trend as a function of f

as in the differences in final epidemic ratio shown in Figure 3.

Percentage wise, DG(f )=G(0) is smaller than RACQ{RBHD and

RCBF{RBHD for the same values of f in the same empirical

Figure 3. Comparison of efficacy of immunization algorithms in empirical networks. The differences in the final epidemic ratios
RACQ{RBHD (left panel) and RCBF {RBHD (right panel) using different immunization algorithms are shown for each of the five empirical networks
as a function of the immunization coverage f . A positive value indicates that BHD is more effective than the other algorithms. Results are obtained by

averaging over 104 realizations for each value of f .
doi:10.1371/journal.pone.0083489.g003

Immunization Strategy for Community Networks
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Figure 4. Comparison of giant components of different immunization algorithms in empirical networks. The difference in the sizes of
the giant component (GACQ{GBHD)=G(0) (left panel) and (GCBF {GBHD)=G(0) (right panel) using different immunization algorithms are shown for
each of the five empirical networks as a function of the immunization coverage f , where G(0) is the size of the giant component before an
immunization algorithm is applied. A positive value indicates that BHD is more effective in breaking up the network. Results are obtained by

averaging over 104 realizations for each value of f .
doi:10.1371/journal.pone.0083489.g004

Immunization Strategy for Community Networks
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network. It is a result of the removal of some bridge hubs (bridge

nodes with more weak links to other communities), by BHD,

which would result in a network that has a smaller mean degree.

This is indeed the case, as shown in Figure S2. The geometry of

the resulting network also affects the duration of an epidemic. In

particular, resulting networks with smaller mean degree lead to a

longer duration, as the disease can only spread by infecting one

node after another. BHD is therefore expected to have a longer

epidemic duration, despite a smaller final epidemic ratio and

prevalence. Figure S3 shows that the epidemic duration is slightly

longer for BHD, as compared with those with ACQ and CBF.

The effectiveness of BHD is further illustrated in Figure 5,

which compares the number of weak ties of the bridge hubs and

bridge nodes identified for immunization using BHD with that of

the bridge nodes identified by CBF. The results show that BHD

indeed can identify the nodes with more weak links for removal. In

addition, the bridge nodes identified by BHD carry more weak ties

than those identified by CBF, further improving the effectiveness.

In the Princeton University network, however, the large mean

community size (see Table 1) makes it difficult for both BHD and

CBF to search for the bridge nodes.

A more efficient algorithm is one that visits fewer nodes before

identifying the targeted nodes for immunization. Let SCBF and

SBHD be the numbers of nodes visited by the self-avoiding walks

before getting at the targeted nodes. Figure 6 gives SCBF=SBHD for

the five empirical networks. For small immunization coverage

(f ƒ20%), SCBF=SBHD&1:5, indicating that BHD is a more

efficient algorithm.

Another aspect of an effective algorithm is the robustness to

errors or noise in network information. Such errors are common in

social networks due to, for example, the inconsistency for two

individuals to express their relationship [52]. Using an empirical

network, we have tested the robustness of BHD by adding or

removing a number of links from the network. SIR dynamics is

then studied on the modified network without and with the BHD

algorithm. The resulting final epidemic ratios are denoted by R0

and RBHD, respectively. Figure 7 shows the results of

R_BHD~(R0{RBHD)=R0 for different numbers of links added

or removed, with a constant immunization coverage of 5%. The

results show that BHD performs well even when the networks are

modified randomly. More results corresponding to other values of

immunization coverage are shown in Figure S4.

Summary and Discussion

The heterogeneous distribution of weak ties in real-world

community networks points to the importance of the bridge hubs

in the control of transmission of information or diseases but these

nodes are difficult to identify. We have proposed and studied the

effectiveness of a bridge-hub detector strategy. It is a local strategy

searching for bridge nodes and bridge hubs based on the idea of

referencing to an expanding friendship circle as a self-avoiding

walk proceeds. We applied BHD to simulated networks and

empirical networks among students in five US universities

constructed by using social network data. In general, BHD is

more effective in preventing an epidemic when compared with

Figure 5. Comparison of average number of weak ties among
immunized bridge hubs identified by BHD, bridge nodes
identified by BHD and bridge nodes identified by CBF. BHD
identifies a pair of nodes for immunization via a self-avoiding
walk algorithm. One node is a bridge hub and another a bridge node.

The average number of weak ties among these two types of immunized
nodes [red squares (BHD hubs) and gray diamonds (BHD nodes)] are
shown for different values of immunization coverage f , together with
the results from immunized bridge nodes identified by CBF (blue

circles). Results are obtained by averaging over 104 realizations for each
value of f . For comparison, the results based on the method proposed
by Newman and Girvan [55] are shown as the green dashed lines.
doi:10.1371/journal.pone.0083489.g005

Immunization Strategy for Community Networks
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other local immunization strategies such as ACQ and CBF, for a

practical range of immunization coverage. It gives a smaller final

epidemic ratio and peak prevalence. Its effectiveness can be

attributed to better identification of immunized nodes that carry

more weak ties than those picked up by ACQ and CBF. BHD thus

breaks up the community networks more effectively and suppresses

an epidemic. Although BHD and CBF are both based on self-

avoiding walks, BHD is more efficient in that it identifies the

immunization nodes after visiting fewer nodes. The good

performance of BHD remains robust even when errors exist in

the structure of the underlying network.

In general, BHD is capable of identifying bridge nodes with

more weak ties and it is particularly useful in dealing with

community networks with a broad distribution in the number of

weak ties among the bridge nodes. It can be readily generalized to

other tasks. For example, mistakenly chosen nodes could be

reduced by requiring that a node must have been identified twice

or more times before it is immunized. The algorithm can also be

applied to overlapping [50] and time-varying [53] community

networks.

Materials and Methods

We have studied the effectiveness of our local immunization

strategy in simulated and empirical community networks using the

susceptible-infected-recovered (SIR) epidemiological model. Here,

we give the details with respect to the following issues: community-

network construction, bridge-hub detector algorithm, and SIR

dynamics.

Simulated and empirical community networks
The simulated community networks of different modularity Q

are generated by the algorithm given in Ref. [45]. There are m
independent random communities. In each community, n nodes

are randomly connected so that the mean degree is SkinT. These

communities are then connected randomly by Eout links. The

simulated community network thus has a total of mn nodes and

mnSkinTzEout undirected links. We used the same set of

parameters as in Ref. [45], namely m~50, n~40, SkinT~8,

and Eout~2000. After generating the network, the modularity Q
can be evaluated according to the definition given in Ref. [25].

The modularity Q can be varied by rewiring some inter-

community links into intra-community links, following the

rewiring procedures given in Ref. [45]. While the modularity

increases with rewiring, the degree heterogeneity remains nearly

unchanged.

Empirical community networks are constructed using the

collegiate social network data from Facebook (www.facebook.

com) studied in Ref. [27]. The data of five universities in the US

are studied (Available: https://code.google.com/p/

socialnetworksimulation/). They include data of students from

the California Institute of Technology (Caltech), Princeton

University, Georgetown University, University of Oklahoma,

and University of North Carolina. The data provide information

on the dormitory, majoring subject and year of class of the

members. Based on the data, a community network is constructed

[45] by linking up two members when (i) they are online friends of

each other, and (ii) they belong to the same dormitory or the same

major in the same year of study. The largest connected component

of the network is then retained for carrying out our study. Basic

statistical properties of the five empirical networks are given in

Table 1. These networks exhibit the small-world character with a

high clustering coefficient and a short average path length. The

high modularity indicates a strong community feature.

Local Immunization Strategies and Bridge-Hub Detector
The present paper compares results based on our bridge-hub

detector algorithm (BHD) with those obtained by other local

strategies based on acquaintance immunization (ACQ) and the

Figure 6. Comparison of number of nodes visited before
identifying immunization nodes in CBF and BHD. The ratio
SCBF=SBHD is shown of the number of nodes visited by the self-
avoiding walks in CBF and BHD for achieving an immunization coverage
f . A large S implies a longer search for immunization nodes. The results
show that BHD identifies the immunization nodes faster than CBF for

f ƒ20%. Results are obtained by averaging over 104 realizations for
each value of f .
doi:10.1371/journal.pone.0083489.g006

Immunization Strategy for Community Networks
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community bridge finder (CBF). Before discussing the BHD

algorithm, we outline the ideas behind ACQ and CBF.

The ACQ algorithm immunizes randomly chosen acquaintanc-

es of randomly chosen nodes [24]. In ACQ, a node is picked

randomly and then a neighbor of the chosen node is picked

randomly for immunization. The procedure is then repeated until

the desired immunization coverage is achieved. Therefore, a node

that is a neighbor of many other nodes, i.e., a hub, will have a

higher chance to be chosen for immunization. The algorithm does

not require any information about the degree of the nodes. It is

efficient for large networks with a broad degree distribution. A

similar algorithm that requires a node to be chosen two times

according to the ACQ random-pick processes (ACQ2) before it is

immunized has also been studied [24]. Comparing with ACQ,

ACQ2 has a higher probability of immunizing the hubs.

Bridge nodes are important for transmission through commu-

nity networks, but ACQ does not aim at the bridge nodes. In

contrast, CBF is designed to search for bridge nodes [45]. It is an

algorithm based on self-avoiding walks. To identify a bridge and its

associated bridge node for immunization, a self-avoiding walk is

executed starting from a randomly chosen node v0. The following

procedure is taken after every step when the walk has visited three

or more nodes (see Figure 8). For a walk after t steps (t§2), the set

of all nodes visited in the t steps so far is denoted by fvt0 g for all

t0~0,1, . . . ,t. Thus, vt is the node that the walk currently locates

after step t and vt{1 is the node visited at step t{1. The first check

is to examine whether the node vt has a link or several links to the

nodes in the set fvt0 g other than the link between vt and vt{1. If it

is the case, the self-avoiding walk continues to step tz1. If not,

then vt{1 is considered a possible target of a bridge node. To

determine whether the node vt{1 is a bridge node, two nodes are

randomly chosen among all the possible nodes that the walk could

go in step tz1, i.e., two neighbors of the node vt are randomly

chosen from all the neighbors (except the node vt{1 due to the self-

avoiding restriction of the walk). In the case that there is only one

neighbor to choose from, the only neighbor will be considered. If

there exists a path from any of the two chosen nodes back to any

node in the set fvt0 g, then the node vt{1 will not be regarded as a

bridge node and the walk moves on from vt to some node vtz1. If

there exists no path back to the set fvt0 g from both of the chosen

nodes, vt{1 is regarded as a bridge node that connects two

communities and it will be immunized. A new self-avoiding walk

will start again at another randomly chosen node and the

procedure is repeated until the desired immunization ratio is

achieved. The idea behind CBF is that a community is formed by

a circle of close friends, and thus when the two randomly chosen

neighbors of vt cannot be traced back to the community that vt{1

belongs to, the link between vt{1 and vt is likely to be a bridge

between two communities and so the node vt{1 is a bridge node.

In practice, two additional checks are implemented to shorten the

computing time [45]. Firstly, the number of nodes registered in a

running path is kept at the length of ten, using the latest ten nodes

visited. Secondly, the number of visits by any random walk for

each node is recorded. When the number k of visits equals a

certain number (k~2 in Ref. [45]), the node is immunized. We

have implemented CBF following the algorithm in Ref. [45],

where it has been shown that, without prior knowledge of the

community structure, CBF is more efficient than ACQ and other

immunization strategies that target at the different kinds of hubs.

In its design, CBF does not aim at identifying the bridge hubs. In

real-world community networks such as those in Facebook [47],

worldwide air traffic network [48], and the five collegiate

community networks studied here, the heterogeneous distribution

in the number of weak ties among bridge nodes indicates the

importance of bridge hubs. Figure 9 shows an example of a bridge

hub through a visualization of the students’ network in Caltech.

Figure 7. Robustness of BHD in networks with noise as modeled by random addition and removal of links. The quantity
DRBHD~(R0{RBHD)=R0 is shown as a function of the number of links randomly added to or removed from an empirical network, where RBHD and
R0 are the final epidemic ratios when BHD is applied and not applied to the modified network, respectively. The robustness of BHD is indicated by
the relatively stable values of DRBHD . Results are shown for each of the five empirical networks as labeled. The immunization coverage is f ~5%. The

SIR parameters are b~0:08 and m~0:2. Results are obtained by averaging over 104 realizations for each value of added and removed links.
doi:10.1371/journal.pone.0083489.g007
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We propose a bridge-hub detector (BHD) for more effective

immunization in community networks. It is a local algorithm

based on an expanding friendship circle and it does not rely on

prior knowledge of the community structure. As in CBF, the

algorithm starts with a self-avoiding walk at a randomly chosen

node. The following procedure is taken after every step when the

walk has visited three or more sites (see Figure 8). Let vt be the

node that the walker locates after step t and ft be the set of all

neighbors of the node vt. For a walk up to t steps (t§2), the

following steps are carried out between the set ft and the set

Ft{1:f0|f1|f2| . . .|ft{1. The set Ft{1 is the union of all the

friendship circles of all the nodes visited by the walker up to the

step t{1 and it expands as the self-avoiding walk proceeds.

Apparently, we have vt{1[ft. If every other node in ft either

already belongs to the set Ft{1 or has at least a link to the nodes

within Ft{1, vt will not be taken as the target of immunization and

Ft will be updated to Ft~ft|Ft{1. The self-avoiding walk then

moves on from vt. Otherwise, there must be at least a node in ft

that is not a member in Ft{1 and is not connected to the nodes in

Ft{1. The node vt is then targeted for immunization. In addition,

among the nodes in ft that do not belong to Ft{1 and cannot be

linked back to Ft{1, one node (call it vH ) is randomly chosen for

immunization. A pair of nodes, vt and vH , are immunized and the

self-avoiding walk stops. A new walk is initiated at another

randomly chosen node again. The procedure is repeated until the

desired immunization ratio is achieved. Similar to the idea in

ACQ, the immunized node vH in every self-avoiding walk is likely

to be a bridge hub in the presence of heterogeneous distribution of

weak ties among the bridge nodes, while vt is a bridge node. The

algorithm is illustrated schematically in Figure 8. Practically, we

terminate a walk when it fails to identify immunization nodes after

20 steps. As in CBF, BHD is effective when the search for

immunization nodes begins after t§2 steps. Figure S5 in

Supporting Information gives results when the search begins after

different numbers of steps. Through computational complexity

analysis (see Text S1 in Supporting Information for more details),

the algorithms ACQ, CBF and BHD take on the worst-case run

times that go as O(fN), O(fN3) and O(f SkTN3), respectively. For

the different algorithms working on systems with the same

parameters (the same network size N and immunization ratio f

etc.), ACQ is the fastest, followed by CBF and BHD is the slowest.

On a sparse network with small SkT, BHD will have almost the

same computational complexity as CBF.

Epidemic Dynamics
The susceptible-infected-recovered (SIR) epidemiological model

[54] is used to test the performance of different immunization

strategies on community networks. In the model, each node in the

network represents an individual that can be in one of three states:

susceptible (S), infected (I), or refractory/recovered (R); and each

link represents a connection that could spread a disease. When an

immunization strategy is executed, a percentage of nodes are first

removed from the network by implementing ACQ, CBF or BHD.

The remaining nodes are set to the susceptible state. To initiate an

infection, a node is randomly chosen and turned into the I state. In

a time step, a susceptible node will be infected with a probability

Figure 8. Schematic illustration of CBF strategy and BHD strategy. The CBF strategy: (a) A self-avoiding walk starts at a randomly chosen
node v0 . (b)-(c) The walk visited fv0,v1,v2g after two steps. The node v2 does not have any other links back to v0 and v1 other than the link that took
the walk from v1 to v2 . The node v1 is a potential candidate of a bridge node. Two neighbors of v2 , namely v3 and vF2 , are randomly picked and each
is examined for connections to the visited set of nodes. As v3 has links with v0 and v1 , the target node v1 is dismissed as a bridge node and the walk
continues. (d) The walk moves to v3 after three steps. The node v3 has links to previously visited nodes v0 and v1 , and thus the walk continues. (e) The
walk moves to v4 after four steps. The node v4 does not have any other links back to previously visited nodes other than the link that took the walk
from v3 to v4. The node v3 is a potential target of a bridge node. Two neighbors of v4 are randomly chosen. (f) If vR2 and vH are chosen, these nodes
do not connect back to the previously visited nodes and v3 is identified as a bridge node and immunized. The BHD strategy: (a) A self-avoiding
walk starts at a randomly chosen node v0 . (b)-(c) The walk visited v0 , v1 and v2 after two steps. The set F2 is the union of all the neighboring nodes or
friendship circles of v0 , v1 and v2 , as shaded in (c). (d) The walk moves to v3 after three steps. The friendship circle f3 of node v3 consists of v0 , v1 , v2 ,
and v4. As all the nodes in f3 either belong to F2 or have a link to at least a node in F2 , the node v3 is not a potential target for immunization. (e) The
union of friendship circles is updated to F3~f3|F2 as shaded. The walk continues and reaches node v4 after four steps. The friendship circle f4 of v4

consists of v3, vF2 , vF1 , vR2 and vH , among them vR2 and vH do not belong to F3 and do not have a link to nodes in F3 . The node v4 is then identified
as a bridge node for immunization. In addition, among those nodes in f4 that cannot be linked back to F3 , one node, e.g., vH , is randomly chosen and
identified as a bridge hub for immunization.
doi:10.1371/journal.pone.0083489.g008
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1{e({b�i), where i is the number of infected nodes among the

connected neighbors of the node. Here, b is a parameter

characterizing the transmission rate. Meanwhile, an infected node

has a recovery probability m to turn into the R state. Once an

individual is in the R state, there will be no further change. In the

simulations, the parameters are taken to be b~0:08 and m~0:2 to

ensure an outbreak and the state of every node is updated

synchronously in every time step. The dynamics ends when all

infected nodes have recovered. The resulting population contains

nodes only in the S state and R state. We record the final epidemic

ratio R corresponding to the density of R nodes at the end of the

epidemic, the peak prevalence Im corresponding to the highest density

of infected nodes in the network during the epidemic, and the

duration of epidemic before the dynamics ends, and compare these

quantities for ACQ, CBF and BHD.

Supporting Information

Figure S1 Comparison of peak prevalence of immuni-
zation algorithms in empirical networks. The differences

in the peak prevalence (left panel) DIm~Im,ACQ{Im,BHD between

ACQ and BHD, and (right panel) DIm~Im,CBF{Im,BHD between

CBF and BHD are shown for each of the five empirical networks

as a function of the immunization coverage f . A positive value

indicates that BHD is more effective than the other algorithms.

The comparison is similar in features with those shown in Figure 3

for the differences in the final epidemic ratios. Results are obtained

by averaging over 104 realizations for each value of f .

(EPS)

Figure S2 Comparison of residual mean degrees of
different immunization algorithms in empirical net-
works. The differences in the mean degrees

(SkTACQ{SkTBHD)=SkT0 (left panel) and

(SkTCBF{SkTBHD)=SkT0 (right panel) using different immuniza-

tion algorithms are shown for each of the five empirical networks

as a function of the immunization coverage f . Here, SkT0 is the

mean degree of the network before an immunization algorithm is

applied. A positive value indicates that BHD is more effective in

reducing the mean degree and thus breaking up the network.

Results are obtained by averaging over 104 realizations for each

value of f .

(EPS)

Figure S3 Comparison of duration of epidemic of
different immunization algorithms in empirical net-
works. The differences in the duration of epidemic between

ACQ and BHD (left panel) and between CBF and BHD (right

panel) are shown for each of the five empirical networks as a

function of the immunization coverage f . Results are obtained by

averaging over 104 realizations for each value of f .

(EPS)

Figure S4 Robustness of BHD in networks with noise as
modeled by addition and removal of links for 20%
immunization coverage. As in Figure 7, the quantity

DRBHD~(R0{RBHD)=R0 is shown as a function of the number

of links randomly added to or removed from an empirical network.

Results are shown for each of the five empirical networks as

labeled. The immunization coverage is f ~20%. The SIR

Figure 9. Visualizing the community structure and a bridge hub in the Caltech network. The Caltech network can be divided into 13
communities based on the method of Newman and Girvan [55], as illustrated by the different colors. Also illustrated is a bridge hub H that carries the
largest number of weak ties and connects with other bridge nodes labeled as n1 to n13. The number on a weak tie shows the difference in the
numbers of weak ties originated from the node H and the bridge node at the other end of the weak tie.
doi:10.1371/journal.pone.0083489.g009
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parameters are b~0:08 and m~0:2. Results are obtained by

averaging over 104 realizations for each value of added and

removed links.

(EPS)

Figure S5 Effects of starting the search for immuniza-
tion nodes from different number of steps on the final
epidemic ratio. Results in the main text and figures are

obtained by starting the search for immunization nodes two steps

after a self-avoiding walk began. Here, results for starting the

search after 1, 2, 3, 4, 5 steps are shown for each of the five

empirical networks.

(EPS)

Text S1 Computational Complexity Analysis.
(PDF)
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49. Hébert-Dufresne L, Allard A, Young JG, Dubé LJ (2012). Global efficiency of
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