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Abstract

Human ESC and iPSC are an attractive source of cells of high quantity and purity to be used to elucidate early human
development processes, for drug discovery, and in clinical cell therapy applications. To efficiently differentiate pluripotent
cells into a pure population of hematopoietic progenitors we have developed a new 2-dimentional, defined and highly
efficient protocol that avoids the use of feeder cells, serum or embryoid body formation. Here we showed that a single
matrix protein in combination with growth factors and a hypoxic environment is sufficient to generate from pluripotent
cells hematopoietic progenitors capable of differentiating further in mature cell types of different lineages of the blood
system. We tested the differentiation method using hESCs and 9 iPSC lines generated from different tissues. These data
indicate the robustness of the protocol providing a valuable tool for the generation of clinical-grade hematopoietic cells
from pluripotent cells.
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Introduction

Human embryonic stem cells (hESCs) and human induced

pluripotent stem cells (hiPSCs) have the ability to proliferate

indefinitely in an undifferentiated state, and to differentiate to

virtually all mature cell types found in the human body when

induced with the appropriate combination of growth factors and

cytokines. Pluripotent cells offer a powerful system to create in vitro

models of human development and disease, provide a valuable

source of large quantities of mature cell types of consistent quality

and purity for drug discovery and testing, and have strong

potential for clinical cell replacement therapies. The hematopoi-

etic system is of particular interest for these applications due to the

wide range of progenitor and mature blood cell types, which could

be generated from pluripotent cells, and for the already available

large amount of information on the development and character-

ization of these cells. Moreover, establishing a protocol to induce

differentiation of hESCs into hematopoietic progenitors provides

an easy approach to access to initial steps of hematopoiesis during

human ontogeny, which occur in the first weeks of the developing

embryo and are therefore impractical to study in vivo. Finally, a

robust differentiation method together with the accessibility of

patient-specific pluripotent cell lines provide a novel approach to

study blood disorders [1], and generation of patient-specific

multipotent hematopoietic progenitors could eventually be used in

cellular therapy.

Despite the differentiation method used, in vitro hematopoietic

differentiation from pluripotent cells (hESCs or hiPSCs) seems to

progress through the same stages of hematopoietic development in

vivo: during the initial week the differentiating hESC cultures are

characterized by the presence of hemato-endothelial progenitors

(hemangioblast) [2,3–5]. This initial developmental stage in vitro

appears to resemble the yolk-sac phase of hematopoiesis in vivo,

when hematopoietic progenitors have the potential to give rise to

primitive erythroid cells, megakaryocytes and macrophages. Only

with an extended differentiation time are hematopoietic progen-

itors capable of maturing further, and therefore acquiring a

broader developmental potential. However, current methods for

hematopoietic differentiation of pluripotent stem cells rely on the

use of serum, co-culture on stromal cell lines or the formation of

embryoid bodies (EB) [2,3,6–12]. The poorly defined factors

present in bovine serum, as well as in conditions when feeder cells

are used, and the high variability of the embryoid body system

prompted us to develop a new, defined, animal product-free

differentiation system to generate clinical grade hematopoietic

progenitors easily applicable to test the effect of small molecules in

large scale screens. In the present study, we describe a novel 2-

dimentional (2D), feeder-free, serum-free, highly efficient differ-

entiation system for generating hematopoietic progenitors from

hESCs. Our data also show the robustness of our protocol, as it

induced the same pattern of hematopoietic differentiation
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observed from hESC in 9 hiPSC lines generated from different

somatic cell types. In summary, a single matrix protein is sufficient

to support hematopoietic differentiation using a cocktail of growth

factors and hypoxic conditions that resemble the environment in

the developing embryo.

Results

Effect of matrix proteins and oxygen concentration on
hESC-derived hematopoietic progenitor development

To establish a completely defined 2D hematopoietic differen-

tiation method, we tested the ability of matrix support proteins and

altered atmospheric conditions to promote serum–free hemato-

poietic and endothelial differentiation from hESCs induced by a

cocktail of growth factors (BMP-4, VEGF and bFGF) already

shown to support hemato-endothelial differentiation from hESCs

grown on MEFs (mouse embryonic fibroblasts) [13]. A schematic

diagram of the differentiation protocol used in this study is

depicted in Fig. 1A. We selected human fibronectin and collagen

IV as matrix proteins because they are known to support

hematopoietic differentiation of ESC-derived Flk1 progenitors in

the mouse system [14]. Fibronectin has been implicated in the

progression of mesodermal differentiation [15] and is commonly

used to induce endothelial differentiation from endothelial

progenitors (HUVEC or hESC-derived). Collagen IV has been

reported to promote mesoderm development, as it has been used

to induce endothelial, cardiovascular and hematopoietic differen-

tiation from murine ESCs [16,17], from murine iPSCs [18] and

from human ESCs [19].

To mimic the environment in the growing embryo at the stage

when hemato-endothelial progenitors start to develop, we

examined the role of hypoxia (5% O2 tension) during hematopoi-

etic commitment to reflect more physiological oxygen levels.

Hypoxia has been shown to have an important role in vivo in the

very early stages of the growing embryo [20]. Before the

establishment of the cardiovascular system, mammalian develop-

ment occurs in a 3% oxygen environment. This physiological

hypoxia seems to be an important regulator of embryonic

angiogenesis and hematopoiesis. Among other effects, this low

oxygen concentration induces expression of genes (such as FLK1,

BMP-4 and VEGF) and stimulation of pathways (hypoxia

inducible factor, HIF-dependent pathways) required for the

formation and proliferation of the hemato-endothelial progenitors

[21–23]. Moreover, hypoxia has already been shown to promote

endothelial differentiation from hESCs [24]. The presence of

hematopoietic progenitors was evaluated after 6 days of differen-

tiation by the expression of CD43, the earliest hematopoietic-

specific marker shown to appear in the hESCs/OP9 co-culture

differentiation system [5].

As shown in Fig. 1C, both matrix proteins favored the

attachment of the hESCs and the subsequent hematopoietic

differentiation, with a significantly higher number of hematopoi-

etic cells generated on collagen IV, as compared to fibronectin at

day 6. On both matrix proteins we observed an increased and

more consistent efficiency of hematopoietic progenitor generation

in hypoxic cultures, which was therefore the condition of choice

for the following experiments. Since murine collagen IV promoted

hematopoietic differentiation as efficiently as the human counter-

part, all subsequent studies were performed using murine collagen

IV. In order to have a completely defined protocol for generating

hematopoietic progenitors, we tested two serum substitutes,

containing human serum albumin, human recombinant insulin

and human transferrin (HIT and Serum Replacement 3). In

hypoxic conditions, both reagents sustained hematopoietic and

Figure 1. Optimization of the 2D differentiation protocol for
hematopoietic differentiation. (A) The 2D differentiation protocol.
Pluripotent stem cells (PSC) grown as colonies (in orange) on Matrigel
(in blue) are dissociated and plated on a matrix protein (fibronectin or
collagen IV, in green). After 24 hrs growth factors are added to the
medium to induce hematopoietic progenitor cell (HPC, in yellow)
development. The growth factor cocktail is change after 6 days of
differentiation. (B) Cell morphology during the differentiation of
pluripotent stem cells. After 6 days of differentiation, cells remain
adherent, but change in morphology. Only after 10 days of
differentiation do some colonies of round, loosely attached cells start
to appear (arrow). After 14 days of differentiation many round, loosely
attached cells cover the dish on top of a layer of adherent cells. (C)
Percentage of CD43+ cells after 6 days of differentiation on different
matrix proteins. Standard errors are indicated (Hypoxia in blue: n = 20
on hFibronectin, n = 3 on hCollagen IV, n = 27 on mCollagen IV;
Normoxia in red: n = 5 on hFibronectin, n = 1 on mCollagen IV).
Statistically significant difference between hFibronectin and mCollagen
IV is indicated with a star (*) p,0.005. The yield of CD43+ cells (in green)
is calculated as total number of CD43+ cells generated per each hESC
induced to differentiate under hypoxic conditions.
doi:10.1371/journal.pone.0017829.g001
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endothelial differentiation from hESCs plated on collagen IV, as

assessed by the presence of CD43+CD34+ hematopoietic progen-

itors and CD31+CD34+CD432 endothelial cells after 6 days of

differentiation (data not shown).

Characterization of the hESC-derived hematopoietic
progenitors

After 6 days the CD34 progenitor marker appeared on up to

40% of the hESCs differentiating on collagen IV under hypoxic

conditions using serum-free substitutes (Fig. 2A). Early CD34+ cells

are a heterogeneous population consisting of hematopoietic,

endothelial and mesenchymal progenitor cells [8]. In our 2D

culture system, after 6 days of differentiation almost every hESC

generated one CD34+CD43+ hematopoietic progenitor (Fig. 2D).

This population of CD34+CD43+ hematopoietic progenitors

represented more than half of the CD34+ cells and 25% of the

total culture (Fig. 2A). The optimized culture conditions also

favored the generation of CD34+CD31+CD432 endothelial

progenitors (up to 50% of cells at day 6), consistent with the

hemato-endothelial development in the early stages of hemato-

poiesis in the embryo. HESC-derived progenitors harvested after 6

days of differentiation gave rise to pink-colored erythroid colonies

in serum-free methylcellulose-based colony assays (Fig. 2B). At this

developmental stage, hematopoietic cells (CD43+) express the

progenitor marker CD34 and the erythroid lineage marker

CD235a (GlycophorinA) (Fig. 2A). Although we could not detect

CD41a, a megakaryocyte marker, in these early differentiating

cultures at day 6, these progenitor cells were able to generate

megakaryocyte colonies in collagen-based colony assays (Fig. 2B),

suggesting the presence of erythro-megakaryocyte progenitors, as

it has been previously shown in the OP9 co-culture system [25].

Prolonging the differentiation resulted in the appearance of

loosely attached, hematopoietic progenitor cells at around day 10

of differentiation (Fig. 1B). Collection of the floating cells in the

culture resulted in an almost pure hematopoietic population

consisting of 90% CD43+ cells (Fig. 2A), with average yield of

three hematopoietic cells generated per hESC (Fig. 2D). Although

the majority of these cells still consisted of erythro-megakaryocytic

progenitors (80% of the CD43+ cells are CD235a+CD41a+/2), the

pan-hematopoietic marker CD45 started to be expressed together

with CD34 and CD43 (7% of the culture). CD34+CD43+CD45+ is

a phenotypical signature for hematopoietic multipotent progeni-

tors, as confirmed in methylcellulose-based colony assay where

these cells were able to give rise to CFC-E, CFC-M, CFC-GM and

mixed colonies, typical of multipotent hematopoietic progenitors

(Fig. 2B, C). Extending the differentiation for 4 days expanded the

CD45+ cells which represented 35% of the floating cells (Fig. 2A).

At the end of this protocol the total yield of the CD45+ subset was

of one CD45+ cell generated per hESC induced to differentiate

(Fig. 2D). The multiple developmental potential of these cells was

also confirmed in further differentiation cultures to mature cell

types. Using different combinations of growth factors, from the

hESCs-derived progenitor cells we were able to obtain

CD71+CD235a+ erythroid cells, CD41a+CD42b+ megakaryo-

cytes, HLA-DR+CD1a+ dendritic cells, CD14+CD68+ macro-

phages, CD45+CD117+ expressing tryptase mast cells and

CD15+CD66B+ neutrophils (Fig. 3).

Hematopoietic differentiation from 9 hiPSC lines
generated from different tissues

The optimized 2D hematopoietic differentiation was tested on

several hiPSC lines. The hiPSC lines were generated with viral

transduction of human mature cells of different tissue origin: two

lines were generated from human fetal fibroblasts (FFiPSC); two

lines were generated from CD34+ PBMCs collected from a donor

leukocyte pack (BliPSC); two lines were generated from keratino-

cytes isolated from primary human keratinocytes (KiPSC); one line

was generated from adult skin fibroblast (SiPSC); two lines were

generated from T-cells isolated from a donor leukocyte pack

(TiPSC) [26]. We used the differentiation protocol optimized to

achieve the maximum yield from the hESC line as standard

conditions to compare all the hiPSC lines. After 6 days of

differentiation we detected CD34+CD43+ hematopoietic and

CD31+CD432 endothelial progenitors from all iPSC lines

(Fig. 4A). Similar to hESC-derived progenitors, hiPSC-derived

hematopoietic progenitors harvested at day 6 appeared to be

restricted to the erythroid lineage for the presence of the erythroid

marker CD235a on the cell surface. These progenitors could

generate megakaryocytes in colony assays as well as in culture,

when induced with defined factors (Fig. 4B). For all the hiPSC

lines, prolonging differentiation for 8 more days resulted in further

development of the hematopoietic progenitors, which started to

express CD45 while still retaining CD34 expression (Fig. 4A). The

floating iPSC-derived hematopoietic progenitors were able to

differentiate further into several lineages (Fig. S1) similarly to the

hESC-derived progenitors. Despite the successful hematopoietic

differentiation from all nine different hiPSC lines, we observed a

high variability in differentiation efficiency. Variability in the

efficiency of hematopoietic progenitor differentiation has been

reported in an analogous analysis performed on different hiPSC

lines using the OP9 co-culture system [11]. We could not observe

any correlation between the hematopoietic differentiation efficien-

cy and the cell origin of each hiPSC line. These differences might

be either the result of viral integration in each clone, or simply an

intrinsic variability among the lines, that has also been observed

among hESC lines [11] and among iPSCs of murine origin [27].

We can therefore conclude that under the optimized condition for

hematopoietic differentiation, we did not observe consistent

differences between hESC and iPSC groups.

Discussion

The present work outlines an efficient and directed differenti-

ation method to generate hematopoietic progenitors from human

pluripotent cells using a 2D, feeder-free, serum-free, completely

defined system. For potential clinical applications of cells

generated with the described method, we show that our system

can be easily converted to xenogenic-free conditions, as the only

reagents of non-human origin used for our differentiation protocol

are the bFgf of zebrafish origin in the differentiation medium, and

bovine serum albumin in serum replacer and in the pluripotent

cell growth medium (mTeSR1), which can be substituted with the

human counterparts. Other 2D methods shown to support

hemato-endothelial differentiation include the use of mouse

embryonic fibroblasts [13], bone marrow stromal cells, such as

S17, MS-5 or OP9, [7,8], or cells derived from fetal liver or AGM

region of murine embryos [28]. The overall differentiation

efficiency of these methods is quite low considering the fraction

of CD34+ multipotent cells obtained in the culture (0.9%–20%),

and even lower if the hematopoietic progenitors expressing CD45

are considered (0.1%–8%) during 7–20 days of differentiation.

The only report on the use of collagen IV to sustain hematopoietic

differentiation from hESCs does not provide information on the

efficiency of the method, since the progenitors were not quantified

[19]. The present protocol is completely defined and generates

hematopoietic and endothelial cells at very high efficiency. The

hypoxic conditions improved the percentage of hematopoietic cells

Hematopoietic Differentiation of Human Stem Cells
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after 6 days in culture using both fibronectin and collagen IV as

matrix support proteins. Following 6 days of differentiation up to

40% of the cells expressed CD34 and up to 25% expressed CD43,

generated with an average yield of one progenitor per hESC. After

two weeks of differentiation we could isolate a large number of

floating hematopoietic progenitor cells, of which 90% were CD43+

cells still retaining the CD34 marker and starting to express CD45

on their surface. Prolongation of the differentiation time also

increased the yield of hematopoietic progenitors. We could show

that this population of cells is able to differentiate further into

mature cells of different lineages when specific growth factors for

each lineage were added to the culture medium. Among the

mature cell types we obtained using this method, of particular

interest is the generation of megakaryocytes. To date, in vitro

generation of megakaryocytes from human pluripotent cells has

been largely achieved from somatic stem cells (bone marrow, or

cord blood or mobilized peripheral blood CD34+ cells [29–35]).

Recently, three groups have reported megakaryocyte differentia-

tion from hESC lines using the murine OP9 co-culture system

[25,36,37] and one group using the EB method [38]. Our work

presents, therefore, for the first time a protocol devoid of serum

and other undefined conditions to obtain megakaryocytes from

hESCs and hiPCSs capable of shedding platelets in vitro. Obtaining

large quantities of megakaryocytes in vitro could offer a valuable

example of using hESC/hiPSC-derived cells to study disorders

affecting a rare population of cells (megakaryocyte represent 0.1%

of the nucleated cells in the bone marrow), but most importantly

could set the stage for the production of a cell type, which could be

used in clinical settings. It has been proposed that co-transplan-

tation of autologous megakaryocytes together with hematopoietic

stem cells could result in higher response and survival rates for

patients afflicted by the severe thrombocytopenia often associated

with high dose chemotherapy and radiation therapy [39]. The

advantage of using autologous cells in transplantation studies

prompted us to test our protocol on nine hiPSC lines generated in

our laboratories using retroviral transduction of cells of different

tissue origin. HiPSCs have already been shown to be able to

differentiate into various lineages, such as cardiac [40], pancreatic

[41], hepatic [42], epithelial [6,43,44], neuronal [45–47], adipose

[48], and endothelial and hematopoietic [6,11,49–51]. The fast

pace of basic research on hiPSCs since their discovery in 2007

[52,53] reflects the high value of these new pluripotent lines for

drug testing, preclinical models and clinical application. For the

potential use of hiPSCs in pre- and clinical settings the major

challenge is to define culture conditions to differentiate progenitor

cells into a selected lineage with high efficiency and purity. Here

we tested several hiPSC lines generated by our group for their

ability to differentiate into hematopoietic progenitors using the 2D

protocol optimized on a hESC line. Despite some expected

differences in differentiation efficiency, we were able to generate

hematopoietic progenitors from nine hiPSC lines derived from 5

different tissue types. As proof of principle we generated

megakaryocytes from fibroblast (FFiPSC)-derived iPSCs with the

same efficiency and characteristics as hESC-derived megakaryo-

cytes. There are no previous reports in the literature to show the

megakaryocyte potential of hiPSCs and the production of platelet-

releasing megakaryocytes in vitro. The hiPSC-derived hematopoi-

etic progenitors also had the potential to develop to cell types of

other lineages of the blood system, such as erythroid cells,

macrophages and dendritic cells. In our system we did not detect a

lack of hematopoietic potential in iPSC lines generated from

reprogrammed fibroblasts as it has been observed in [54], possibly

due to an erase of the epigenetic memory as a consequence of

prolonged culture in vitro as it has been suggested in [55].We can

therefore conclude that, although further optimization for each

hiPSC line seems to be required to achieve a maxim yield of

hematopoietic differentiation from each line, hiPSCs and hESCs

exhibit the same developmental potential in vitro.

In conclusion, we propose here a highly efficient new system to

generate in vitro hematopoietic progenitors from hESCs and

hiPSCs in conditions free of animal products and undefined

components, which is easily applicable in basic research, drug

discovery testing and clinical settings.

Materials and Methods

Pluripotent stem cell cultures
hESCs H1 (WA01) were obtained from WiCell Research

Institute and different hiPSC lines were generated in house by

retroviral expression of OCT4/SOX2/KLF4/MYC or OCT4/

SOX2/Lin28/Nanog in different donor tissue samples as

described elsewhere (patent application n. 20100041054 published

on Feb. 18, 2010). The pluripotent stem cells were maintained in

colonies on Matrigel (BD)- coated plates in mTeSR1 (BD) and

dissociated with dispase (Invitrogen) as described in [56]. HESC

H1 line was used within 33 to 53 passage numbers. FFiPSC lines

were used within 30 to 40 passage numbers. BliPSC lines were

used within 12 to 30 passage numbers. KiPSC lines were used

within 20 to 30 passage numbers. SiPSC line was used within 40 to

50 passage numbers. TiPSC lines were used within 10 to 30

passage numbers. Cells were grown in 5% CO2 and regular

atmospheric O2 concentration.

Differentiation of hESC/hiPSCs
The protocol of hematopoietic differentiation from hESC/

hiPSCs was established during the development of iCellTM

endothelial cells (Cellular Dynamics International, Inc.). To initiate

hematopoietic differentiation, hESC/hiPSCs grown on matrigel

were dissociated with TrypLe (Gibco, Invitrogen) and transferred at

20,000 cells/cm2 onto 6-well plates pre-coated with 3 mg/cm2

human plasma fibronectin (Gibco, Invitrogen) or murine collagen

IV (BD) in mTeSR1 medium (Stem Cell Technologies) supple-

mented with soybean trypsin inhibitor (Invitrogen) and an inhibitor

of Rho-associated kinase (ROCK) as survival factor (H1152,

Figure 2. Characterization of the hESC-derived hematopoietic progenitors. (A) FACS analysis of differentiated cells at day 6 (total culture),
at day 10 (only floating cells analyzed) and at day 14 (only floating cells analyzed). Representative FACS plots are indicated, showing live- and CD34+-
gated events for CD43+CD31+ cells at day 6, and live-gated events for all the other plots. (B–C) Colony assays of hESC-derived hematopoietic
progenitors harvested after 6 days (total culture) and after 10 or 14 days (floating cells) of differentiation. In methylcellulose-based assay (MethoCult),
day 6 hESC-derived progenitors generated salmon-pink erythroid colonies; floating hESC-derived progenitors generated CFC-GM, CFC-M, CFC-E and
mixed colonies. Average CFC values per 105 cells 6 standard errors: Day 6 N = 9 CFC-E 84.69632.33, CFC-M 7.6862.54, CFC-GM 1.4960.93, mixed
1.5860.32; Day 10 N = 5 CFC-E 208.88675.59, CFC-M 26611.90, CFC-GM 2.8861.97, mixed 3.5260.75; Day 14 N = 8 CFC-E 117.33652.40, CFC-M
72.63620.28, CFC-GM 13.2864.36, mixed 2.560.98. In collagen-based assay (MegaCult), hESC-derived progenitors developed large colonies of
megakaryocytes capable of shedding pro-platelets (arrow). (D) Yield of hematopoietic cell subsets obtained per one differentiating hESC at day 6 (in
blue), day 10 (in red) or day 14 (in green). Standard errors are indicated (CD43+ cells: at day 6 N = 23, at day 10 N = 11, at day 14 N = 16; CD43+CD34+

cells: at day 6 N = 18, at day 10 N = 8, at day 14 N = 16; CD45+ cells: N = 23, at day 10 N = 6, at day 14 N = 11).
doi:10.1371/journal.pone.0017829.g002
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Sigma). After 24 hrs, the TeSR1 medium is replaced with a

differentiation medium containing IMDM (Invitrogen), BIT (bovin

serum albumin, human recombinant insulin, human transferrin,

Stem Cell Technologies), monothioglycerol (450 mM, Sigma), non

essential aminoacids (0.1 mM, Invitrogen), L-glutamine (2 mM,

Invitrogen), recombinant human BMP4 (50 ng/ml, R&D), recom-

binant human VEGF (50 ng/ml, Invitrogen) and recombinant

zebrafish bFGF (50 ng/ml) made in house. For the humanized

version we substituted BIT with HIT (Stem Cell Technologies) or

Serum Replacer 3 (Sigma). After 6 days of culture the cells are

dissociated with TrypLe and analyzed by flow cytometry. To extend

the hematopoietic differentiation, after one week the cytokine

cocktail in the differentiation medium changed to a medium

containing heparin (5 U/ml, Sigma), TPO (25 ng/ml), human

recombinant SCF (25 ng/ml), FLT3L (25ng/ml), IL-3 (10ng/ml),

IL-6 (10ng/ml), all from Invitrogen. At day 10 or 14 the floating

cells were harvested and analyzed using flow cytometry and colony

forming assays using methylcellulose-based serum-free medium

(MethoCult H4436, Stem Cell Technologies) and collagen-based

megakaryocyte colony assay (MegaCult, Stem Cell Technologies)

Figure 3. Characterization of the developmental potential of hESC-derived hematopoietic progenitors. FACS analysis and
corresponding cytospins of mature cells generated in culture from hESC-derived progenitors induced with defined factors. Images were taken at
406magnification. Cytospins of erythroid cells, dendritic cells, macrophages and neutrophils were stained with Wright. Cytospins of megakaryocytes
were stained for GPIIb/IIIa (CD41a). Cytospins of mast cells were stained for tryptase. The yield hESC:mature cell indicates the number of each mature
cell type generated per each hESC induced to differentiate.
doi:10.1371/journal.pone.0017829.g003
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according to the manufacturer’s instructions. All cultures were

performed in hypoxic conditions (5% O2 concentration, balanced

with nitrogen).

Differentiation of hematopoietic progenitors into mature
cell type

Erythroid cells: Cells harvested after 6 days of differentiation

were transferred in low attachment plates to a medium containing

SFEM (Stem Cell Technologies), heparin (5 U/ml, Sigma), TPO

(100 ng/ml), human recombinant SCF (100 ng/ml), FLT3L

(100 ng/ml), IL-3 (10 ng/ml), IL-6 (10 ng/ml), all from Invitro-

gen. After 4 days erythroid cells were expanded in SFEM medium

containing 0.3% Excyte (Serologicals), Holo-Transferrin (1 mg/

ml, Sigma), Hydrocortisone (1mM, Sigma), Insulin (20 ng/ml,

Sigma), SCF (50 ng/ml, R&D Systems), EPO (2 U/ml, R&D

Systems), IL-3 (5 ng/ml), IL-6 (10 ng/ml) and TPO (50 ng/ml,

Figure 4. Characterization of the developmental potential of 9 hiPSC lines generated from different donor tissues. (A) Percentage of
positive cells for the indicated marker in the differentiating culture. Total culture at day 6 of differentiation, or floating cells at day 14 were analyzed.
Standard errors are indicated (n = 10 H1, n = 3 FFiPSC 6.6, n = 2 FFiPSC 6.1, n = 3 BliPSC CK, n = 4 BliPSC NL, n = 2 KiPSC2, n = 3 KiPSC5, n = 6 SiPSC, n = 2
TiPSC 1b, n = 3 TiPSC 1ee). (B) FFiPSC 6.1-derived hematopoietic progenitors isolated at day 10 of differentiation generated CD41a+CD42b+

megakaryocytes in culture, as indicated by flow cytometry analysis, cytospins stained for GPIIb/IIIa (CD41a), and megakaryocytes colonies in collagen-
based assay. The megakaryocytes were able to produce pro-platelets (arrow) visible both in culture and in collagen-based colony assay.
doi:10.1371/journal.pone.0017829.g004
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Invitrogen) for additional 2 weeks. Subsequently, IL-3, IL-6 and

TPO were removed from the medium and the cells cultured for

one week, then analyzed by flow cytometry for the expression of

CD235a (glycophorin A) and CD71.

Megakaryocytes: Cells harvested at days 6, 10, or 14 of

differentiation were transferred to low attachment plates in

medium containing SFEM (Stem Cell Technologies), heparin

(5 U/ml, Sigma), TPO (100 ng/ml), human recombinant SCF

(100 ng/ml), FLT3L (100 ng/ml), IL-3 (10 ng/ml), IL-6 (10 ng/

ml). After 10 days of culture the presence of megakaryocytes was

assessed by FACS for the expression of CD41a and CD42b and

cytospins of the culture were stained for GPIIb/IIIa (CD41a).

Dendritic cells: After 14 days of differentiation the floating

hematopoietic cells in suspension were collected and expanded for

a week in SFEM (Stem Cell Technologies), 1% Excyte

(Serologicals), monothioglycerol (450mM, Sigma), non essential

aminoacids (0.1 mM, Invitrogen), L-glutamine (2 mM, Invitro-

gen), GM-SCF (100 ng/mL, Leukine). The cells were then placed

in dendritic cell differentiation medium containing SFEM, 1%

Excyte, monothioglycerol (450mM, Sigma), non essential aminoa-

cids (0.1 mM, Invitrogen), L-glutamine (2 mM, Invitrogen), GM-

SCF (20 ng/mL), IL-4 (20 ng/ml, Peprotec), TNF-a (2.5 ng/mL,

Peprotec). After one week the presence of dendritic cells was

assessed by FACS for the expression of CD1a and HLA-DR.

Macrophages: After 14 days of differentiation the floating

hematopoietic cells in suspension were collected and expanded for

a week in SFEM (Stem Cell Technologies), 1% Excyte

(Serologicals), monothioglycerol (450mM, Sigma), non essential

aminoacids (0.1 mM, Invitrogen), L-glutamine (2 mM, Invitro-

gen), GM-SCF (100 ng/mL, Leukine). The cells were then

transferred to macrophage specific medium: SFEM (Stem Cell

Technologies), 1% Excyte (Serologicals), monothioglycerol

(450 mM, Sigma), non essential aminoacids (0.1 mM, Invitrogen),

L-glutamine (2 mM, Invitrogen), M-CSF (20 ng/mL, Peprotec),

IL-1b (10 ng/mL, Peprotec). After one week the presence of

macrophages was assessed by FACS for the expression of CD14

and CD68.

Mast cells: After 14 days of differentiation, cells were harvested

and cultured for 14 days in low attachment plates in medium

containing SFEM (Stem Cell Technologies), heparin (5 U/ml,

Sigma), TPO (100 ng/ml), human recombinant SCF (100 ng/ml),

FLT3L (100 ng/ml), IL-3 (10 ng/ml), IL-6 (10 ng/ml). Finally

cells were transferred in medium containing StemPro-34 (Invitro-

gen), non essential aminoacids (0.1 mM, Invitrogen), L-glutamine

(2 mM, Invitrogen), SCF (100 ng/ml, Invitrogen), IL-6 (100 ng/

ml, Invitrogen). Mast cells were analyzed by FACS after three

weeks in this last medium for the expression of CD117 and CD45,

and the cytospins stained for Tryptase.

Granulocytes: After 14 days of differentiation on collagen IV,

the cytokine cocktail was substituted with only G-CSF (100 ng/ml,

Invitrogen) and after one week the presence of neutrophils was

assessed by FACS for the expression of CD66B and CD15.

Flow cytometry and immunostaining
All FACS antibodies CD34 FITC, CD43 APC, CD43 FITC,

CD31 PE, CD235a PE, CD41a FITC, CD45 APC, CD71 FITC,

CD42b APC, HLA-DR PE, CD1a APC, CD14 APC, CD68 PE,

CD117 PE, CD66B FITC, CD15 APC were from BD Biosciences.

CD68 staining was performed after cell permeabilization with

Fix&Perm reagents (Caltag, Invitrogen). Cytospins of erythroid

cells, dendritic cells, macrophages and neutrophils were stained

with Wright (Protocol) according to manufacturer’s instructions.

Cytospins of megakaryocytes were stained for GPIIb/IIIa (CD41a)

according to manufacturer’s instructions of the MegaCult kit.

Cytospins of mast cells were stained for tryptase: the cytospin slides

were fixed in 1:3 methanol:acetone and stained overnight at 4uC
with 1.8 mg/ml anti-tryptase antibody clone G3 (Chemicon) in

TBS (pH = 7.6) with 10% FBS. The next day, the slides were

brought to room temperature, washed with TBS, and slides were

incubated with polyclonal rabbit anti-mouse immunoglobulins

(Dako) for thirty minutes. After another wash, alkaline phospha-

tase anti-alkaline phosphatase (APAAP) reagent (Dako) was added

to the slides for thirty minutes. SigmaFAST (Fast Red TR/

Naphthol AS-MX/Levamisol) substrate tablets were used to

develop the reaction. Visible color developed on the slides after

approximately seven minutes, at which time the reaction was

stopped.

Supporting Information

Figure S1 Characterization of the developmental poten-
tial of one hiPSC line. FACS analysis of mature cells generated

in culture from BliPSC NL-derived progenitors induced with

defined factors.
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