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Abstract

Background: Type II DNA topoisomerases (topos) are essential enzymes needed for the resolution of topological problems
that occur during DNA metabolic processes. Topos carry out an ATP-dependent strand passage reaction whereby one
double helix is passed through a transient break in another. Humans have two topoII isoforms, a and b, which while
enzymatically similar are differentially expressed and regulated, and are thought to have different cellular roles. The C-
terminal domain (CTD) of the enzyme has the most diversity, and has been implicated in regulation. We sought to
investigate the impact of the CTD domain on activity.

Methodology/Principle Findings: We have investigated the role of the human topoII C-terminal domain by creating
constructs encoding C-terminally truncated recombinant topoIIa and b and topoIIa+b-tail and topoIIb+a-tail chimeric
proteins. We then investigated function in vivo in a yeast system, and in vitro in activity assays. We find that the C-terminal
domain of human topoII isoforms is needed for in vivo function of the enzyme, but not needed for cleavage activity. C-
terminally truncated enzymes had similar strand passage activity to full length enzymes, but the presence of the opposite C-
terminal domain had a large effect, with the topoIIa-CTD increasing activity, and the topoIIb-CTD decreasing activity.

Conclusions/Significance: In vivo complementation data show that the topoIIa C-terminal domain is needed for growth,
but the topoIIb isoform is able to support low levels of growth without a C-terminal domain. This may indicate that topoIIb
has an additional localisation signal. In vitro data suggest that, while the lack of any C-terminal domain has little effect on
activity, the presence of either the topoIIa or b C-terminal domain can affect strand passage activity. Data indicates that the
topoIIb-CTD may be a negative regulator. This is the first report of in vitro data with chimeric human topoIIs.
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Introduction

Type II DNA topoisomerases (topos II) are essential enzymes

that resolve topological problems with DNA that arise during

processes such as DNA replication and transcription, and

chromosome segregation. Their mechanism involves the passing

of one DNA duplex through a transient covalent break in a second

duplex, in an ATP-dependent reaction. Humans have two

topoisomerase II isoforms, a and b, which, while similar, have

distinct patterns of expression and are thought to have different

cellular roles [1]. Human topoIIa is thought to be the isoform

primarily involved with DNA replication and chromosome

segregation, while human topoIIb has recently been implicated

in transcriptional regulation [2–4].

While topoII isoforms show a high degree of sequence

homology, approximately 70% between human topoII a and b,

this is mainly in the N-terminal three-quarters of the protein

sequence where the two catalytic centres are located. The C-

terminal quarter of the protein, while always highly charged,

shows much more sequence diversity. The C-terminal domain has

been shown to be vital for cell viability. However, as C-terminal

truncations are active in vitro, the essential nature of the C-terminal

domain is thought to be linked to regulation [5].

Phosphorylation is a major form of regulation of human topoIIs,

and has been shown to affect activity. Most modification sites are

in the C-terminal domain, although a modification site at human

topoIIa residue S29 that is a substrate for protein kinase C has also

been identified [6]. Phosphorylation sites have been identified in S.

cerevisiae topoII [7]. Some of these modifications are cell cycle

specific, with modification at S1354, S1357, S1364 and T1366

being increased during mitosis, and modification at positions

T1259, S1273, S1270 and S1267 increasing in G1 [7].

Considering the human enzymes, phosphorylation sites have

been identified in topoIIa, with casein kinase II (CKII) being a

principle kinase. aS1524 was identified as a principle phosphor-

ylation site [8]. Several studies have linked human topoIIa
phosphorylation to events at mitosis, and phosphorylation of

aS1212 has been shown to occur at only at mitosis [9].

Phosphorylation has been suggested to activate topoII for

chromatid segregation in anaphase [10], and CKII mediated

aS1469 phosphorylation has been linked to chromatin condensa-

tion at prophase [11]. Additionally, aT1342 has been proposed to
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regulate mitotic functions [12], although another study has shown

this to be phosphorylated throughout the cell cycle [13]. Human

topoisomerase II phosphorylation sites, both cell cycle dependent

and independent, are reviewed in Austin and Marsh, 1998 [5].

Modification by SUMO (small ubiquitin-like modifier) has also

been linked to topoII regulation, with work in S. cerevisiae indicating

that the topoII major modification sites (K1220, K1246/K1247

and K1277/K1278) again lie in the C-terminal domain [14]. In S.

cerevisiae topoII, SUMO modification has been linked to chromo-

some stability, with modified topoII enriched at centromeric

regions [15]. Additionally, topoII was found to be SUMO

modified at metaphase, and was proposed to be essential for

centromeric cohesion [14].

Work with human topo enzymes has shown that SUMO is

rapidly conjugated to topoI, topoIIa and topoIIb in response to

DNA damage [16–17]. Additionally, after exposure to topoisom-

erase II inhibitor ICRF-193 human topoIIb, but not topoIIa was

selectively degraded by the proteasome, an activity that was

abolished when the SUMO conjugating enzyme Ubc9 was

knocked out. This implies that the degradation was linked to

SUMO modification, and that this modification differs between

the topoIIa and topoIIb isoforms [18].

A major regulatory feature found in the C-terminal domains of

topoIIs are nuclear localisation and nuclear export sequences

(NLSs and NESs respectively). Without these signals, the enzyme is

not able to localise to the nucleus, where it is essential during DNA

replication, and cell viability is thus diminished or lost.

Considering the human topoII isoforms, in topoIIa a strong

NLS is found at 1454–1497 [19–20], and consistent with this, a

mutant lacking residues 1490–1492 is unable to locate to the

nucleus [21]. Another moderate NLS has been found in topoIIa at

1259–1296 [20]. In topoIIb nuclear localisation signals have been

found in the C-terminal domain, with two strong NLSs have been

identified at 1522–1548 and 1538–1573, with a weaker sequence

at 1294–1332 [20,22]. Studies with isolated topoIIa and b C-

terminal domains tagged with Yellow Fluorescent Protein showed

that the two were differently localised in the nucleus [23].

In human topoIIa an NES was initially localised to the region

1018–1088 [24], and subsequently this was narrowed down to two

sequences, 1017–1028 and 1054–1066, the latter of which is the

stronger sequence [25]. In topoIIb an NES sequence has been

idenfied between residues 1034–1044 [24].

Work with chimeric ‘tail swap’ proteins, where the C-terminal

domain of topoIIa or topoIIb is joined to the main body of the

enzyme belonging to the opposite isoform, has been reported. A

chimera of murine topoII consisting of the body of topoIIa and the

tail of topoIIb showed that this protein was unable to support

growth [26]. Conversely, a study examining the ability of human

topoII chimeric tail swap proteins to rescue topoIIa cells in vivo

found that the chimeric proteins, particularly those bearing the

topoIIa C-terminal domain, could support growth [27].

To assess whether the C-terminal domain, as the most diverse

part of the protein, impacted the relative activities of topoIIa and

b, we aimed to construct and characterise in vitro and in vivo full

length and C-terminally truncated forms of human topoIIa and b,

and two ‘tail swap’ chimeric proteins where the C-terminal

domain of each isoform is linked to the main sequence of the

opposite isoform. In contrast to a recently published study

describing the in vivo characterisation of tail swap proteins, where

the C-terminal domain boundary was determined by alignment

[27], the constructs described here have boundaries chosen based

on those determined by limited proteolysis [28]. The construction

process, as well as subsequent characterisation, is reported here.

Materials and Methods

Reagents
All chemicals were purchased from Sigma, BDH or Boehringer

Mannheim. Restriction enzymes were purchased from NBL Gene

Sciences Ltd, New England Biolabs, or Pharmacia Biotech. T4

Ligase was purchased from Gibco BRL. Etoposide was a gift from

Prof. H. Newell, NICR, Newcastle, UK. mAMSA, Merbarone

and Suramin were obtained from the Drug Synthesis and

Chemistry branch, NCI, Bethesda, MD. Quercetin, Quercetage-

tin, Myricetin and Baicalein were provided by Prof. L.M. Fisher.

mAMCA, DACA and Cl-DACA were provided by Prof. B

Baguley, Auckland Cancer Society, New Zealand. All other

cytotoxics were purchased from Sigma.

Plasmids and Yeast Strains
S. cerevisiae strain JEL1 was used for overexpression of proteins.

Yeast strain JN394t2-4, a temperature sensitive strain that is viable at

25uC but non-viable at 35u, was used in complementation analysis.

All of the plasmids encoding topoII isoforms express protein

under the control of the GAL1 promoter, and have a URA3

marker gene, the yeast 2m plasmid replication origin and the b-

lactamase gene and replication origin of E. coli pBR322 are also

present. Plasmid YEpWob6, used to express recombinant human

topoIIa, encodes the first 5 amino acids of S. cerevisiae topoII fused

to residues 29–1531 of human topoIIa. Plasmid YEphTOP2b
encodes recombinant human topoIIb with the S165R mutation,

with residues 46–1621 fused to the first 5 amino acids of S. cerevisiae

topoII [29–30]. Plasmid YEphTOP2bKLM encodes recombinant

wild type topoIIb residues 46–1621 (without mutation S165R)

fused to the first 5 of S. cerevisiae topoII. Plasmid intermediates used

in the cloning process to construct C-terminal truncations and tail

swaps are described in the ‘Results’ section and figure legends.

Construction of mutant plasmids
Plasmids encoding truncated topoIIa and topoIIb, as well as two

‘tail swap’ chimeric proteins with the opposite C-terminal domain

fused to the main coding sequence were constructed as described

in ‘Results’. In all cases restriction digests were carried out

according to manufacturer’s instructions. Fragments were sepa-

rated by agarose gel electrophoresis and then purified using a

QIAquick Gel extraction spin column. Ligations were then carried

out using T4 ligase and the manufacturer’s buffers, incubating

with 0.5mM ATP for 16 hours at 4uC.

Tail swap mutants were constructed with triple cloning proce-

dures, then the junction sites were confirmed by sequencing both

strands with dideoxy DNA sequencing using appropriate primers

and a Sequenase version 2.0 DNA sequencing kit (Amersham).

Preparation of protein
Recombinant human topoIIa and b proteins were expressed

and purified as described previously [28,31]. ATP dependent and

independent relaxation assays were done with purified fractions to

identify those free of topoI activity.

In vitro assays
Decatenation assays and cleavage assays with an end-labelled

4.3 kb linear DNA fragment from pBR322 were done as described

previously [29–30].

In vivo assays
Complementation assays were carried out in a temperature

sensitive yeast strain JN394t2-4, and plasmids encoding topoIIa
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and topoIIb (WT and S165R) full length, C-terminally truncated

or chimeric proteins. Yeast were grown in Ura- selective media at

the permissive temperature (25uC) to an OD600 of 1, and then

serially diluted in sterile microtitre trays. These cultures were then

transferred to plates with an aluminium replicator, then incubated

at the permissive, semi-permissive and non-permissive (25uC,

30uC or 35uC) temperatures respectively on glucose containing

media, then growth was scored.

Results

Construction of plasmids
Truncations at the 39 end of the coding sequence of topoIIa and

topoIIb (S165R) were constructed from plasmids YEpWob6 and

YEphTOP2b respectively. The truncated topoIIa plasmid encodes

residues 29–1242 and the truncated topoIIb plasmid encodes

residues 46–1263, these being the start of the C-terminal domains

as determined by limited proteolysis experiments [28,32,33].

Schematics of these plasmids are shown in Figure 1.

In the construction of C-terminally truncated topoIIa, PCR was

used to introduce a PstI restriction site in the human topoIIa
coding sequence and then to generate the full coding sequence. A

fragment was generated between codon 791 (over a KpnI site) and

codon 1244 (over the PstI site introduced above) of topoIIa. The

PCR product was cloned into a Bluescript plasmid with a XhoI

site immediately 39 to the 792–1242 fragment, then excised by

digestion with KpnI and XhoI. This was then cloned into the

YEpWob6 plasmid, replacing the fragment 792–1531.

In the construction of C-terminally truncated topoIIb, multiple

internal restriction sites in the topoIIb sequence meant that a

complex cloning procedure was necessary. A fragment containing

topoIIb residues 900–1263 was excised and cloned into a

Bluescript plasmid between BamHI and PstI restriction sites, this

having a XhoI site 36 residues downstream of the PstI site. A

fragment between BamHI to the XhoI beginning at codon 900

was excised and cloned into a vector containing topoIIb codons

46–899 plus the YEp backbone.

Plasmids encoding chimeric ‘tail-swap’ proteins were created

using a triple ligation approach and PCR to generate unique sites.

Construction of the topoIIa+b tail plasmid, encoding topoIIa
residues 30–1244 fused to topoIIb residues 1263–1621, is

illustrated in figure 2A. Likewise, construction of the topoIIb
(S165R)+a tail plasmid, encoding topoIIb residues 46–1263 fused

to topoIIa residues 1244–1531, is illustrated in figure 2B.

All topoIIb constructs containing the S165R mutation were

changed to give wild type sequence by site directed mutagenesis

using a Chameleon kit (stratagene) according to manufacturer’s

instructions.

TopoII protein activities
The decatenation activity of wild type topoIIa, C-terminally

truncated topoIIa, and topoIIa+b tail was assayed. The values for

50% decatenation (D50), in ng of protein, are shown in figure 3A.

There is no significant difference in D50 between topoIIa and its

C-terminal truncation, with values of 4.561.3 and 661 ng of

protein respectively. The topoIIa+b tail chimera however does

show a significant reduction in decatenation as compared to full

length topoIIa, with a D50 of 2961 (p = 0.0008 in a two-tailed

unpaired student t-test). This implies that while topoIIa can

function perfectly well without a C-terminal domain, the b-tail on

the topoIIa enzyme impedes activity.

It is possible that the observed reduction in catalytic activity

seen with the topoIIa+b tail chimeric protein was an artefact,

caused by the insertion of the tail into the enzyme altering a

property such as conformation. A chimeric protein of topoIIb
mutant S165R, known to give a 5-fold reduction in decatenation

activity [34], fused to the a-tail, was used to address this concern. If

the insertion of the tail per se impedes catalytic activity, then the

topoIIb (S165R)+a tail would be expected to have still lower

decatenation activity than topoIIb(S165R). As shown in figure 3A

the presence of the a tail gave no reduction in the decatenation

activity of topoIIb(S165R). As with topoIIa, removing the topoIIb
C-terminal domain gave no significant difference in activity, with

D50 values of 5068 and 6068 ng protein for topoIIb(S165R) and

C-terminally truncated topoIIb(S165R) respectively. The activity

of the topoIIb(S165R)+a tail chimera was increased very slightly

with a D50 of 41.560.5 ng protein, however this difference was

not statistically significant (p = 0.4001, figure 3A).

Complementation analysis of isoforms
To assess the in vivo functional activity of the truncated and

chimeric proteins, complementation experiments were carried out

in the temperature sensitive yeast strain JN394t2-4. Data are

shown in table 1. All of the topoIIb (S165R) plasmids were unable

to complement at the restrictive temperature, consistent with

previous results [34]. Both wild type topoII isoforms supported

good growth as expected. The truncated topoIIa and topoIIa+b
tail proteins were unable to complement, but interestingly the

truncated topoIIb and topoIIb+a tail proteins were able to support

low levels of growth.

Figure 1. Schematic of C-terminally truncated topoIIa and
topoIIb constructs. Shown are the topoII sequence boundaries, the
GAL1 promoter, the 2m replication origin, the URA3 marker gene, and
an ampicillin resistance gene. Restriction sites used in plasmid
construction are indicated.
doi:10.1371/journal.pone.0001754.g001
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Cleavage assays with tail swaps
The cleavage activity of each of the wild type and C-terminal

truncation mutant proteins was assessed in an end-labelled

cleavage assay, in the presence and absence of drug. While the

topoIIb proteins here had mutation S165R this has been shown to

have no effect on cleavage under the conditions used [34]. In the

absence of drug all six proteins gave cleavage at similar sites (data

not shown). While topoIIa gave cleavage at more sites than

topoIIb this difference wasn’t statistically significant. The same

pattern was seen with the truncated and tail swap proteins, with

topoIIa proteins generally giving slightly more cleavage than their

topoIIb counterpart, however this difference wasn’t significant.

Drug stimulated cleavage was assayed with flavonoids quercetin,

quercetagetin, myricetin, and baicalein, acridines mAMSA and

mAMCA, etoposide and mitoxantrone. No difference in cleavage

pattern between proteins was seen with drugs with the exception of

truncated topoIIb which promoted cleavage with mAMCA sites

corresponding to a combination of topoIIb and topoIIa.

Additionally truncated topoIIb promoted no cleavage with

mitoxantrone (figure 3B), and topoIIa+b tail promoted cleavage

with quercetagetin at sites more in common with topoIIb than

topoIIa. This indicates that the C-terminal domain of topoIIb has

a role in the determination of cleavage sites with certain drugs.

Discussion

Human topoII isoforms a and b, while enzymatically similar in

vitro, have been shown to have different cellular roles. While

topoIIa is thought to be the isoform primarily responsible for DNA

segregation, topoIIb has recently been linked to transcription

initiation [2–4]. Here we report the construction and character-

isation of recombinant truncated and tail swap chimeric proteins.

Figure 2. Construction of chimeric ‘tail-swap’ plasmids. A–construction of topoIIa+b tail. TopoIIa fragments 30–791 and 792–1244 and topoIIb
fragment 1263–1621 were generated using restriction digests as shown, then ligated to give the final construct shown. B–construction of topoIIb+a
tail. TopoIIb fragments 46–899 and 900–1263 and topoIIa fragment 1244–1531 were generated with restriction digests as indicated, then ligated to
give the final construct shown [32].
doi:10.1371/journal.pone.0001754.g002

Figure 3. Activity of recombinant proteins. A: Decatenation activity of all proteins, each column is the mean of at least two independent
experiments. Standard errors are shown, with significant difference from full length enzyme marker with ‘***’. B: Representative cleavage experiment
with 4.3 kb linearised pBR322 DNA with all proteins in the presence of mitoxantrone. TopoIIb proteins in this case carry the S165R mutation.
doi:10.1371/journal.pone.0001754.g003
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Whilst truncated human topoIIa has been reported previously, the

point of truncation in this case was chosen to align with a viral

topoII lacking the C-terminal domain [35]. C-terminal truncations

of topoIIa and b reported here were based on domain organisation

as determined by the cleavage sites in limited proteolysis studies

[28]. Likewise, human chimeric tail swap proteins have been

described and their in vivo function reported, but these also had

domain boundaries based on alignment rather than proteolysis

sites [27]. Here we report, for the first time, the creation of C-

terminally truncated recombinant human topoII proteins based on

domain structure indicated by limited proteolysis experiments.

Furthermore, we have also created chimeric recombinant human

topoII tail swap proteins based on this definition of the C-terminal

domain. Additionally, this manuscript is the first report of

characterisation of the in vitro function of human chimeric tail

swap proteins.

Complementation analysis showed, as previously reported, that

the S165R mutant proteins were not functional in vivo [34]. The

topoIIa C-terminal truncation couldn’t support growth, in

accordance with previous work showing that the loss of the C-

terminal domain, and the localisation signals within it, are

detrimental to growth [26,36]. The topoIIa+b chimera was also

unable to support growth suggesting that the b C-terminal domain

is unable to restore the localisation of the enzyme, or perhaps that

the topoIIb C-terminal domain has a different function to the

topoIIa C-terminal domain. This would be consistent with

previous experiments showing that human topoIIa preferentially

relaxes positive supercoils, whereas topoIIb showed no preference

[37]. This result is in contrast to a study with a murine topoIIa+b
protein which was able to support growth in S. cerevisiae strain

NAY113 [26]. This difference could be species specific, or due to

differences in the definition of the start of the C-terminal domain.

In the murine study the last 444 amino acids of the b-tail were

used to replace the equivalent region on topoIIa, in contrast to 358

residues here, with 356 amino acids of the topoIIa tail lost in the

murine chimera in contrast to 289 here.

Perhaps more surprising is that topoIIb truncated protein and

topoIIb+a tail protein can support low levels of growth, implying

that some localisation to the nucleus is still present. Known nuclear

localisation signals are shown in figure 4 and, with the exception of

S. pombe topoII which also has an N-terminal signal, all sequences

are found in the C-terminal domain [20,22,38,39]. It is therefore

unclear why the truncated topoIIb protein is able to support low

levels of growth (and hence localise, albeit inefficiently, to the

nucleus), but it is possible that this is due to a presently unknown

mechanism, perhaps linked to topoIIb specific modification, or an

unidentified NLS specific to topoIIb. This would be consistent

with previous work that showed that the topoIIa and b C-terminal

domains were differently localised [23].

A previous study into human chimeric enzymes found that

proliferation of topoIIa knockout human cells was supported

in all cases by enzymes bearing the topoIIa C-terminal

domain, but that proliferation was only supported rarely and

when protein was expressed in large quantities for enzymes

bearing the topoIIb C-terminal domain. The relative levels of

growth support are consistent with the data presented here (where

the topoIIa C-terminal domain chimera supports low levels of

growth and the topoIIb C-terminal domain chimera supports no

growth at all), although the levels of growth differ, perhaps because

of differences in the experimental systems or the sensitivity of

methods [27].

The decatenation data imply that the topoII C-terminal domain

is involved in the modulation of catalytic activity in the two human

isoforms. The truncated topoII proteins had no difference in in vitro

decatenation activity as compared to their full length counterparts

suggesting that the C-terminal domain is not necessary for in vitro

activity, which is consistent with previous data [26,40,41]. While

the absence of the C-terminal domain for topoIIa or b had no

effect on strand passage activity, the presence of the C-terminal

domain from the opposite isoform had a noticeable effect with a

clear trend emerging. The presence of the b-tail on the topoIIa
isoform core gave a statistically significant decrease in strand

passage activity compared to the native topoIIa protein, and the

presence of the a-tail on the topoIIb isoform core gave an increase

in activity compared to the native topoIIb protein, although this

time not significant, towards that of the native topoIIa protein. As

the truncated forms of each protein had no difference in activity

when compared to the full length, this implies that it is the

presence of the a or b tail that is important for the level of strand

passage, acting as a regulator. In this case of the topoIIb C-

terminal domain particularly, this regulation (negative in this case),

is quite striking. While it can’t formally be excluded that the

reduced activity of the chimeric topoIIa+b tail protein is due to the

tail swap process, this seems unlikely, as if the process itself reduced

activity this should also be seen with the topoIIb(S165R)+a tail

protein. In fact the opposite is seen, with the absence of the b-

CTD seeming to ‘release’ the enzyme activity a little and increase

the rate of decatenation.

The regulation of catalytic activity by the C-terminal domain

could be mediated via differential modification, for instance

phosphorylation or SUMOylation, or could be linked to the

extensive differences in primary sequence between the two C-

terminal domains.

Observations reported previously support the hypothesis that

topoIIa and b C-terminal domains are important in differential

regulation of the isoforms. All of the SUMO modification sites

identified to date have been located in the C-terminal domain of

topoII [14]. SUMO conjugation to topoI, topoIIa and topoIIb has

also been linked to the human cellular response to DNA damage

[16–17]. However, differential degradation of topoIIb but not

topoIIa was observed in response to treatment with ICRF-193,

strongly suggesting that the two isoforms are regulated differently

by SUMO modification [18].

An analysis of the theoretical protein parameters of full length

and truncated topoIIa and topoIIb, and their tail swap derivatives,

is shown in table 2. What is immediately obvious is that, while the

full length and truncated topoII isoforms all have similar

Table 1. Complementation of topoII isoforms

25uC 30uC 35uC

TopoIIa ++ ++ ++

TopoIIa truncated +++ +++ -

TopoIIa+b tail ++ ++ -

TopoIIb ++ ++ ++

TopoIIb(S165R) ++ ++ -

TopoIIb truncated ++ ++ +/2

TopoIIb(S165R)
truncated

++ + -

TopoIIb+a tail ++ ++ +/2

TopoIIb(S165R)+a tail ++ ++ -

- no growth, +/2 poor growth,+some growth, ++ good growth, +++ excellent
growth
All experiments were repeated at least twice.
doi:10.1371/journal.pone.0001754.t001
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theoretical pIs, with full length topoIIb having a slightly lower

theoretical pI, the theoretical pI of the isolated C-terminal domain

of topoIIb is considerably lower than other topoII proteins. This is

linked to the higher number of acidic residues compared to basic

residues seen with this fragment. Unsurprisingly, the a+b tail

protein has a lower theoretical pI than full length topoIIa, and the

b+a tail protein has a higher theoretical pI than the full length

topoIIb protein, but a similar pI to the truncated topoIIb protein

[42]. It would thus appear that the lower theoretical pI of the b-

CTD acts to lower the pI of the core protein to which it is

attached. Conversely, the addition of the a-CTD has little effect on

either core protein’s theoretical pI.

Cleavage data suggests that the C-terminal domain is not

generally involved in cleavage, although there was a consistent, yet

non-significant, increase in cleavage with the topoIIa derived

proteins. Most drugs showed no difference in drug-stimulated

cleavage patterns between topoIIa and b, implying that the C-

terminal domain has no impact on the action of these drugs,

consistent with previous work showing that topoIIa and topoIIb
cleave at similar sites [43]. There were exceptions to this rule

however, for example the truncated topoIIb showed no cleavage

with mitoxantrone, showing that some drugs may have specific

interactions that involve the C-terminal domain of human

topoIIb.

In summary, we report the construction of C-terminally

truncated and chimeric human topoII enzymes, and show that

the C-terminal domain impacts on the activity of the two human

isoforms. Further characterisation of human topoIIa and topoIIb,

perhaps by investigating the effect of SUMOylation on either

isoform, or the cellular localisation of these tail swap proteins, will

be needed to elucidate their different interactions with DNA

substrates and functional roles in cells.

Figure 4. Schematic showing the position of the C-terminal domain of type II topoisomerases. Above each bar are the residue numbers
at the start and end of the primary sequence, plus the point equating to the start of the C-terminal domain (indicated by arrows), as determined by
limited proteolysis where known, and by alignment with this point where this is not known. Also shown are active site tyrosines (Y), known nuclear
localisation sequences (NLS-dark grey) and known nuclear export sequences (NES–light grey). NLS sequences have been identified in human topoIIa
(1259–1296, 1454–1497 [20]), human topoIIb (1294–1332, 1522–1548, 1538–1573 [20]), S. cerevisiae topoII (1227–1242 [38]) and S. pombe (26–44,
1227–1242, 1322–1339, 1335–1357 [39]). NES sequences have been identified in human topoIIa (1017–1028, 1054–1066 [24]) and human topoIIb
(1034–1044 [24]).
doi:10.1371/journal.pone.0001754.g004

Table 2. Protein parameters for human topoII isoforms

Amino acids Theoretical pI Acidic amino acids Basic amino acids

TopoIIa 1–1531 8.82 226 (14%) 246 (16%)

TopoIIb 1–1621 8.22 243 (15%) 250 (15%)

Truncated topoIIa 1–1242 8.71 173 (14%) 187 (15%)

Truncated topoIIb 1–1263 8.83 163 (13%) 185 (15%)

a CTD 1243–1531 9.09 53 (18%) 59 (20%)

b CTD 1264–1621 5.04 77 (22%) 65 (18%)

TopoIIa +b tail 1–1600 7.69 250 (16%) 252 (16%)

TopoIIb+a tail 1–1552 8.9 219 (14%) 244 (16%)

Shown are the residues of the protein, the theoretical pI and number of acidic (negatively charged, D,E) and basic (positively charged, R,K) amino acids. Shown in
parentheses is the percentage of amino acids with each charge in each protein. Reproduced and modified from KL Gilroy, thesis [42].
doi:10.1371/journal.pone.0001754.t002
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