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Abstract

Background: The realization of hydrogenase-based technologies for renewable H2 production is presently limited by the
need for scalable and high-yielding methods to supply active hydrogenases and their required maturases.

Principal Findings: In this report, we describe an improved Escherichia coli-based expression system capable of producing
8–30 mg of purified, active [FeFe] hydrogenase per liter of culture, volumetric yields at least 10-fold greater than previously
reported. Specifically, we overcame two problems associated with other in vivo production methods: low protein yields and
ineffective hydrogenase maturation. The addition of glucose to the growth medium enhances anaerobic metabolism and
growth during hydrogenase expression, which substantially increases total yields. Also, we combine iron and cysteine
supplementation with the use of an E. coli strain upregulated for iron-sulfur cluster protein accumulation. These measures
dramatically improve in vivo hydrogenase activation. Two hydrogenases, HydA1 from Chlamydomonas reinhardtii and HydA
(CpI) from Clostridium pasteurianum, were produced with this improved system and subsequently purified. Biophysical
characterization and FTIR spectroscopic analysis of these enzymes indicate that they harbor the H-cluster and catalyze H2

evolution with rates comparable to those of enzymes isolated from their respective native organisms.

Significance: The production system we describe will facilitate basic hydrogenase investigations as well as the development
of new technologies that utilize these prolific H2-producing enzymes. These methods can also be extended for producing
and studying a variety of oxygen-sensitive iron-sulfur proteins as well as other proteins requiring anoxic environments.
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Introduction

Molecular hydrogen (H2) is an important feedstock for the

synthesis of chemicals and fertilizers, and it also has great potential

as a clean carrier of energy for renewable fuel technologies.

However, conventional means for industrial-scale H2 production

such as steam reformation of natural gas fall short of the

environmental criteria now needed for sustainable fuels and

chemicals [1]. The use of hydrogenase enzymes offers a promising

alternative to traditional H2 production technologies.

Hydrogenases catalyze the redox interconversion of protons and

hydrogen gas (2H+ +2e2 O H2) using unique transition metal

cofactors by which the enzymes are classified. Since [FeFe]

hydrogenases more rapidly and preferentially evolve H2 than

[NiFe] hydrogenases [2,3], they are more desirable for H2

production technologies. Unfortunately, these prolific H2 produc-

ing enzymes are also easily inactivated by oxygen.

The [FeFe] hydrogenase active site cofactor, termed the H-

cluster, is a complex iron-sulfur cluster that is stabilized by carbon

monoxide and cyanide ligands as well as a dithiol bridging

molecule [4,5,6]. H-cluster assembly and active hydrogenase

expression require at least three accessory proteins called the

HydE, HydF, and HydG maturases [7]. Recent investigations

have provided valuable insights regarding H-cluster synthesis. For

example, tyrosine was first implicated as an essential substrate for

hydrogenase activation [8], and subsequent work revealed that this

amino acid is likely the source for the carbon monoxide and

cyanide ligands [9,10]. A cationically charged channel has also

been identified through which the H-cluster cofactor is inserted

into the hydrogenase apoenzyme [11,12], possibly from the HydF

maturase [13,14]. Despite these advances, however, the concerted

functionality of the maturases and complete H-cluster biosynthetic

pathway have yet to be elucidated [15]. In addition to the

challenges imposed by the complexity of these enzymes and the

maturation process, most work with hydrogenases and their

maturases must be done in strictly anaerobic environments. The

reduced nature of the H-cluster and accessory iron-sulfur clusters

(ISCs) makes them susceptible to damage by O2 oxidation.

Research groups have overcome these challenges and have used

hydrogenases for energy conversion at the laboratory scale in
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several different applications. Protein complexes attached to solid-

state devices have evolved H2 using electrons activated by light

[16,17]. Photoelectrochemical fuel cells with hydrogenases ad-

sorbed to cathodic carbon electrodes have preferentially evolved

H2 and perform similarly to fuel cells that use platinum catalysts

[18]. Also, synthetic metabolic pathways assembled with purified

enzymes have converted sugars to H2 and CO2 at high yields

[19,20]. Despite the successful development of these hydrogenase

technologies, their commercial realization and sustainability will

require large quantities of active protein. Various microbial

systems have been engineered for producing native and heterol-

ogous [FeFe] hydrogenases [21,22,23,24,25,26,27], but active

enzyme yields are generally less than 1 mg?L21 of culture. Also,

few recombinant DNA tools exist for effective overexpression of

proteins in organisms that naturally harbor [FeFe] hydrogenases.

Escherichia coli has several advantages that make it desirable for

hydrogenase production. The bacterium does not contain a native

[FeFe] hydrogenase that needs to be knocked out to simplify

analytical measurements, it is capable of anaerobic respiration,

and heterologous expression techniques for this microbe are well-

established. Active hydrogenase production using E. coli systems

has been demonstrated, with total yields comparable to the best

reported. However, specific activities of purified hydrogenases

from these systems are significantly lower than activities of

hydrogenases isolated from their native hosts, likely because of

incomplete enzyme maturation [22,24,25].

In this report, we describe the high-yield production of active

[FeFe] hydrogenases using the maturases native to Shewanella

oneidensis along with E. coli BL21(DE3) DiscR, a strain previously

engineered for improved synthesis of iron-sulfur (Fe–S) proteins

[22]. Following expression with our optimized protocol, both the

C. reinhardtii HydA1 and C. pasteurianum CpI hydrogenases were

isolated by Strep–Tactin affinity chromatography and character-

ized using activity assays and Fourier transform infrared (FTIR)

spectroscopy.

Results

Recombinant Protein Expression Concurrent with
Anaerobic Metabolism and Growth

Co-expression of the [FeFe] hydrogenases and the maturases

was induced under strictly anoxic conditions at an optical density

(OD600) of ,0.4. To facilitate anaerobic metabolism, glucose

(0.5% w/v) and the electron acceptor fumarate (25 mM) were

added to the complex growth medium. Aerobic growth rates were

exponential (0.45 hr21), while anaerobic growth rates were linear

and eventually ceased after 24 hr at final OD600 measurements

ranging from 1.5 to 3.0 (Fig. 1A). Substrate limitations and acetate

accumulation may have contributed to the slowed anoxic growth.

Without glucose addition, the culture density did not increase

during the anaerobic incubation period. This lack of growth

resulted in a lower cell concentration, which thus decreased the

total amount of hydrogenase produced per culture volume.

Active hydrogenase levels were determined in samples taken

during the anaerobic growth period by measuring the methyl

viologen reduction activities of cell lysates. This assay for

hydrogenase-catalyzed H2 uptake enabled us to identify the

conditions for optimal active enzyme production. For both the

HydA1 and CpI hydrogenases, maximal H2 uptake activities were

observed after 20–24 hr of anaerobic incubation (Fig. 1B), and the

four heterologous proteins had accumulated to become abundant

proteins, based on SDS-PAGE analysis (Fig. 1C). Increased rates

of cell death accompanied by protein degradation could explain

the modest decrease in activity after 24 hr, as anoxic growth

appeared to cease at this time. Only minimal amounts of methyl

viologen reduction (less than 1% of the maximal activities) were

observed when either the hydrogenase alone or only the three

maturases were expressed. Thus, methyl viologen reduction could

be specifically attributed to active [FeFe] hydrogenase in the cell

lysates and not the maturases or native E. coli [NiFe] hydrogenases.

Figure 1. E. coli growth and anaerobic expression of heterologous active [FeFe] hydrogenases. All data are for cultures of E. coli strain
BL21(DE3) DiscR, and both iron and cysteine were included in the growth medium. (Fig. 1A) Optical density at 600 nm (shown on a logarithmic scale)
of cultures during aerobic (orange circles) and anaerobic (blue circles) growth phases for cells containing the pACYCDuet-1–hydGX–hydEF and pET-
21(b) shydA1*–Strep-tag II plasmids. The pH of culture media (6) was also measured. Data for cultures with cells containing the pET-21(b) shydA–
Strep-tag II plasmid instead of pET-21(b) shydA1*–Strep-tag II were similar and are not shown. (Fig. 1B) Cell lysate-based hydrogenase activities
(mmol MV reduced?min21?mg21 total protein) for active CpI (red squares) and HydA1 hydrogenase (green triangles) were determined using the
methyl viologen reduction assay. Data are the average for n = 3 cultures examined 6 standard deviations. (Fig. 1C) SDS-PAGE analysis for the soluble
fractions of final cell lysates after the anoxic co-expression of HydA1 or CpI and the HydE, HydF, and HydG maturases: (Lane 1) the molecular weight
markers are from the Mark12TM protein ladder (Invitrogen); (Lane 2) soluble cell lysate protein content for E. coli strain BL21(DE3) DiscR following
expression of no heterologous proteins from recombinant DNA plasmids; (Lane 3) co-expression of only the HydE, HydF, and HydG maturases;
(Lane 4) co-expression of HydE, HydF, HydG, and HydA1–Strep-tag II; and (Lane 5) co-expression of HydE, HydF, HydG, and CpI–Strep-tag II.
doi:10.1371/journal.pone.0015491.g001
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[FeFe] hydrogenases and each of the three maturases require

ISCs in order to function [28,29], and recombinant overexpres-

sion of the four Fe–S proteins likely creates increased demand for

ISC assembly. We therefore investigated the benefits of supple-

menting potentially limiting substrates as well as using the mutant

DiscR strain engineered for improved production of proteins

harboring ISCs [22]. Expression with the DiscR strain improved

active hydrogenase production 2–10 fold, with a greater benefit for

CpI production (Fig. 2). Addition of both iron (2 mM ferric

ammonium citrate) and cysteine (2 mM) to the culture medium

resulted in a further 5–10 fold increase in hydrogenase activity.

Neither additive individually improved hydrogenase activation to

the same level, although cysteine supplementation led to a

moderate improvement in active CpI expression when using the

DiscR strain. The cooperative effect of iron and cysteine suggests

that both substrates are limiting when overexpressing proteins

harboring ISCs. We also tested the addition of other relevant

hydrogenase maturation substrates to the medium, along with the

iron and cysteine. These substrates were S-adenosyl methionine

(SAM; 2 mM), tyrosine (2 mM), and methionine (2 mM). Adding

these individually or in combination did not increase hydrogenase

activities (data not shown). Overall, expression with the DiscR

strain receiving iron and cysteine supplementation enhanced

HydA1 activities 25-fold and CpI activities 100-fold.

Biophysical Characterization of Purified [FeFe]
Hydrogenases

Based on the results presented in Figure 2, HydA1 and CpI

were expressed using the conditions identified for maximal

hydrogenase activities and were subsequently isolated to high

purity with Strep-Tactin affinity chromatography. The elution

fractions containing active hydrogenase were identified using the

methyl viologen reduction assay as well as by SDS-PAGE analysis.

Generally, 70–90% of the total activity present in the cell lysates

was recovered in the elution fractions. The purification yields

for HydA1 and CpI were 30 mg?L21 of culture and 8 mg?L21 of

culture, respectively (Table 1).

Both specific activities and protein-bound iron content were

determined for the purified HydA1 and CpI enzymes, and the

results are summarized in Table 1. H2 uptake rates as well as H2

evolution rates are higher for CpI in all cases, and both HydA1

and CpI contained ,70% of the maximum amount of iron (6 and

20 iron atoms are expected for these hydrogenases, respectively).

We also used the purified Synechocystis [2Fe–2S] ferredoxin PetF

(50 mM) instead of methyl viologen as the electron donating

substrate. Since ferredoxin proteins are the native electron

transport substrates for [FeFe] hydrogenases, the catalytic rates

when using PetF are more relevant for future design efforts to

engineer microbial H2 production systems. We observed a Km

of 20 mM for PetF with CpI when using sodium dithionite

(DTH) as the source of electrons for ferredoxin reduction.

Reduced PetF, however, supported significantly lower H2

evolution rates compared to methyl viologen. Lower catalytic

rates when using a [2Fe–2S] ferredoxin have been previously

observed when compared to rates observed when a [4Fe–4S]

ferredoxin was used [30].

Figure 2. Effects of iron and cysteine supplementation as well as the iscR deletion on active hydrogenase expression. Iron (2 mM
ferric ammonium citrate) and cysteine (2 mM) were added to cultures as indicated. Methyl viologen reducing activities (mmol MV
reduced?min21?mg21 total protein) of active [FeFe] hydrogenase in cell lysates from E. coli strains BL21(DE3) (gray bars) and BL21(DE3) DiscR
(black bars). Hydrogenase activities were measured after 16–18 hrs of anaerobic HydA1 expression (A) and CpI expression (B). Hydrogenase activities
for the DiscR-derived samples are indicated above the respective columns, and all activities are the average for n = 2 cultures 6 standard deviations.
doi:10.1371/journal.pone.0015491.g002

Table 1. Biophysical characterization of purified [FeFe]
hydrogenases produced in Escherichia coli.

HydA1 CpI

H2 Uptake (MV){ 251649 476639

mmol H2?min21?mg21

H2 Evolution (MV){ 641688 10876146

mmol H2?min21?mg21

H2 Evolution (PetF){ 4164 90610

mmol H2?min21?mg21

Iron Content 4.560.2 13.261.3

Fe atoms?peptide21

Purification Yield 30611 7.960.8

mg?L21 of culture

Data are the average from n = 3–6 cultures examined 6 standard deviations.
{Specific activities of purified hydrogenases were determined using methyl
viologen (MV) or PetF ferredoxin as the electron donating or accepting
substrates.

doi:10.1371/journal.pone.0015491.t001
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FTIR Spectroscopic Analysis of Isolated [FeFe]
Hydrogenases

FTIR spectroscopy was used to analyze the purified HydA1 (Fig. 3A)

and CpI hydrogenases (Fig. 3B) in both the as-isolated state as well as

following treatment with exogenous CO. The spectra for both as-

isolated hydrogenases clearly show peaks representing CN2 and CO

vibrational stretches, indicating the presence of fully assembled H-

clusters. Based on previous reports for each of these enzymes [31,32] as

well as other [FeFe] hydrogenases [33], these spectra also indicate that

the as-isolated hydrogenases have a mixture of H-clusters in both the

oxidized (Hox) and reduced (Hred) states. The presence of DTH in the

elution buffer was essential to prevent hydrogenase inactivation during

purification, and this additive was likely the cause for the mixture of H-

cluster redox states. The CO inhibition studies confirmed the presence

of the H-cluster cofactors, as the CO and CN2 vibrational modes

shifted as expected after exogenous CO binding to the H-cluster.

Discussion

By implementing several changes for heterologous [FeFe]

hydrogenase expression, we achieved HydA1 and CpI yields

more than 10-fold higher than previously reported for these

enzymes (Table 2). Enabling concurrent anaerobic cell growth and

T7 RNA polymerase induction was essential for increased

heterologous protein production. In the absence of anoxic cell

growth (i.e. incubation without glucose added to the medium),

anaerobic hydrogenase and maturase accumulation levels were

noticeably lower, as indicated by both hydrogenase activity assays

and SDS-PAGE analysis (data not shown). This decrease in

protein expression could be expected since translation is energy

intensive due to the high entropic demands, and the rates of ATP

synthesis are dramatically reduced under non-respiring conditions.

Along with increased yields, the purified hydrogenases are also

highly active and contain a properly assembled H-cluster based on in

vitro enzymatic activities as well as FTIR spectroscopic analyses.

Previous studies using E. coli as an expression host for heterologous

[FeFe] hydrogenase production reported specific activities much

lower than those measured for the same protein purified from its

native host (Table 2), likely due to incomplete hydrogenase

maturation as well as possible loss of activity during purification

[22,24,25]. The CpI and HydA1 enzymes produced with our

optimized system have specific activities similar to those of the

respective wild-type enzymes isolated from their native hosts [23,34].

The HydA1 hydrogenase isolated from C. reinhardtii was shown to

evolve H2 with rates 650–950 mmol H2?min21?mg21 [23,35], while

CpI from C. pasteurianum was shown to evolve H2 with rates of 1100–

5500 mmol H2?min21?mg21, depending on the assay conditions

[2,6,21,34]. While it appears that all HydA1 enzymes were active,

we estimate that 20–40% of the CpI enzymes were not. Considering

that CpI requires additional accessory iron-sulfur clusters, it is

possible that this enzyme is more difficult to mature compared to

HydA1. The iron contents for both hydrogenases that we examined

were measured to be ,70% of that expected, which is consistent

with the observation of lower-than-expected specific activity.

Alternatively, experimental error associated with measuring iron

quantities and protein concentration could also account for the

lower-than-expected iron content, and some of the hydrogenases

may have been inactivated during the purification process. The latter

of these theories agrees with the 70% recovery of total hydrogenase

activity during purification, which is further discussed below.

Like the [FeFe] hydrogenases, HydE, HydF, and HydG also

require ISCs. Thus, the benefits of the engineered DiscR strain along

with iron and cysteine supplementation could be expected since not

one, but four Fe–S proteins must be overexpressed [22]. The more

pronounced benefit of the DiscR strain for active CpI expression

(Fig. 2B) might be explained by the enzyme’s requirement for

N-terminal ISCs. Unlike the algal HydA1 hydrogenase, CpI has

three [4Fe–4S] clusters and one [2Fe–2S] cluster that participate in

electron transfer to the H-cluster cofactor [6]. As transcription of the

E. coli isc operon is deregulated in the DiscR strain [36], higher

expression of the corresponding native ISC proteins likely enhances

the assembly, installation, and/or repair of these four accessory

ISCs. The benefit of cysteine supplementation for active CpI

expression in the DiscR strain further supports this hypothesis, as

increased in vivo levels of the cysteine desulfurase IscS may improve

cysteine utilization for ISC biosynthesis.

With our methods and a single purification step, we obtained

greater than 70% recovery of the in vivo hydrogenase activity.

During our experimentation, we identified several factors that

affected the overall efficacy of the purification process such as the

necessity for DTH during protein purification. When buffers did

Figure 3. Fourier transform infrared spectra of heterologous
[FeFe] hydrogenases produced in E. coli. Infrared spectra are for
100–200 mM of the (A) HydA1 and (B) CpI hydrogenases. Both enzymes were
examined [1] in their as-isolated state as well as [2] following treatment with
exogenous CO. Vibrational energies (in cm21) for the H-cluster CO and CN2

ligands are indicated in each spectrum. The wavenumber ranges for
terminal CN2 (n(CN2)), terminal CO (n(CO)), and bridging CO (n(m-CO))
vibrational modes are shown above the spectra. Scale bars shown at
1870 cm21 represent a difference of 0.5 milliabsorbance units.
doi:10.1371/journal.pone.0015491.g003
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not contain fresh DTH, both HydA1 and CpI more rapidly

deactivated, in agreement with previously reported observations

[25,35]. We also used a commercial lysis buffer (BugBuster Master

Mix) to produce the lysates as this approach is simpler (given the

anaerobic requirements) than alternative methods such as

sonication and homogenization. High-yield expression was also

beneficial for efficient recovery, since hydrogenase concentrations

in the lysates (estimated to be 5–25 mM) are then higher than the

Kd for Strep-tag II:Strep-Tactin adsorption (1 mM). The affinity tag

location was another important factor as observed in other studies

[37]. While the presence of a C-terminal affinity tag did not seem

to negatively affect the solubility or catalytic properties of the

hydrogenases, we could not produce soluble CpI with an N-

terminal affinity tag. Moreover, HydA1 with an N-terminal

affinity tag had a 50% lower specific activity, as indicated by both

methyl viologen-based activity assays (data not shown). Traditional

methods for isolating HydA1 without an affinity tag have

combined multiple purification steps, and the majority of the

hydrogenase activity (80–90%) was lost during the procedures

[23,35]. Also, immobilized metal ion affinity chromatography

(IMAC) could cause detrimental interactions between protein

metal clusters and the resin [38], and high salt concentrations are

generally used to recover the bound protein. Strep-Tactin affinity

chromatography may also be more favorable for purifying

metalloproteins compared to multi-step chromatography or

IMAC. The Strep-Tactin approach involves a single chromatog-

raphy step for efficient recovery of pure protein. Moreover, since

buffer exchanges are not required to deplete high salt concentra-

tions, the preparation of concentrated hydrogenase samples for

FTIR spectroscopic analysis is simpler and less time consuming.

The production of two structurally different [FeFe] hydroge-

nases using heterologous maturases illustrates the versatility of this

expression system. Infrared spectroscopic data confirm the

presence of CO and CN– ligands, indicating that both HydA1

and CpI contain an intact H-cluster identical to that of the protein

produced in the native organisms and assembled by the native

maturases. Despite the evolutionary diversity of [FeFe] hydroge-

nases, H-cluster biosynthesis and hydrogenase maturation appear

to be highly conserved. Our results also underscore the modularity

of the microbial world and the potential for dramatic evolutionary

change through DNA exchange. It thus seems likely that the

HydE, HydF, and HydG maturases from S. oneidensis could also

activate other [FeFe] hydrogenases of interest (e.g. hydrogenases

from Thermatoga maritima [39] and Desulfovibrio vulgaris [25]). One

advantage of using the S. oneidensis maturases is the similarity

between Shewanella and Escherichia. For example, high yields and

soluble expression of HydE, HydF, and HydG were observed

(Fig. 1C), even without codon optimizing the maturase genes.

The effectiveness of E. coli for inducible expression of heterolo-

gous proteins along with the variety of commercial recombinant

DNA expression tools make this organism more desirable than

others (e.g. Clostridia) for the large-scale production of hydrogenases

for a variety of applications. In this work, we illustrate this advantage

via the facile production of hydrogenases for IR spectroscopic

analysis. Such analytical techniques generally require large

quantities of hydrogenase per sample (.500 mg) at concentrations

greater than 5 mg?mL21. With our system, sufficient quantities of

HydA1 and CpI hydrogenase for multiple IR spectroscopic

measurements can be obtained from a single 250 mL culture. In

comparison, isolation of HydA1 from its native host requires 8 L of

culture and multiple purification steps to produce enough

hydrogenase for one IR spectroscopic measurement [23].

Conclusions
The commercialization of technologies that use [FeFe] hydrogenas-

es will most certainly require economical approaches for producing

these complex oxygen-sensitive enzymes. Furthermore, much remains

unknown about H-cluster biosynthesis and the hydrogenase matura-

tion process. We provide a new, effective protocol for producing these

enzymes to greatly facilitate both technology development and

hydrogenase biochemistry research. The methods we describe could

also be extended for producing other enzymes associated with

anaerobic metabolism such as [NiFe] hydrogenases and nitrogenases.

Materials and Methods

[FeFe] Hydrogenase and Maturase Expression Constructs
The C. reinhardtii hydA1 and C. pasteurianum hydA genes were used

for expression of the HydA1 and CpI [FeFe] hydrogenases,

respectively. Both genes were previously codon-optimized for

expression in E. coli [40]. The coding sequencing for a C-terminal

Strep-tag IIH extension (IBA GmbH) with a two residue linker

(59-SAWSHPQFEK-39) was added by PCR amplifying the

hydrogenase genes from the plasmids pY71 shydA1* [8] and

pK7 shydA [40]. PCR products were then cloned into the pET-

21(b) expression vector (Novagen). The plasmid pACYCDuet-1–

hydGX–hydEF [8] was used for expression of the S. oneidensis [FeFe]

hydrogenase maturases HydE, HydF, and HydG. Multiple cloning

sites I and II contain the hydGX and hydEF nucleotide sequences,

respectively. The hydX sequence (Accession code AAN56899) is a

part of the S. oneidensis [FeFe] hydrogenase operon and encodes a

soluble protein with no identified functions. The petF gene from

Table 2. Comparing this work to previous reports for the production of the C. reinhardtii HydA1 hydrogenase.

Microbial host C.r. HydA1 Variant Specific Activity1 Purification Yield2 Iron Content3 Ref.

C. reinhardtii HydA1 7306146 0.04 NR [23]

HydA1 935 0.001 3.960.3 [35]

S. oneidensis Strep-tag II–HydA1 740656 0.5 6.160.1 [26]

C. acetobutylicum HydA1–Strep-tag II 625 1.0 NR [27]

HydA1–Strep-tag II 760 0.1 NR [37]

E. coli HydA1–Strep-tag II 150 1.0 NR [24]

E. coli HydA1–Strep-tag II 641±88 30±11 4.5±0.2 This Work

1Specific activities for H2 production rates are expressed in units of mmol H2?min21?mg21 of HydA1.
2Purification yields are mg of HydA1 isolated per liter of cell culture.
3Iron content is expressed in units of Fe atoms per HydA1 peptide; NR, not reported.
doi:10.1371/journal.pone.0015491.t002

High-Yield Production of [FeFe] Hydrogenases
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Synechocystis sp. PCC 6803 was PCR amplified from the pK7

expression vector and cloned into the pET-21(b) plasmid [41]. All

expression constructs were confirmed by DNA sequencing and

transformed into the E. coli strains BL21(DE3) (Novagen) and

BL21(DE3) DiscR by selection with the appropriate antibiotics.

Recombinant Expression and Purification of Active
Hydrogenases

E. coli strains BL21(DE3) and BL21(DE3) DiscR contained the

pACYCDuet-1–hydGX–hydEF plasmid and one of the two pET-

21(b) hydrogenase plasmids. Cells were grown in LB Miller growth

medium supplemented with kanamycin (40 mg?L21; only when

using the DiscR strain), chloramphenicol (25 mg?L21), ampicillin

(100 mg?L21), 0.5% w/v glucose (,25 mM), and 100 mM

MOPS/NaOH (final pH of medium was 7.4). The DiscR strain

contains a chromosomal substitution of the iscR gene with another

gene conferring resistance to kanamycin [22]. 10–50 mL cultures

were grown for investigating the effects of cell strains and

substrates, while 50–250 mL cultures were grown for hydrogenase

purification work. Initially, all cultures were grown aerobically at

25uC until an OD600 of 0.3–0.5. They were then moved into an

anaerobic glove box (Coy Laboratory Products) containing 98%

N2 and 2% H2 prior to IPTG-based T7 RNA polymerase

induction and heterologous protein expression. While ferric

ammonium citrate (2 mM) was added to the growth medium

prior to inoculation, both cysteine (2 mM) and sodium fumarate

(25 mM) were added with IPTG (0.5 mM) within the anaerobic

glove box. Cultures were sealed and incubated at 25uC for 16–

24 hours following induction.

For investigating media formulations and protein expression by

different strains, cells from 1 mL of culture were pelleted at 4,0006g

and resuspended in 100 mL of anaerobic BugBusterH Master Mix

lysis solution (Novagen) containing an additional 25 mM Tris/HCl

(pH 8.0), 25 mM KCl, 3 mM sodium dithionite (DTH), 1 mM

dithiothreitol (DTT), 2% v/v glycerol, 0.1% v/v Tween 20,

0.2 mM phenylmethylsulfonyl fluoride (PMSF), and 2 mM resazur-

in as an oxygen indicator. After cell lysis (incubation at 25uC for

20 min), lysates were clarified by centrifugation at 14,0006g.

Hydrogenase activities in cell lysates were measured using the

methyl viologen reduction assay described below. Total protein

content of lysates was determined using a commercial assay (Bio-

Rad) based on the method of Bradford [42], and the extent of

heterologous protein expression was visualized using polyacryl-

amide gel electrophoresis with SDS-PAGE gels (Invitrogen).

Hydrogenase purifications were carried out while maintaining

strict anaerobic conditions. After centrifugation and lysis as

described above, approximately 1 mL of Strep-TactinH SuperflowH
high capacity resin (IBA GmbH) was used per 50 mL of cell

culture for purification. Wash and elution buffers contained the

above lysis buffer additives excluding the BugBuster Master Mix

and PMSF, and active hydrogenase was eluted with 2.5 mM D-

desthiobiotin. Elution fractions were evaluated for active hydrog-

enase using the methyl viologen reduction assay, and fractions

with high activity were pooled. Protein concentrations were

measured with the Bradford assay, and hydrogenase iron content

was measured using a ferrozine-based colorimetric assay [43].

Hydrogenase samples for IR spectroscopic studies were anaero-

bically concentrated to ,100 mM using a 10 mL stirred cell and a

5 kD MWCO membrane (Amicon). Hydrogenase samples were

not frozen prior to characterization and spectroscopic analysis.

Hydrogenase Activity Assays
Hydrogenase activities were measured at 37uC in both the H2

consumption and H2 evolution directions using methods previously

described [40]. Generally, 1–25 ng of hydrogenase was tested. H2

uptake was quantified with a methyl viologen reduction assay. 200 mL

assay solutions contained 50 mM Tris/HCl (pH 8.0) and 2 mM

methyl viologen. Absorbance was measured at 578 nm for 1–2 min

following addition of lysate or purified hydrogenase. Methyl viologen

reduction rates were adjusted by subtracting background activities,

which were generally less than 1% of the hydrogenase activities.

An extinction coefficient for reduced methyl viologen of

9.78 mM21?cm21 was used to calculate H2 oxidation rates, in which

2 moles of methyl viologen are reduced per mole of H2 consumed.

Hydrogen production was quantified using DTH-reduced methyl

viologen (5 mM) or the ferredoxin PetF from Synechocystis (50 mM) as

the electron donating substrate. 9.5 mL glass vials contained 1 mL of

100 mM MOPS/KOH buffer (pH 6.8), 100 mM KCl, 25 mM

DTH, and either methyl viologen or ferredoxin. Upon hydrogenase

addition, vials were sealed and the headspace was sparged with 100%

N2 for 2 min. H2 quantities in the headspace were then quantified

after 15–30 min of incubation using a ShinCarbon ST 100/120 mesh

column (Resteck) with a Hewlett Packard 6890 gas chromatograph

(Hewlett Packard). For PetF ferredoxin production, the petF gene from

Synechocystis sp. PCC 6803 was first cloned from the pK7 plasmid [40]

into the pET-21(b) vector, and subsequently transformed into

BL21(DE3) DiscR. Both PetF expression and purification using

ammonium sulfate precipitation followed by anion exchange

chromatography were carried out as previously described [41,44].

Fourier Transform IR Spectroscopy
Infrared spectra were measured using a Bruker IFS/66s FTIR

spectrometer interfaced to a home-built stopped-flow drive system.

The IR sample cuvette and drive system were maintained inside

an anaerobic chamber (O2,1.1 ppm) as previously described [45].

The sample cuvette was maintained at 25uC with a calibrated path

length of 47.6 mm. For IR spectroscopic measurements, one drive

syringe contained the protein sample. A second syringe contained

either the elution buffer without any protein or buffer saturated

with exogenous carbon monoxide. Spectra were measured at

4 cm21 resolution from 1000 sample scans, and the average

spectrum was improved with a background correction.
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