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Abstract

Background: Rabex-5 is a guanine nucleotide exchange factor (GEF) that specifically activates Rab5, i.e., converting Rab5-
GDP to Rab5-GTP, through two distinct pathways to promote endosome fusion and endocytosis. The direct pathway
involves a pool of membrane-associated Rabex-5 that targets to the membrane via an early endosomal targeting (EET)
domain. The indirect pathway, on the other hand, involves a cytosolic pool of Rabex-5/Rabaptin-5 complex. The complex is
recruited to the membrane via Rabaptin-5 binding to Rab5-GTP, suggesting a positive feedback mechanism. The
relationship of these two pathways for Rab5 activation in the cell is unclear.

Methodology/Principal Findings: We dissect the relative contribution of each pathway to Rab5 activation via mathematical
modeling and kinetic analysis in the cell. These studies show that the indirect pathway constitutes a positive feedback loop
for converting Rab5-GDP to Rab5-GTP on the endosomal membrane and allows sensitive regulation of endosome fusion
activity by the levels of Rab5 and Rabex-5 in the cell. The onset of this positive feedback effect, however, contains a
threshold, which requires above endogenous levels of Rab5 or Rabex-5 in the cell. We term this novel phenomenon
‘‘delayed response’’. The presence of the direct pathway reduces the delay by increasing the basal level of Rab5-GTP, thus
facilitates the function of the Rabex-5/Rabaptin-5-mediated positive feedback loop.

Conclusion: Our data support the mathematical model. With the model’s guidance, the data reveal the affinity of Rabex-5/
Rabaptin-5/Rab5-GTP interaction in the cell, which is quantitatively related to the Rabex-5 concentration for the onset of the
indirect positive feedback pathway. The presence of the direct pathway and increased Rab5 concentration can reduce the
Rabex-5 concentration required for the onset of the positive feedback loop. Thus the direct and indirect pathways
cooperate in the regulation of early endosome fusion.
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Introduction

Rabex-5 is a guanine nucleotide exchange factor (GEF) for

activation of Rab5 [1], a small GTPase that is associated with early

endosomal membrane and regulates early endosome fusion and

endocytosis [2–5]. Rabex-5 knockout mice die early and develop

severe skin inflammation [6], suggesting a non-redundant function

in vivo. Mast cells isolated from Rabex-5 knockout mice show

enhanced IgE receptor-mediated degranulation and cytokine

release and these effects are due to the loss of Rabex-5 GEF activity

for Rab5 [7]. The core GEF domain of Rabex-5 consists of a

tandem helical bundle (HB) domain and Vps9 domain [8]. An early

endosomal targeting (EET) domain overlaps with the GEF domain

and contains the HB domain and an upstream membrane-binding

motif (MBM) [9]. The EET domain is essential for targeting of

Rabex-5 to early endosomes and activation of Rab5 in the cell. In

addition to this EET-mediated direct membrane targeting, Rabex-5

can also form a complex with Rabaptin-5 and indirectly target to

early endosomes via the binding of Rabaptin-5 to Rab5-GTP

[10,11]. Rabex-5 binds to Rabaptin-5 via a coiled-coil region

downstream of the Vps9 domain [7,9,12,13].

Both direct and indirect membrane targeting pathways allow

Rabex-5 to associate with the membrane and to interact efficiently

with its membrane-bound substrate, Rab5-GDP. However, rela-

tive contribution of each pathway to the Rabex-5 GEF activity is

unclear. The indirect pathway is more complex and involves a

positive feedback component, since the Rabex-5/Rabaptin-5

complex targets to the membrane via binding to the product

(Rab5-GTP) to produce more product molecules. In this case, the

Rabex-5/Rabaptin-5/Rab5-GTP tripartite complexes act on

neighboring substrate molecules (Rab5-GDP) on the membrane

to convert them to Rab5-GTP. In the current study, we conduct

quantitative analyses of the relative contributions of the direct and

indirect pathways to the Rabex-5-mediated Rab5 activation in

cultured cells. We develop a mathematical model, and conduct

experiments that employ Rabex-5 variants deficient in either

direct or indirect pathway to determine the kinetics of each

pathway independently.
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Results

Mathematical Model and ‘‘Delayed Onset’’ of a Rabex-5/
Rabaptin-5-Mediated Positive Feedback Loop

The reaction schemes in the direct and indirect Rab5 activation

pathways by Rabex-5 can be described as follows. In the direct

pathway, newly made Rabex-5 targets to early endosomes and

becomes membrane-bound, then the membrane-bound form of

Rabex-5 catalyzes the nucleotide exchange reaction to convert

Rab5-GDP to Rab5-GTP (Figure 1). The membrane targeting

step is critical for the subsequent interaction between Rabex-5 and

Rab5 on the endosomal membrane and we have shown that there

is little direct interaction between soluble/cytosolic Rabex-5 and

membrane-bound Rab5 in the cell [9]. In the indirect pathway,

Rabex-5 associates with Rabaptin-5 in the cytosol (Figure 1). This

Rabex-5/Rabaptin-5 complex remains cytosolic until it binds to

endosomal Rab5-GTP via Rabaptin-5 and is recruited to the

membrane. This tripartite complex (Rabex-5/Rabaptin-5/Rab5-

GTP) further activates neighboring Rab5 molecules and converts

more Rab5-GDP to Rab5-GTP, which creates a positive feedback

loop (Figure 1).

A comprehensive computational model has been developed for

a Rho GTPase (cdc42) recently by Goryachev and Pokhilko [14],

which provides a general framework for GTPase-regulated

processes. The Rab5 GTPase system is unique in the sense that

it contains a positive feedback component. To develop a specific

mathematical model for Rab5 activation, the reaction scheme is

simplified based on experimental observations. For example, we

only consider membrane-bound Rab5 because Rab5 is mostly

associated with the membrane at steady state in the cells studied

here. Newly synthesized Rab5 rapidly associates with the

endosomal membrane via its C-terminal prenyl group. In

addition, the kinetic constants in the cell are yet to be quantified,

which is necessary for more detailed computational analysis.

Nonetheless, our mathematical model reveals a new concept of

‘‘delayed response’’ in Rab5 activation and provides a guide for

the experiments described below. The data shed light on the

relationship of the kinetic parameters.

Define z as the concentration of activated, GTP-bound Rab5 in

the cell, then the GDP-bound Rab5 concentration is (ztot-z), where

ztot is the total concentration of Rab5 in a cell. The rate of Rab5

activation, i.e., Rab5-GTP production, can be expressed as

dz=dt~a ztot{zð Þ x1z x2ð Þ{bz ð1Þ

On the right side of this equation, the first term is Rab5-GTP

production catalyzed by total Rabex-5 via both direct and indirect

pathways, while the second term reflects GTP hydrolysis catalyzed

by Rab5 GAP. The parameters a and b are the rate constants of

enzyme reactions catalyzed by the GEF and GAP, respectively.

The second-order rate constant a is defined as the rate constant

per unit concentration of Rabex-5, while the first-order rate

constant b contains the GAP concentration in a cell. x1 is the

amount of membrane-bound Rabex-5 via the direct pathway,

while x2 is the amount of Rabex-5/Rabaptin-5/Rab5-GTP

tripartite complex via the indirect pathway. The key in the

mathematical modeling is to develop quantitative descriptions for

x1 and x2.

Define x0 as the amount of cytosolic Rabex-5, which can form

complexes with Rabaptin-5, then x1 = sx0, where s is the

equilibrium constant of the direct membrane targeting pathway

(Figure 1). We assume rapid equilibrium for the direct membrane

targeting of Rabex-5. In the indirect pathway via Rabaptin-5, x2

satisfies

Figure 1. Direct and indirect pathways in Rabex-5-mediated Rab5 activation. Rabex-5 targets to the early endosomal membrane in two
parallel pathways: direct targeting via the EET domain and indirect targeting via forming complex with Rabaptin-5 that binds to Rab5-GTP. The
reaction scheme of the direct pathway contains two steps: newly synthesized cytosolic Rabex-5 binds to the membrane, and the membrane-bound
Rabex-5 can then act on the membrane-bound substrate Rab5-GDP. The reaction scheme of the indirect pathway contains three steps: cytosolic
Rabex-5 binds to Rabaptin-5 in the cytoplasm, the Rabex-5/Rabaptin-5 complex remains soluble in the cytoplasm until its level and/or Rab5-GTP level
reach a threshold and the complex is recruited to the membrane by binding to Rab5-GTP, and the membrane-bound Rabex-5 in turn converts more
Rab5-GDP to Rab5-GTP. The superscripts ‘‘s’’ and ‘‘m’’ denote soluble and membrane-bound forms of Rabex-5 in the cell.
doi:10.1371/journal.pone.0009226.g001

Direct/Indirect Rabex5 Pathway
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dx2=dt~czx0{lx2 ð2Þ

where c and l are the rate constants for the formation and

dissociation of the Rabex-5/Rabaptin-5/Rab5-GTP tripartite

complex. c contains Rabaptin-5 concentration in the cytosol.

Finally total Rabex-5 concentration in a cell can be expressed as

xtot~x0zx1z x2~x0zsx0z x2 3ð Þ: This equation can be

reorganized as follows.

x0~
xtot{x2

1zs
; x1~

s xtot{x2ð Þ
1zs

ð4Þ

Bringing these into equations (2) and (1), respectively, we have

dx2

dt
~cz

xtot{x2

1zs
{lx2;

dz

dt
~a ztot{zð Þ sxtotzx2

1zs
{bz ð5Þ

These are the mathematical descriptions of the kinetics of

Rabex-5-mediated Rab5 activation, which includes both direct

and indirect pathways.

Based on the above equations, we can titrate Rab5 activation

with respect to Rabex-5 activity, i.e., plot z (concentration of GTP-

bound Rab5) as a function of xtot (total cellular Rabex-5

concentration). First, we consider a situation if there is no indirect

pathway, i.e., x2 = 0, then equation (5) at steady state can be

simplified as

z~
ztotxtot

b 1zsð Þ
as

zxtot

ð6Þ

This reflects that Rabex-5 directly targets to the membrane and

activates Rab5, with a kinetics similar to the classical Michaelis-

Menten enzyme kinetics, i.e., the response curve is a hyperbola.

The slope of the response curve has a Hill’s coefficient of 1 with

the midpoint for the cellular Rabex-5 concentration, xtot, being at

b 1zsð Þ
as

Figure 2ð Þ:

Second, we consider another situation if there is no direct

pathway, i.e., s = 0, then solving equations (5) yields

z~0, xtotv
lb

caztot

or z~

xtot{
lb

caztot

xtotz
b

a

, xtotw
lb

caztot

ð7Þ

This response curve via the indirect pathway is completely

different from the one via the direct pathway (Figure 2). It has a

more abrupt or sensitive response with a Hill’s coefficient of

cztotz2l

cztotzl
,

which is greater than 1 and can reach 2 if l c&ztot, i.e., when

cellular Rab5 concentration is below the affinity between Rab5-

GTP and Rabex-5/Rabaptin-5, with the given Rabaptin-5

concentration contained in c. Here the Hill coefficient concept is

generalized to reflect the sensitivity of a transition, i.e., the increase

of Rab5-GTP level per percent change of Rabex-5 concentration

at the midpoint. It’s not simply the slope at the midpoint of a

curve, but the slope normalized by the location of the midpoint.

The farther away the midpoint is from the origin, the more

sensitive the transition is. For example, two identical slopes with

midpoints at 10 and 100 would have a 10-fold difference in

sensitivity, with the latter more sensitive.

An important characteristic of the curve is the delayed onset of

the response, which increases the sensitivity of the transition. A

close inspection of the entire curve from the origin (xtot , cb/caztot

plus xtot . lb/caztot) shows a sigmoidal shape, even though the

initial phase is essentially zero before the onset. At low Rabex-5

concentrations, there is no Rab5 activation. When Rabex-5

concentration increases to a threshold level, which is determined

by the indicated rate constants, there is a sudden increase of Rab5

activation, due to the positive feedback loop.

The sigmoidal activation of Rab5 by the positive feedback loop in

the indirect pathway is further supported by a detailed steady state

analysis of the mathematical model (Supplemental Materials S1,

Figures S3 and S4). Simulation analysis of the model indicates that

the activation curve becomes increasingly sigmoidal with decreasing

Figure 2. Mathematical model of Rab5 activation via direct and indirect pathways. Rab5 activity is plotted against Rabex-5 concentration
in the cell, when there is only direct or indirect pathway as indicated. The response curves are plotted according to the mathematical model (eq. 6
and eq. 7) described in the text, with rate constants arbitrarily assigned as: a= 1, b= 1, c= 1, l= 100, and s= 0.1.
doi:10.1371/journal.pone.0009226.g002

Direct/Indirect Rabex5 Pathway
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s (Figure S4). The sigmoidal activation is an intermediate scenario

between standard hyperbolic activation and bistability. The system

does not exhibit bistability with all possible parameters analyzed

(Supplemental Materials S1), because the positive feedback is not

sufficiently robust. One of the two steady states is always unstable.

The branching is transcritical rather than a saddle-node bifurcation

that is usually necessary for bistability. The branching behavior

supports our conclusion of the ‘‘delayed onset’’ of Rab5 activation in

the indirect pathway.

Onset of the Positive Feedback Loop Dependent on Rab5
Level

The mathematical model suggested that the Rabex-5 concentra-

tion necessary for the onset of the positive feedback loop is related to

the ratio of lbvs. caztot and prompted us to determine such

threshold Rabex-5 concentration in the cell to gain insight into the

relationship of these important rate parameters in Rab5 activation.

We followed the kinetics of Rab5 activation by a Rabex-5

truncation mutant [Rabex-5(135–480)] that lacks the EET domain

and can only activate Rab5 via the indirect pathway upon

association with Rabaptin-5 [9]. In BHK cells with early

endosomes labeled by GFP-Rab5, Rabex-5(135–480) was co-

expressed with Rabaptin-5 in a single bi-directional expression

vector in a Tet-Off system, which allowed suppression and

synchronization of protein expression in the presence of Dox

(1 mg/ml). Rabex-5(135–480) contained a Myc-epitope at the N-

terminus and its expression was confirmed by immunoblot analysis

with an anti-Myc monoclonal antibody, while the Rabaptin-5

expression was determined with an anti-Rabaptin-5 antibody

(Figure 3A). A small amount of Rabex-5(135–480) was consistently

detected even in the presence of Dox (Figure 3A), due to the

leakiness of the Tet-Off system. Upon Dox removal, the Rabex-

5(135–480) level increased by approximately an order of

magnitude within 7 hours when it plateaued and reached a steady

state (Figure 3A and 3B). Rabaptin-5 expression from the same

plasmid exhibited a similar kinetics, but reached a higher level and

increased by more than an order of magnitude over the Dox-

suppressed background level in 9 hours (Figure 3A). GFP-Rab5

level in these cells served as an internal control, which was

expressed via the pcDNA3 vector and was not regulated by Dox.

Figure 3. Inducible expression of Rabex-5 constructs and Rabaptin-5 in BHK cells. A. BHK cells were transfected with pBI/myc-Rabex-
5(135–480)/Rabaptin-5 or pBI/myc-Rabex-5(1–399), pTet-Off, and pcDNA3/GFP-Rab5 (3:3:1) and incubated at 37uC for 15 hours in the presence of
Dox. Upon removal of Dox, myc-Rabex-5(135–480)/Rabaptin-5 or myc-Rabex-(1–399) expression was induced for the indicated times. Shown are
immunoblots of the cell lysates with anti-myc, anti-Rabaptin-5, and anti-Rab5 antibodies. Control cells (Con) were transfected with the empty pBI
vector. Endogenous Rab5 serves a loading control. Molecular mass standards (in kDa) are indicated on the left side of the panel. B. Shown is the
quantification of myc-Rabex-5(135–480) expression from the immunoblot in A by densitometry. The graph shows inducible myc-Rabex-5(135–480) or
myc-Rabex-(1–399) expression over the indicated time course, with intracellular protein concentrations calculated based on the standard curve
described in the Materials and Methods and error bars indicating SEM from three independent immunoblot experiments.
doi:10.1371/journal.pone.0009226.g003

Direct/Indirect Rabex5 Pathway
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The GFP-Rab5 expression was allowed to reach steady state,

which was approximately twice the amount as endogenous Rab5

(Figure 3A and supplemental Figure S2), before the induction of

Rabex-5(135–480)/Rabaptin-5 expression by Dox removal.

In addition to co-expression with Rabaptin-5, Myc-Rabex-

5(135–480) was also expressed by itself, with the same inducible

expression kinetics, so was the full-length Myc-Rabex-5 (supple-

mental Figure S1). Furthermore, we expressed Myc-tagged Rabex-

5(1–399) in this Tet-Off system for comparison (Figure 3A). The

Rabex-5(1–399) construct lacks the Rabaptin-5-binding domain

(residues 401–480) but contains the EET domain (residues 81–230)

for direct targeting to early endosomes [9]. Upon induction by

Dox removal, Rabex-5(1–399) showed the same expression

kinetics as Rabex-5(135–480) and the expression increased over

time until 7 hours post-induction when it plateaued (Figure 3A and

3B). However, Rabex-5(1–399) appeared less stable than Rabex-

5(135–480) and the steady state level decreased after 7 hours

(Figure 3A and 3B), possibly due to the presence of their N-

terminal ubiquitin-binding domain [12].

Next we monitored Rab5 activation in the cell with increasing

levels of Rabex-5(135–480)/Rabaptin-5 as well as the other

Rabex-5 constructs by determining intracellular Rab5-GTP level

with pull-down assays and by determining the maximum size of

GFP-Rab5-labeled early endosomes, which correlates with Rab5-

GTP level, via confocal fluorescence microscopy (Figure 4). With

increased expression of Rabex-5(135–480) and Rabaptin-5, thus

more Rabex-5(135–480)/Rabaptin-5 complexes in the cell, there

was a correlated increase in Rab5 activity, as evidenced by

increased levels of GFP-Rab5-GTP (Figure 4A and 4B) and by the

enlargement of GFP-Rab5-labeled early endosomes (Figure 4C

and 4D). Importantly, the level of GFP-Rab5-GTP positively

correlated with the enlargement of GFP-Rab5-labeled early

endosomes (Figure 4). In both assays, a significant increase in

Rab5 activity was observed in the presence of Dox (Figure 4), a

condition that suppressed Rabex-5(135–480) expression by an

order of magnitude and only showed a low residual level of the

protein in the cell (Figure 3). Indeed, the Rabex-5(135–480) level

in this case was similar to the endogenous Rabex-5, as determined

by comparison of the level of Myc-tagged full-length Rabex-5

expressed via the same Tef-Off vector in the presence of Dox, with

that of endogenous Rabex-5 detected by an anti-Rabex-5 antibody

(supplemental Figure S1). This low level of Rabex-5(135–480),

with Rabaptin-5, was able to increase Rab5 activity, suggesting

that endogenous Rabex-5/Rabaptin-5 level was already near or

above the threshold level for the onset of the positive feedback loop

in Rab5 activation and there was no delayed phase in these cells,

given that Rab5 was overexpressed by 2-fold (in the form of GFP-

Rab5). The Rabex-5(135–480) activity was dependent on co-

expressed Rabaptin-5 and Rabex-5(135–480) expressed alone

showed little activity (Figure 4A and 4B), indicating that

endogenous Rabaptin-5 was limiting for formation of new

complexes.

To determine the kinetics of Rab5 activation mediated by the

direct pathway, i.e., direct membrane targeting of Rabex-5 and

activation of Rab5, we took advantage of the Rabex-5 truncation

mutant [Rabex-5(1–399)] that lacks the Rabaptin-5-binding

domain and can only targets to the early endosomes via the direct

pathway mediated by the EET domain [9]. This mutant was

expressed in BHK cells in the same fashion as Rabex-5(135–480)

and the effect on Rab5 activation was determined as described

above. With increasing Rabex-5(1–399) expression during the time

course (Figure 3A and 3B), there was correlated increase in the

level of GFP-Rab5-GTP (Figure 4A and 4B) and in the size of

early endosomes (Figure 4C and 4D), which reflected increased

Rab5 activity in the cell. However, the kinetics of Rabex-5(1–399)-

mediated Rab5 activation was slower than that of Rabex-5(135–

480)/Rabaptin-5-mediated Rab5 activation (Figure 4), consistent

with our mathematical model that the positive feedback loop

contained in the latter (indirect) pathway promotes a faster

kinetics. Expression of full-length Rabex-5 alone showed the same

slow activation kinetics as Rabex-5(1–399) (data not shown),

confirming that Rabaptin-5 is limiting in the cell and overex-

pressed Rabex-5 mostly targets to the early endosomes and

activates Rab5 via the direct pathway.

The data suggest that endogenous levels of Rabex-5/Rabaptin-

5 are sufficient for the onset of the positive feedback loop in Rab5

activation, given that the cells overexpress Rab5 by 2-fold (in the

form of GFP-Rab5) (Figure 3A and supplemental Figure S2). We

then determined kinetics of endogenous Rab5 activation by

Rabex-5(135–480)/Rabaptin-5 and the other Rabex-5 constructs.

In this case, the Rabex-5 constructs were tagged with GFP at the

N-terminus and their localization and activity were confirmed by a

control experiment in which each GFP-Rabex-5 construct was co-

expressed with RFP-Rab5 in the cell, followed by confocal

fluorescence microscopy (Figure 5A). GFP-Rabex-5 and GFP-

Rabex-5(1–399) correctly targeted to RFP-Rab5-labeled early

endosomes and enhanced Rab5 activity, as evidenced by the

enlargement of these early endosomes (Figure 5A). GFP-Rabex-

5(135–480) alone showed diffused cytoplasmic staining, but GFP-

Rabex-5(135–480)/Rabaptin-5 co-expression lead to co-localiza-

tion of GFP-Rabex-5(135–480) with RFP-Rab5 on the early

endosomes and enlargement of these early endosomes (Figure 5A),

similar to the results obtained with Myc-Rabex-5(135–480)/

Rabaptin-5 (Figure 4).

Without ectopic expression of RFP-Rab5 in the cell, however,

GFP-Rabex-5(135–480)/Rabaptin-5 expression alone was unable

to target GFP-Rabex-5 (135–480) to early endosomes, instead it

exhibited diffused cytoplasmic staining (Figure 5). In contrast, both

GFP-Rabex-5 and GFP-Rabex-5(1–399) showed punctate staining

pattern, suggesting that they targeted to early endosomes, and

importantly increased Rab5 activity leading to enlarged endo-

somes (Figure 5). Both constructs activate Rab5 via the direct

pathway independent of Rabaptin-5, even though the full-length

Rabex-5 contains Rabaptin-5 binding domain but endogenous

Rabaptin-5 is limiting and unavailable for new complex formation

(Figure 4) [9]. The data indicate that at endogenous level of Rab5,

only the direct pathway allows Rabex-5 to target to early

endosomes and activate Rab5, while the indirect pathway, which

relies on Rab5-GTP for recruitment of Rabex-5/Rabaptin-5

complexes to the endosomes, cannot function effectively. We

interpret this observation as a result of less than threshold level of

Rab5-GTP on the endosomes. In this regard, the ectopic

expression of Rabex-5(135–480)/Rabaptin-5 is apparently insuf-

ficient to compensate for the 50% decrease in the Rab5 level,

indicating that the onset of the Rabex-5/Rabaptin-5-mediated

positive feedback activation of Rab5 is highly sensitive to the Rab5

concentration in the cell, as predicted by the model (equation 7).

We then focused on the kinetics of GFP-Rabex-5(1–399)- and

GFP-Rabex-5-mediated activation of endogenous Rab5. GFP-

Rabex-5 showed higher expression level than GFP-Rabex-5(1–

399) at steady state (Figure 5B) and allowed us to examine the

kinetics of Rab5 activation in a wider range of Rabex-5

concentration in the cell (Figure 6). In the presence of Dox,

GFP-Rabex-5 expression was suppressed. However, there was a

low background expression of GFP-Rabex-5 that was less than

endogenous Rabex-5 level (Figure 6A), due to leakiness of the

system. This low level of GFP-Rabex-5 was detected on punctate

early endosomes in the cell by confocal fluorescence microscopy

Direct/Indirect Rabex5 Pathway
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Figure 4. Kinetics of Rabex-5(135–480)/Rabaptin-5 and Rabex-5(1–399)-mediated Rab5 activation in BHK cells with ectopic
expression of GFP-Rab5. A. GST pull-down assay showing increased levels of GTP-bound GFP-Rab5 over the time course of inducible expression
of the indicated Rabex-5 proteins (see Figure 3). GTP-bound GFP-Rab5 in each cell lysate was detected by its binding to GST-R5BD, followed by
immunoblot analysis with an anti-Rab5 mAb and quantification by densitometry. Endogenous Rab5-GTP level was too low to be detected with the
same amount of lysates. The graph shows the quantification of GTP-bound GFP-Rab5 in each cell lysate, and error bars represent SEM of three
independent experiments. Representative immunoblots from one of the experiments are shown in B. Molecular mass standards (in kDa) are indicated
on the left side of each panel. C. Confocal fluorescence microscopy analysis of the size increase of GFP-Rab5-labeled early endosomes over the time
course of inducible expression of the indicated Rabex-5 proteins. The graph quantifies the maximal size of early endosomes in cells expressing Rabex-
5(1–399) or Rabex-5(135–480) with Rabaptin-5, as indicated. In control cells transfected with the empty vector, the size of endogenous endosomes
did not change over time and was slightly smaller than that in cells expressing Rabex-5(1–399) at 0 h (see panel D). The 0 h value of control cells is
shown in the graph to serve as a background control. The diameters of 90 largest GFP-Rab5-labeled endosomes in 30 cells were measured in each
case and the graph shows the mean and calculated SEM. Representative confocal fluorescence microscopy images of the GFP-Rab5-labeled early
endosomes used in the quantification are shown in D. X indicates control cells transfected with the empty pBI vector; Y indicates cells expressing
Rabex-5(135–480) and Rabaptin-5; Z indicates cells expressing Rabex-5(1–399). Bar = 16 mm.
doi:10.1371/journal.pone.0009226.g004

Direct/Indirect Rabex5 Pathway
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(Figure 6B). Upon removal of Dox to induce GFP-Rabex-5

expression, GFP-Rabex-5 level increased over time (Figure 6A),

accompanied by increased size of early endosomes reflecting the

increasing Rab5 activity in the cell (Figure 6B and 6C).

The data indicate that while the direct pathway is active, the

indirect pathway (i.e., Rabex-5/Rabaptin-5-mediated positive

feedback loop) is inactive in BHK cells, at endogenous levels of

Rab5 and Rabex-5. In other words, the onset of the positive

feedback loop is significantly delayed. An order of magnitude of

increase in the enzyme [Rabex-5(135–480)] concentration to 32

fg/cell (Figure 3) is still less than the threshold level for the onset of

the positive feedback loop. According to our mathematical model

(equation 7), the ratio of lb vs. caztot should be greater than 32 fg/

cell in these cells. Note that l and b are first-order rate constants,

Figure 5. Only the direct pathway allows Rabex-5 to target to early endosomes and activate Rab5 in BHK cells with endogenous
level of Rab5. A. Confocal fluorescence microscopy images of BHK cells expressing the indicated GFP-Rabex-5 proteins with or without co-
expression with RFP-Rab5. The cells were transfected with the indicated constructs and processed for microscopy 15 hours after the transfection.
Bar = 16 mm. B. Immunoblots showing the expression of the indicated GFP-Rabex-5 constructs and Rabaptin-5. The GFP-Rabex-5 constructs contain a
myc-epitope downstream of GFP and was probed with the anti-myc antibody (top panel), while Rabaptin-5 expression was identified with the anti-
Rabaptin-5 antibody (bottom panel). Molecular mass standards (in kDa) are indicated on the left side of each panel.
doi:10.1371/journal.pone.0009226.g005
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while c and a are second-order rate constants. While the

dissociation and associate rates (l and c) for Rabex-5/Rabaptin-

5 and Rab5-GTP interaction are unknown, the rates for GAP-

accelerated GTP hydrolysis by Rab5 (b) and Rabex-5-catalyzed

GDP dissociation on Rab5 (a) in the cell can be estimated by in

vitro biochemical data. The intrinsic GTP hydrolysis rate constant

by Rab5 at 37uC is 261023 s21 [15]. The rate should be

enhanced by at least two orders of magnitude by RabGAP5 [16]

and possibly other GAPs in the cell [17]. Thus b is estimated to be

261021 s21 per cell. The Rabex-5-catalyzed GDP dissociation

rate on Rab5 is 26104 M21 s21 in vitro [8]. Assuming that the

value holds true in the cell, the ratio of b and a is determined as

1025 M.

Next we convert 32 fg/cell of Rabex-5(135–480) to molar

concentration, which is determined as 1025 M in the cell, taken

into consideration of the mean cell volume (,80 fL) and molecular

weight of Rabex-5(135–480) (40 kDa). Bring the values into the

model, our data suggest that the ratio of l/cztot should be greater

than 1. In BHK cells, endogenous Rab5 concentration (ztot) is

calculated as 661026 M (supplemental Figure S2), thus the ratio of

l/c should be greater than 661026 M, which reflects the

dissociation and association rates (affinity) of Rabex-5/Rabaptin-

5/Rab5-GTP complex in BHK cells, given the Rabaptin-5

concentration contained in c.

The equation 7 of the mathematical model predicts that the

delayed onset threshold, lb/caztot, is inversely related to the total

Rab5 concentration, ztot, in the cell. Indeed our data show that

overexpression of Rab5 (in the form of GFP-Rab5) in the cell can

significantly reduce the Rabex-5 concentration necessary for the

onset of the positive feedback loop (Figure 4), i.e., endogenous

Rabex-5 concentration (,3 fg/cell) became sufficient for the onset

of positive feedback activation. The trend or change is qualitatively

consistent with the model. However, the presence of endogenous

Rabex-5, i.e., s is not zero, prevented more quantitative analysis

in BHK cells by the model. In contrast, NF73 cells lacking

endogenous Rabex-5 [7] allowed us to determine the ratio of l/c
(see below).

Delayed Onset of the Positive Feedback Activation of
Rab5 in the Absence of the Direct Pathway and
Determination of the Affinity (l/c) of Rabex-5/
Rabaptin-5/Rab5-GTP Complex in NF73 Cells

The importance of the direct pathway in Rab5 activation

became apparent when the kinetics was examined in Rabex-5-

deficient NF73 cells, which were mouse embryo fibroblasts (MEF)

isolated from Rabex-5 knockout mice [7]. In this case, there was

no endogenous Rabex-5 to activate Rab5 and provide a basal level

of Rab5-GTP in the cell, via either direct or indirect pathway. To

determine the kinetics of the positive feedback loop (i.e., the

indirect pathway) in these cells, Rabex-5(135–480) was expressed,

either alone or with Rabaptin-5, and there was ectopic expression

of GFP-Rab5 for labeling the early endosomes (Figures 7 and 8), as

described above for the experiments in BHK cells (Figures 3 and 4).

Figure 6. Kinetics of GFP-Rabex-5-mediated Rab5 activation in BHK cells with endogenous level of Rab5. A. Immunoblot showing
inducible expression of GFP-Rabex-5. BHK cell monolayers were transfected either with the empty pBI vector (control) or with pBI/GFP-Rabex-5 and
pTet-Off, then incubated at 37uC for 15 hours in the presence of Dox. Upon Dox removal to induce GFP-Rabex-5 expression, cell lysates were
prepared at the indicated times for immunoblot analysis with the anti-Rabex-5 antibody. Endogenous Rabex-5 in the same lysates serves an internal
loading control, as indicated. Molecular mass standards (in kDa) are indicated on the left side of the panel. B. Confocal fluorescence microscopy
showing the size increase of GFP-Rabex-5-labeled early endosomes over the time course of inducible expression of the protein as indicated.
Bar = 16 mm. C. The graph quantifies the maximum size of GFP-Rabex-5-labeled early endosomes shown in B. The diameters of 90 largest GFP-
Rabex5-labeled endosomes in 30 cells were measured in each case and the graph shows the mean and calculated SEM.
doi:10.1371/journal.pone.0009226.g006
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The expression of the Rabex-5 proteins took longer time (12

hours after induction) to reach plateau in these Rabex-5-deficient

MEF (Figure 7) than in BHK cells (Figure 3). As a result, it took

longer time (6–9 hours after induction) to observe significant

increases in Rab5 activity and endosomal size (Figure 8).

Expression of Rabex-5(135–480) alone did not show any increase

in Rab5 activity and consequently there was no increase in the

level of GFP-Rab5-GTP (data now shown), indicating that even

though Rabex-5(135–480) may form functional complexes with

endogenous Rabaptin-5 for the indirect pathway, the level of any

Rabex-5(135–480)/Rabaptin-5 complex formed in this case is

likely below the threshold level for the onset of the positive

feedback loop and is insufficient to activate Rab5, as predicted by

the mathematical model (Figure 2). Indeed when Rabex-5(135–

480) was co-expressed with Rabaptin-5, there was corresponding

increase in Rab5 activity, as evidenced by the increased size of

GFP-Rab5-labeled early endosomes (Figure 8). However, the

kinetics of this positive feedback loop-mediated Rab5 activation

was delayed relative to Rabex-5(1–399)-mediated Rab5 activa-

tion, via the direct pathway (Figure 8), in contrast to the

immediate onset of the positive feedback loop in BHK cells under

the same condition of GFP-Rab5 overexpression (Figure 4). Thus

in Rabex-5-deficient cells with no directly targeted endogenous

Rabex-5 on the early endosomes to provide Rab5-GTP (i.e.,

s= 0), the Rabex-5(135–480)/Rabaptin-5-mediated Rab5 acti-

vation is delayed, even when there is Rab5 overexpression.

The data are consistent with the model. Furthermore, the data

suggest that the onset of positive feedback activation of Rab5

starts between 6 and 9 hours after inducible expression of Rabex-

5(135–480)/Rabaptin-5 (Figure 8). The Rabex-5(135–480) con-

centration is approximately 12 fg/cell at 6-hour post induction

(Figure 7), which is used to estimate the ratio of l vs. c according

to the model (equation 7), i.e., 12 fg/cell should equal the ratio of

lb vs. caztot. Taken into consideration of the ratio of b and a
discussed above (1025 M) as well as the total Rab5 concentration

(endogenous Rab5 and GFP-Rab5), ztot, in the cell (2.561025 M)

Figure 7. Inducible expression of Rabex-5 constructs and Rabaptin-5 in Rabex-5-deficient mouse embryo fibroblasts. A. Cells were
transfected with pBI/myc-Rabex-5(135–480)/Rabaptin-5 or pBI/myc-Rabex-5(1–399), pTet-Off, and pcDNA3/GFP-Rab5 (3:3:1) and incubated at 37uC
for 15 hours in the presence of Dox. Upon removal of Dox, myc-Rabex-5(135–480)/Rabaptin-5 or myc-Rabex-5(1–399) expression was induced for the
indicated times. Shown are immunoblots of the cell lysates with anti-myc, anti-Rabaptin-5, and anti-Rab5 antibodies. Control cells were transfected
with the empty pBI vector. Endogenous Rab5 in the same lysates serves an internal loading control. Molecular mass standards (in kDa) are indicated
on the left side of the panel. B. Shown is the quantification of myc-Rabex-5(1–399) or myc-Rabex-5(135–480) expression from the immunoblot in A by
densitometry. The graph shows inducible myc-Rabex-5(135–480) or myc-Rabex-(1–399) expression over the indicated time course, with intracellular
protein concentrations calculated based on the standard curve described in the Materials and Methods and error bars indicating SEM from three
independent immunoblot experiments.
doi:10.1371/journal.pone.0009226.g007
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(Supplemental Figure S2), the ratio of l/c is calculated as 1025

M, which reflects the affinity of the Rabex-5/Rabaptin-5/Rab5-

GTP tripartite complex in the cell. A caveat is that the estimated

100-fold GAP-mediated enhancement in b is at the low end of

the 2 to 5 orders of magnitude enhancement among GAP-

accelerated rates of other Ras-related GTPases [17]. Should the

Rab5 GAP(s) turns out to be more powerful, the ratio of l/c
could be reduced accordingly. Thus with the guidance of the

mathematical model, we are able to estimate the kinetic

parameters of Rabex-5/Rabaptin-5/Rab5-GTP interaction in

the cell for the first time.

Discussion

Rabex-5 functions as a GEF for Rab5 activation in the cell and

plays a critical role in regulation of early endosome fusion and

endocytosis [1,10]. Rabex-5 knockout mice develop severe skin

inflammation and die early, indicating a non-redundant and

essential function in vivo [6]. Although there are other Vps9

domain-containing Rab5 GEFs, such as the RIN proteins, they are

subject to temporal regulation and become active only upon

growth factor-mediated activation and recruitment to early

endosomes during signal transduction processes [18]. In the

Figure 8. Kinetics of Rabex-5(135–480)/Rabaptin-5 and Rabex-5(1–399)-mediated Rab5 activation in Rabex-5-deficient cells with
ectopic expression of GFP-Rab5. A. Confocal fluorescence microscopy analysis of the size increase of GFP-Rab5-labeled early endosomes over
the time course of inducible expression of the indicated Rabex-5 proteins (see Figure 7). The graph quantifies the maximal size of early endosomes in
cells expressing Rabex-5(1–399) or Rabex-5(135–480) with Rabaptin-5, as indicated. In control cells transfected with the empty vector, the size of
endogenous endosomes did not change over time and was similar to that in cells expressing Rabex-5(1–399) or Rabex-5(135–480) at 0 h (see panel
B). The 0 h value of control cells is shown in the graph to serve as a background control. The diameters of 90 largest GFP-Rab5-labeled endosomes in
30 cells were measured in each case and the graph shows the mean and calculated SEM. Representative confocal fluorescence microscopy images of
the GFP-Rab5-labeled early endosomes used in the quantification are shown in B. X indicates control cells transfected with the empty pBI vector; Y
indicates cells expressing Rabex-5(135–480) and Rabaptin-5; Z indicates cells expressing Rabex-5(1–399). Bar = 16 mm.
doi:10.1371/journal.pone.0009226.g008
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current study, we have examined the impact of concentration

changes of Rabex-5 on Rab5 activation and early endosome

dynamics in the cell, via mathematical modeling and kinetic

studies of intracellular levels of Rab5-GTP and enlargement of

early endosomes. We have employed a tetracycline-regulated

expression system to synchronize the expression of two Rabex-5

constructs [Rabex-5(1–399) and Rabex-5(135–480)] that activate

Rab5 via direct and indirect pathways, respectively. Our data

demonstrate that Rab5 activity and early endosomal dynamics is

highly sensitive to alterations in Rabex-5 concentration in the cell.

Rabex-5 can activate Rab5 on early endosomes via direct and

indirect pathways [9]. The direct pathway involves direct

membrane targeting of Rabex-5 to early endosomes, while the

indirect pathway requires Rabex-5 to associate with Rabaptin-5 in

the cytosol and the complex then targets to early endosomes via

Rabaptin-5 binding to Rab5-GTP. There is little free Rabex-5 in

the cytosol because of rapid association with the membrane or

Rabaptin-5. Thus there are two major pools of Rabex-5 molecules

in the cell at steady state: a membrane-associated pool and a

cytosolic pool of Rabex-5/Rabaptin-5 complexes. The former

activates Rab5 and produces a basal level of Rab5-GTP on the

membrane, which in turn recruits the latter to the membrane for

further Rab5 activation, creating a positive feedback loop. Our

mathematical model suggests a delay of onset for the positive

feedback activation, depending on the levels of Rabex-5/

Rabaptin-5 complexes in the cytosol and Rab5-GTP on the

membrane. Indeed, endogenous Rab5 appears below the

threshold level for the onset of positive feedback activation in

BHK cells, since increased expression of Rabex-5(135–480) by an

order of magnitude, together with Rabaptin-5, shows no

detectable enlargement of early endosomes in the cell, suggesting

no increase in Rab5 activity. However, if Rab5 level is increased

by 2-fold as in the case of GFP-Rab5 expression, a small increase

in Rabex-5(135–480) and Rabaptin-5 leads to easily detectable

increase in Rab5 activity and enlargement of early endosomes.

This increase is due to the onset of the positive feedback loop,

because Rabex-5(135–480) can only use the indirect pathway to

associate with early endosomes and activate Rab5. Furthermore,

this positive feedback activation shows a faster kinetics than

Rabex-5(1–399)-mediated Rab5 activation that functions via the

direct pathway.

The Rabex-5-deficient NF73 cells provide a clean background

for kinetic dissection of the direct and indirect pathways

independently. In these cells, the delayed onset of the positive

feedback loop is more obvious and can be observed even when

there is over-expression of GFP-Rab5. Upon expressing Rabex-

5(135–480) and forming complex with Rabaptin-5, the indirect

pathway is restored but the direct pathway remains missing, i.e.,

s= 0. Without the direct pathway (endogenous Rabex-5) to

provide Rab5-GTP, however, there is extra ‘‘burden’’ on the

indirect pathway and requires a higher level of the enzyme, i.e.,

the Rabex-5(135–480)/Rabaptin-5 complex, to reach the thresh-

old for the onset of the positive feedback loop. Indeed, the Rabex-

5(135–480)/Rabaptin-5 –mediated activation and enlargement of

early endosomes is significantly delayed relative to the Rabex-5(1–

399)-mediated activation, via the direct pathway, in these cells. In

contrast, in normal BHK cells where there is endogenous Rabex-

5, the over-expression of GFP-Rab5 readily diminishes the delay

of Rabex-5(135–480)/Rabaptin-5-mediated positive feedback

activation. Thus the biological significance of the direct pathway

lies in providing a relatively high basal level of Rab5-GTP to allow

the onset of the indirect pathway at relatively low concentrations

of the Rabex-5/Rabaptin-5 complex in the cell. The partition of

Rabex-5 to indirect or direct pathway depends on the relative

concentrations of cytosolic Rabaptin-5 vs. the membrane-binding

site, which is recently reported to be another early endosomal Rab,

Rab22 [19]. Endogenous ratio of Rabaptin-5 and Rab22 varies

among cell types, suggesting functional preference for different

endocytic rates by different cell types. The indirect pathway with

its positive feedback loop offers great sensitivity to fluctuations in

Rabex-5 and Rab5 concentrations in the cell. Thus the

collaboration of the direct and indirect pathways balances the

GTP hydrolysis rate of Rab5 to produce a steady state level of

Rab5-GTP for early endosome fusion and endocytosis.

An important finding of the mathematical model is the

relationship between the Rabex-5 concentration for the onset of

the positive feedback pathway and the ratio of lb vs. caztot, which

are kinetic parameters in Rab5 activation. Our data confirm that

increasing Rab5 concentration in the cell (ztot) reduces the

threshold Rabex-5 concentration for the positive feedback

pathway. In addition, with expression of Rabex-5(135–480) that

can only activate Rab5 via the indirect positive feedback pathway

in NF73 cells, which contains no endogenous Rabex-5 and thus

lacks any direct pathway-mediated Rab5 activation (s= 0), we

have been able to identify the threshold Rabex-5(135–480)

concentration for the positive feedback pathway and determine

the ratio of l and c as 1025 M, which reflects the affinity of the

Rabex-5/Rabaptin-5/Rab5-GTP complex in the cell.

Materials and Methods

Mammalian Cell Cultures and Transfection
Rabex-5-deficient mouse embryo fibroblasts (MEF) [7] were

kindly provided by Dr. Galli’s lab at Stanford University and cell

monolayers were grown in 35-mm culture dishes with 3 ml of

DMEM containing 10% fetal bovine serum (Invitrogen). BHK

cells were cultured as described previously [9]. Cells were

transfected with the plasmid constructs capable of expressing

Rabex-5, Rabaptin-5, or Rab5 proteins as indicated via Fugene

HD-mediated procedure (Roche Applied Science) and incubated

at 37uC in a tissue culture incubator with 5% CO2. The expression

plasmids used included pcDNA3.1 (Invitrogen) and pBI (Clon-

tech). The pBI vector requires co-transfection with pTet-Off and

can express two cloned proteins simultaneously and in a

tetracycline or doxycycline (Dox)-regulated manner. Protein

expression was confirmed by immunoblot analysis and intracellu-

lar localization and endosomal morphology were determined by

confocal fluorescence microscopy (see below).

Immunoblot Analysis
Cells were lysed in 1% SDS (200 ml per dish) and the lysates

were sheared to reduce the stickiness by passing through a 26G

needle 5 times with a 1-ml syringe, followed by SDS-PAGE and

immunoblot assay with ECL reagents (GE Healthcare). The

primary antibodies used in these assays included anti-myc

monoclonal antibody (Sigma), anti-Rabex-5 antibody (BD Bios-

ciecnes), and anti-Rabaptin-5 antibody (BD Biosciences) as

indicated. The immunoblot results were quantified by densitom-

etry with a Densitometer SI (Molecular Dynamics).

Protein Quantification
Myc-Rabex-5(135–480), Myc-Rabex-5(1–399), and Rab5 were

cloned in the pGEX-4T-2 for expression as GST fusion proteins,

which were purified as described previously [9]. The GST fusion

proteins were bound on glutathione-Sepharose resin and were

cleaved by thrombin overnight at room temperature, to release

free Myc-Rabex-5(135–480), Myc-Rabex-5(1–399), and Rab5,

which were analyzed by 12% SDS-PAGE, and visualized by
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Coomassie brilliant blue staining. The protein concentrations were

determined by the Bio-Rad Protein Assay kit.

The purified Myc-Rabex-5(135–480), Myc-Rabex-5(1–399),

and Rab5 were diluted into a series of concentrations (1000 ng,

500 ng, 250 ng, 200 ng, 150 ng, 100 ng, 50 ng, 25 ng, 10 ng/ml)

as protein standards, which were subjected to the same

immunoblot analysis with the anti-Myc or anti-Rab5 mAb, as

the cell lysates containing Myc-Rabex-5(135–480), Myc-Rabex-

5(1–399), or Rab5/GFP-Rab5. Signal intensity of protein

standards was determined by using Fluorchem Imager with object

average background correction applied. Data were exported to

Microsoft Excel to generate the standard curve. The background

corrected density of each band correlated to the amount of

purified Myc-Rabex-5(135–480), Myc-Rabex-5(1–399), or Rab5

protein. The concentrations of Myc-Rabex-5(135–480), Myc-

Rabex-5(1–399), endogenous Rab5, and GFP-Rab5 in cell lysates

were then quantified with the standard curve and the image

analysis program. Protein concentrations were then corrected by

cell numbers in the lysates and transfection efficiency (80% for

BHK cells and 20% for NF73 cells). Error bars indicate SEM in

three experiments.

Confocal Fluorescence Microscopy
We used a Leica confocal laser scanning microscope with Ar-

488 and Kr-568 laser excitation in the Flow and Image Cytometry

lab on campus. BHK-21 and Rabex-5-deficient MEF cells were

grown on coverslips and transfected with pBI and pcDNA3

constructs expressing various Rabex-5, Rabaptin-5, and Rab5

proteins as indicated. The pBI constructs expressing Myc-tagged

Rabex-5 and/or Rabaptin-5 proteins were co-transfected with the

pcDNA3 construct expressing GFP-Rab5, while the pBI con-

structs expressing GFP-tagged Rabex-5 proteins were transfected

alone. Cells were incubated at 37uC in the presence of Dox (1 mg/

ml) to suppress the pBI construct-mediated expression. After 15

hours when the pcDNA3 construct-mediated expression of GFP-

Rab5 reached steady state, Dox was removed by replacing with

fresh medium to induce the expression of Rabex-5 and/or

Rabaptin-5. At different times as indicated, cells were processed

for confocal fluorescence microscopy to determine the morphology

of GFP-Rab5- or GFP-Rabex-5-labeled early endosomes. In this

case, cells were rinsed three times with PBS and fixed for 20 min

with 4% paraformaldehyde (W/V in PBS) at room temperature.

The cover slips were then mounted in PBS on glass slides and

viewed with the microscope.

GST Pull-Down Assay
GST-R5BD was produced in E.coli, affinity-purified with

glutathione-Sepharose 4B resin (GE Healthcare), and used for

the pull-down assay as described previously [20]. Briefly, GFP-

Rab5 was expressed in BHK cells by transfection of corresponding

pcDNA3.1/GFP-Rab5 construct and incubation at 37uC for the

indicated times. Cells were lyzed for 5 min in the lysis buffer

(200 ml per 35-mm dish), which contained 25 mM HEPES

(pH 7.4), 100 mM NaCl, 5 mM MgCl2, 0.1% NP40, 10%

glycerol, 1 mM DTT and protease inhibitor cocktail (Sigma-

Aldrich). Cell lysates were clarified by centrifugation at 10,000 g

for 2 min at 4uC and the supernatant was incubated with 20 ml of

GST-R5BD bound to the glutathione-Sepharose 4B resin for

10 min at 4uC on a rotating mixer. The resin was subsequently

rinsed with the lysis buffer, resuspended in SDS sample buffer,

boiled for 3 min, and subjected to SDS-PAGE (15% gel), followed

by immunoblot analysis with an anti-Rab5 mAb (BD Biosciences).

The results were quantified by densitometry using Densitometer SI

(Molecular Dynamics).

Supporting Information

Materials S1 Steady State Analysis of the Mathematical Model

for Delayed Onset of Rab5 Activation by Rabex-5 and Rabaptin-5.

Found at: doi:10.1371/journal.pone.0009226.s001 (0.18 MB

DOC)

Figure S1 Inducible expression of Rabex-5 constructs in BHK

cells. Shown are immunoblots done in parallel with those in

Figure 3, indicating the inducible expression of different myc-

tagged Rabex-5 constructs without Rabaptin-5. The experiments

were the same as that in Figure 3, except pBI/myc-Rabex-5(135–

480)/Rabaptin-5 was substituted by pBI/myc-Rabex-5(135–480)

and pBI/myc-Rabex-5, respectively, in the transfection as

indicated. The expression of each construct was identified by the

anti-myc mAb. The full-length myc-Rabex-5 expression was also

probed by the anti-Rabex-5 antibody to gauge the level of ectopic

expression over endogenous Rabex-5. Molecular mass standards

(in kDa) are indicated on the left side of the panel.

Found at: doi:10.1371/journal.pone.0009226.s002 (0.43 MB TIF)

Figure S2 Quantification of endogenous Rab5 and GFP-Rab5

in BHK and NF73 cells. A. Shown are endogenous Rab5 and

GFP-Rab5 concentrations in BHK cells. The quantification was

conducted by immunoblot analysis with an anti-Rab5 mAb (see

Figure 3), by comparison with a standard curve generated with

known concentrations of recombinant Rab5, as described in

Materials and Methods. The values for GFP-Rab5 were corrected

by transfection efficiency of BHK cells (80%). In the text, the

values of 12 fg/cell (Rab5) and 25 fg/cell (GFP-Rab5) were used to

convert to molar concentrations and both were determined to be

661026 M considering their difference in molecular weight. B.

Shown are endogenous Rab5 and GFP-Rab5 concentrations in

NF73 cells. The quantification was conducted as described above

(see Figure 7). The values for GFP-Rab5 were corrected by

transfection efficiency of NF73 cells (20%). In the text, the values

of 25 fg/cell (Rab5) and 40 fg/cell (GFP-Rab5) were used to

convert to molar concentrations and both were determined to be

1.261025 M considering their difference in molecular weight.

Found at: doi:10.1371/journal.pone.0009226.s003 (1.68 MB TIF)

Figure S3 A. Two curves in Eqs. (S3) and (S4), with s . 0. B.

The two curves in Eqs. (S3) and (S4), with s= 0, have a unstable

steady state at the origin and a stable positive steady state. This

requires xtot . lb/(caztot). C. The two curves in Eqs. (S3) and (S4),

with s= 0, has a negative steady state that requires xtot , lb/

(caztot). In this case, the zero steady state is stable.

Found at: doi:10.1371/journal.pone.0009226.s004 (2.77 MB TIF)

Figure S4 z/ztot as a function of xtot according to Eq. (S10) with

the parameters given in Eq. (S12). A. Abscissa in terms of

logarithmic xtot. B. Abscissa in terms of linear xtot. The activation

curve is hyperbolic for large s and sigmoidal for small s. The

delayed onset occurs at xtot = 10.

Found at: doi:10.1371/journal.pone.0009226.s005 (0.07 MB TIF)
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