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Abstract

Mapping of expression quantitative trait loci (eQTLs) is an important technique for studying how genetic variation affects
gene regulation in natural populations. In a previous study using Illumina expression data from human lymphoblastoid cell
lines, we reported that cis-eQTLs are especially enriched around transcription start sites (TSSs) and immediately upstream of
transcription end sites (TESs). In this paper, we revisit the distribution of eQTLs using additional data from Affymetrix exon
arrays and from RNA sequencing. We confirm that most eQTLs lie close to the target genes; that transcribed regions are
generally enriched for eQTLs; that eQTLs are more abundant in exons than introns; and that the peak density of eQTLs
occurs at the TSS. However, we find that the intriguing TES peak is greatly reduced or absent in the Affymetrix and RNA-seq
data. Instead our data suggest that the TES peak observed in the Illumina data is mainly due to exon-specific QTLs that
affect 39 untranslated regions, where most of the Illumina probes are positioned. Nonetheless, we do observe an overall
enrichment of eQTLs in exons versus introns in all three data sets, consistent with an important role for exonic sequences in
gene regulation.
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Introduction

Polymorphisms that impact gene regulation play an important

role in disease genetics and adaptive evolution [1,2]. One

important tool for identifying such variants is by genome-wide

mapping of expression quantitative trait loci (eQTLs) [3–5]. A

number of recent studies have aimed to characterize the properties

of genetic variants that produce eQTLs, including the types and

locations of variants, and the functional context of the variants in

question [6–12].

In previous work, we developed a Bayesian hierarchical method

for studying the distribution of eQTLs with respect to their target

genes, and for identifying biological anotations that can predict the

locations of causal sites [9,11]. Applying that method to Illumina

expression array data collected in the HapMap lymphoblastoid

cell lines, we observed a striking enrichment of eQTLs

immediately upstream of the TES [9], in addition to a more

expected enrichment around the TSS of the target genes [7,8]. In

that paper we proposed two main hypotheses to explain the

presence of the eQTL peak in the 39 UTR: (1) these may be

variants that affect stability or degradation of the entire transcript

(e.g., miRNA binding sites), or (2) these may be variants that affect

inclusion levels of the last exon (e.g., splicing QTLs; note that most

of the Illumina probes lie in the last exon). In the original paper we

argued that the first mechanism was likely to be most important.

However, in a more recent study using RNA sequencing to

measure isoform expression levels for a subset of the HapMap

LCLs we did not find a peak of eQTLs at the TES [13].

Here we revisit the TES peak to understand better the

mechanism that generates this intriguing signal. Using expression

data for the same samples from independent experiments and

different technologies, our new analysis suggests that in fact exon-

specific effects are responsible for most, if not all of the 39 UTR

peak that we saw previously. However, we find that our previous

result showing an eQTL enrichment in exons overall, compared to

introns is supported by all three data sets.

Results

Datasets and cis-eQTL mapping
For this analysis we used data from the 210 unrelated HapMap

samples in the original HapMap Phase I/II cell lines [14]. These

include 60 CEPH (CEU), 60 Yoruba (YRI), 45 Chinese (CHB)

and 45 Japanese (JPT) samples. The SNP genotypes were based on

HapMap genotypes for all HapMap SNPs, combined with whole-

genome sequence data from the 1000 Genomes Project [15]. For

individuals not sequenced by the 1000 Genomes Project, missing
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SNP genotypes were imputed using BIMBAM [16,17]. See the

Methods for further details.

We analyzed expression measurements obtained using three

distinct technologies:

N Illumina gene array data from a total of 210 CEU, CHB, JPT

and YRI samples [6] and hereafter referred to as the Illumina

data set. This is the expression dataset we used for our previous

study [9];

N Affymetrix exon array data from 117 CEU and YRI samples

[18] and hereafter referred to as the Affymetrix data set;

N RNA sequence data from 102 CEU and YRI samples [13,19],

hereafter referred to as the RNA-seq data set.

Note that the 117 individuals in the Affymetrix data set, and 102

individuals in the RNA-seq data set are both subsets of the 210

individuals in the Illumina data set (and in both cases include the

majority of the CEU and YRI samples). The original RNA-seq

data sets included a few individuals that were not in either the

Illumina data or Phase I/II HapMap; in order to simplify the

genotype imputation pipeline these individuals were excluded

from the analysis.

To avoid the impact of spurious associations caused by SNPs

falling within the probes of the two array data sets (Illumina and

Affymetrix), we systematically removed all probes containing at

least one SNP. We also removed all probes impacted by short

insertions/deletions or copy number variations (CNV) based on

the genomic coordinates of these structural variants as provided by

[20] and the 1000 Genomes Consortium [15]. Finally, for all

expression data we removed probes (Illumina and Affymetrix) or

exons (RNA-seq) that appear to be ‘‘non-expressed’’ (see Materials

and Methods). For each dataset, expression levels were quantile

normalized to a standard normal distribution within populations

prior to performing the mapping of cis-eQTLs, in order to avoid

false positives due to population structure [9]. More extensive

details on the data processing are provided in the Materials and

Methods section. Table S1 provides a summary of the content of

each expression dataset.

For eQTL mapping, we used standard linear regression to test

every SNP within the transcript or 100 kb from either end of the

transcribed region for association with gene expression. Table S1

reports the number of eQTLs we found for each expression

dataset for an empirically estimated False Discovery Rate (FDR) of

5%. For each gene with at least one significant SNP, we treated

the most significant SNP as an estimate of the major eQTN

(Quantitative Trait Nucleotide) for that gene. When more than

one SNP had exactly the same lowest p-value (e.g., several SNPs in

perfect LD) we equally shared the probability of being the major

eQTN among all these SNPs.

The TES peak is strongest in the Illumina data and absent
in the RNA-seq data

The left panels of Figure 1 display the distribution of locations of

the best SNP with respect to the target gene (similar to Figure 2 of

[9]): the vertical red arrow on each panel highlights the location of

the Illumina TES peak. As is evident, the peak upstream of the

TES is strongest in the Illumina data, weaker in the Affymetrix

data, and essentially absent from the RNA-seq data.

To assess the evidence for a TES peak more quantitatively, we

computed the AIC (Akaike Information Criterion) for a model

with, and without a special TES effect (Figure 1; compare the

‘‘TSS, intron, exon’’ model to the ‘‘TSS, intron, exon, last exon’’

model). As illustrated in the figure, the model with a special effect

for the last exon (i.e, the exon ending at the TES) is strongly

preferred for the Illumina data (by 188 units of likelihood), it is

weakly preferred for the Affymetrix data (by 7 units), and weakly

disfavored for the RNA-seq data (by 2 units).

One major difference between the Illumina data and the other

two data sets is that a large fraction of the Illumina probes are

positioned in the last exon (85% for Illumina compared to 21% for

Affymetrix). To assess whether the Illumina probe placement

might have helped to create the peak of signals at the TES, we

filtered the Affymetrix data to include only those Affymetrix

probes that are in the same exon as an Illumina probe (and hence

the filtered data set includes mainly probes in the last exons of

genes). When we did this, we observed that indeed the filtered

Affymetrix data set showed a much stronger peak of eQTLs in the

last exon (Figure 2). This latter observation strongly suggests that

the probe distribution on the Illumina array has helped to create

an apparent peak of eQTLs in the last exon that is not supported

by the other data sets.

In principle, one plausible explanation might be that ungeno-

typed SNPs in Illumina probes could generate spurious eQTL

signals, and that these would often be detected by nearby SNPs;

such an effect might in principle generate a spurious 39 peak of

eQTLs. However, this does not appear to be the case. The original

analysis of Veyrieras et al included a correction factor for

unmeasured SNPs-in-probes that suggested that the effect of such

SNPs was relatively modest [9]. That conclusion is confirmed by

the analysis presented here, for which we removed all probes

containing 1000 Genomes SNPs (which should include nearly all

common SNPs in probes); the distribution of eQTNs in the

Illumina data is very similar to the corrected distribution reported

previously [9].

eQTNs within last exons frequently have exon-specific
effects on expression

Recent work has shown that there are many SNPs that impact

the expression levels of individual exons, while not necessarily

affecting the overall expression levels of genes [13,19,21,22]. Such

QTLs are often referred to as ‘‘splicing-QTLs’’ (sQTLs) although

in some cases they arise through other mechanisms than splicing

changes per se (for example, changing the transcription end site

position [22]). Fraser and Xie, who also analyzed the Affymetrix

data, reported that the last exon is particularly prone to exon-level

QTLs [21]. Given these observations, we conjectured that the

TES peak of eQTLs in the Illumina data may be caused by SNPs

that lie in or near the last exon, and that affect expression levels of

the last exon only.

To evaluate this hypothesis, we computed exon-specific

expression levels in each individual using both the Affymetrix

and the RNA-seq data sets, controlling for the overall expression

level of the gene in that individual to remove the impact of gene-

level eQTLs (see Materials and Methods). We then tested whether

eQTNs identified using the Illumina data would replicate at either

the exon level (as sQTLs) or at the gene level (as eQTLs) in the

Affymetrix and RNA-seq data sets. For each gene with a

significant eQTL in the Illumina data set (FDR = 5%), we

designated the most significant SNP as a putative Illumina eQTN.

(In many cases the putative eQTNs will not be the true causal sites,

but they should at least be in strong LD with the causal sites). For

this set of eQTNs we classified each SNP according to its position

within the corresponding gene: i.e., the SNP was either in the first,

internal or last exon, or it was intronic, or intergenic. We tested

each eQTN for association both at the gene level (for the gene

identified by the Illumina analysis) and at the exon level (for each

exon from that gene that was within 10 kb of the eQTN). Each

exon-level test was treated as an independent test.

Distribution of eQTLs and Gene Expression Arrays
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Figure 1. Expression QTN distributions estimated using three different technologies for measuring gene expression. The left-hand
column plots the distribution of locations of most significant SNPs for each technology; the red arrows indicate the location of the TES peak observed
in the Illumina data. SNPs outside genes are assigned to bins based on their physical distance from the TSS (for upstream SNPs), or TES (downstream
SNPs). SNPs inside genes are assigned to bins based on their fractional location within the gene. The plotted gene size is the average gene length in
the data. To provide a formal comparison among different models, the right-hand column displays the difference in Akaike Information Criterion (AIC)
values between different parameterizations of our Bayesian hierarchical model (see Methods and Table 1). Small values of D‘‘(AIC’’) indicate better
model fit, and the best model for each data set is indicated with a horizontal arrow. The labels for the four models indicate the different parameters
included in each model: ‘‘TSS’’ refers to our basic distance model measured as distance from TSS; ‘‘intragenic’’ means that we use a single additional
parameter for all SNPs within the transcript; ‘‘exon, intron’’ indicates that we use separate parameters for exonic and intronic SNPs respectively, and
‘‘last exon’’ indicates that we add an additional parameter for SNPs in the final exon.
doi:10.1371/journal.pone.0030629.g001

Distribution of eQTLs and Gene Expression Arrays
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Figure 3A (left panel) shows clearly that last exon Illumina

eQTNs are more likely than other Illumina eQTNs to be sQTNs

in the Affymetrix data. Conversely, last exon Illumina eQTNs are

less likely than other categories of SNPs to replicate at the gene

level in the Affymetrix data (Figure 3A, right panel). Although less

striking, Figure 3B shows that the RNA-seq data exhibit a very

similar pattern. (Note that the RNA-seq analysis of splicing-QTLs

is thought to be underpowered in this data set, except for the most

highly expressed genes (see Supplementary Figure 15 of [13]),

which may explain why the enrichment of last-exon QTLs is lower

for the RNA-seq data than for the Affymetrix data.)

As an illustration, Figure 4 provides an example of a highly

significant Illumina eQTL (p = 3|10{27), for which the most

significant SNP lies within the 39 UTR. However, analysis of the

Affymetrix data indicates that the effect of this SNP is primarily

through an exon-specific effect on the last exon (and indeed there

may be a separate opposite effect on exon 2). In summary, we interpret

Figure 3 as evidence that the 39 peak of eQTLs that was detected in

the Illumina data is largely due to a large number of exon-level

QTLs that were detected by 39 UTR probes in the Illumina arrays.

eQTN enrichment within exons is reproducible between
platforms

In our previous work, we also reported a 2-fold enrichment of

eQTNs within internal exons compared to introns [9]. Given our

newer observations regarding the TES peak, we thus asked

whether this exon enrichment is robust across platforms. To

evaluate this, we performed a gene-level analysis of all three data

sets using our empirical Bayesian framework (see Materials and

Methods). We considered four different nested models for the

distributions of eQTNs:

0. TSS: the model accounts only for distance from the TSS;

1. TSS, intragenic: same as previously plus an annotation for SNP

being within the transcribed region of the target gene;

2. TSS, intron, exon: as previously but the intragenic annotation

is split into exclusive intron and exon categories;

3. TSS, intron, exon, last exon: as previously but the exon

category is split into exclusive exon (except the last) and last

exon categories.

For each of the three data sets, we ran each model separately

and then selected the best model based on the Akaike Information

Criterion (AIC).

Figure 1D plots for each data set the difference between each

model and the best one (i.e., the model with the smallest AIC

value). Table 1 also reports the odds ratio estimates of the

parameters under each model and for each dataset. As noted

above, Model 3 (which includes the special last exon effect) is

strongly favored by the Illumina data, weakly favored by the

Affymetrix data, and weakly disfavored by the RNA-seq data.

However, in contrast, all three data sets agree that Model 1 is

significantly better than Model 0 (implying a general enrichment

of eQTNs within transcribed regions), and that Model 2 is

significantly better than Model 1 (implying an enrichment of

eQTNs within exons compared to introns).

Discussion

In this analysis we have shown that the sharp peak of eQTNs

previously observed at the TES in Illumina eQTL data [9]

appears to be largely driven by SNPs with exon-specific effects.

Our results highlight the point that for arrays that probe only a

single exon of each gene, it is not possible to distinguish between

gene-level and exon-level QTLs. It appears that the majority of

eQTLs detected using the Illumina arrays are in fact at the

gene-level; however the number of exon-level QTLs is high

enough to substantially shift the distribution of QTNs and to

complicate the interpretation of eQTLs. In contrast, the gene-level

RNA-seq data (and to a lesser extent the Affymetrix data) should

be much less sensitive to exon-level effects for most genes, except

perhaps when one exon represents a large fraction of the total gene

length.

Unlike the TES signal, however, we find that the previously

reported enrichment of eQTNs within exons compared to introns

[9] is verified in both the Affymetrix and RNA-seq data sets. This

suggests that there is an enrichment of regulatory elements within

exons. A natural hypothesis is that a fraction of these exonic

elements may affect properties of the processed mRNA, rather

than affecting transcription rates. These exonic elements may be

involved in processes such as promoting mRNA stability or

degradation, although further work will be required to test this.

Figure 2. Expression QTN distribution estimated using only those Affymetrix probes that are located within the same exon as an
Illumina probe creates an apparent 39 signal peak. Overall, the Affymetrix probes are spread roughly evenly across exons while the Illumina
probes are 39 biased. By analyzing only those Affymetrix probes that are in the same exons as Illumina probes, we create an apparent 39 signal peak.
For the sake of comparison, the grey line represents the original distribution as plotted in Figure 1.
doi:10.1371/journal.pone.0030629.g002

Distribution of eQTLs and Gene Expression Arrays
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For all three data sets, we found that there is an enrichment of

eQTNs within transcribed regions, controlling for distance from

the TSS. That is, a SNP at a distance x kb downstream from the

TSS of gene y is more likely to be an eQTN if it lies inside the

transcribed region of y than if it does not. This suggests that long

genes may, on average, establish larger domains of cis-regulatory

control than do short genes.

In summary, we have shown that the TES peak of eQTLs that was

observed previously was most likely driven by QTLs affecting the last

exon only. In addition, we have confirmed the enrichment of eQTNs

within exons compared to introns; and in transcribed regions

compared to downstream intergenic regions, controlling for distance.

Methods

Genotype data
For this project we used data from 210 unrelated individuals

studied in Phases I and II of the HapMap Project (i.e., all the

Chinese and Japanese individuals plus the parents from the

Yoruba and CEU trios). The genotype estimates were based on a

combination of the 1000 Genomes and HapMap data. These

genotypes should include most common variants in the non-

repetitive fraction of the genome. For all HapMap SNPs we used

the HapMap genotype calls from release 24 of HapMap Phase II

[14]. For 141 of these individuals (44 Yoruba (YRI), 30 Japanese

Figure 3. Illumina last exon expression-QTLs are more likely to be splicing-QTLs. We determined the most significant SNP for each Illumina
eQTL, and then tested every such SNP for association at the gene- and exon-levels using the Affymetrix and RNA-seq data. Here we show QQ-plots for
these Illumina eQTNs in the exon-level analysis (left) and the gene-level analysis (right), using the Affymetrix exon array data (top) and RNA-seq data
(bottom). The color codes correspond to 5 exclusive categories of the Illumina eQTNs with respect to the target gene: intragenic, exonic ‘‘(first,
internal and last) or intronic (intron). Note that last-exon Illumina eQTNs tend to replicate well at the exon level, but poorly at the gene level,
suggesting that these are frequently exon-QTLs but infrequently gene-QTLs.
doi:10.1371/journal.pone.0030629.g003

Distribution of eQTLs and Gene Expression Arrays
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(JPT), 29 Han Chinese (CHB) and 43 CEPH (CEU)), we used

additional data from the final SNP call set of the 1000 Genomes

Consortium pilot data (released March 2010) [15]. Note that for

sites that are in both Phase I/II of HapMap and in 1000

Genomes, we used the HapMap data, since these are available

for all 210 individuals and are likely to have slightly lower error

rates. For the remaining 69 individuals we imputed genotypes

at 1000 Genomes SNPs using BIMBAM [16,17]. We excluded

SNPs with MAF v1%. Our final SNP data set consisted of a total

of 3.3 M HapMap SNPs and a further 11.3 M 1000 Genomes

SNPs.

Expression data
All the expression datasets were preprocessed using the same

gene models, based on the hg18 Ensembl gene annotation track

downloaded from the UCSC web site on 12/31/2009.

Illumina gene array. We used data from the 210 unrelated

individuals in Stranger et al. (2007) [6] (i.e., excluding children

Figure 4. SNP rs8984, located within the last exon of gene CHURC1, primarily affects expression of the last exon, but is interpreted
by the Illumina analysis (which has only one probe in this gene) as a gene level QTL. For each panel, we display quantile-normalized
expression levels. Data for each genotype at SNP rs8984 are repre- sented with the same color code (orange, grey and green) for all the panels. The
top panel plots the mean exon expression levels along the gene as measured by the Affymetrix probes and provides on top of each exon the p-value
for the association between the exon expression levels and the SNP genotypes. The blue vertical bar indicates the position of the single Illumina
probe. The middle panel is a schematic representation of the gene: exons are plotted as black/green rectangles where the green color indicates
coding regions. The position of SNP rs8984 is indicated by a red arrow. The bottom panel provides the box plots corresponding to each analysis: from
left to right, specific Affymetrix last exon expression levels (p-value = 3610211), Affymetrix gene expression levels (p-value = 0.04) and Illumina gene
expression levels (p-value = 3610227).
doi:10.1371/journal.pone.0030629.g004

Distribution of eQTLs and Gene Expression Arrays
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from the YRI and CEU trios). We first remapped the probes

from the array to build 36 (hg18) of the human genome using

MAQ [23], selecting only those probes which matched a single

unique location with zero mismatches. Of the 47,296 probes on

the array, 41,729 fulfilled these criteria. We next selected only

those probes that overlapped an annotated exon or exon-exon

boundary. We found that 18,478 probes mapped to known

exons.

Then we removed ‘‘non-expressed’’ probes by visual inspection

of a median versus median absolute deviation (MAD) scatter plot

augmented with the fraction of expressed genes at a given MAD

value as derived from the RNA-seq datasets. From this

visualization it is clear that there are two populations of probes,

one ‘‘expressed’’ population with moderate to high MAD values

and a ‘‘non-expressed’’ population of probes with low MAD

values. This analysis indicated that probes with low MAD are

generally non-expressed. We thus removed 8,214 ‘‘non-expressed’’

probes from the original set which yields a core set of 10,264

probes.

Since expression measurements are susceptible to large

technical variability and since we are looking only at cis-eQTLs,

we performed a principal component-based adjustment of the

expression dataset similar to what it has been previously described

by our group [13] and in other studies [24–27]. To do so we first

adjusted each expression measurement yi,j by subtracting the

population mean value for gene j in the population of individual i,

in order to bring all populations to the same mean value. We next

performed principal components analysis on the expression

matrix. By doing 100 permutations of the population-adjusted

probe expression values we derived an empirical distribution of the

PC eigenvalues under the null hypothesis assuming independence

of all probes. We then selected the optimal number of PCs by

choosing the last PC for which the observed eigenvalue exceeds

the upper 97.5% percentile of the empirical null distribution as

derived by our bootstrap procedure. With this procedure we

retained 26 PCs that we then regressed out probe-by-probe using

an elastic-net [28] linear model which also includes the population

and the sex covariates for each sample. Briefly, an elastic-net

regression was performed for each probe by using an in-house C

implementation of the standard LARS-EN procedure [28].

Regarding the tuning parameter l we used a discrete grid of

6 points (0:001,0:01,0:1,1,10,100) corresponding to almost Lasso

behavior (l~0:001) to almost ridge behaviour (l~100). For each

probe, the optimal value of l was obtained by applying a leave-one

out cross-validation procedure: for each individual left out we thus

computed the squared difference between the actual probe

expression value of this individual and the one predicted by the

elastic-net linear model learned only with the other individuals.

The optimal value of l is then the one that minimizes the residual

sum of squares across individuals. We then derived for each probe

the corresponding corrected expression levels by computing the

residuals from the optimal elastic-net linear regression model.

These corrected probe expression levels were then used for all

subsequent analyses. Finally, we removed all probes that

overlapped with any known variant including SNPs, copy number

variants and short insertions/deletions [15,20].

Affymetrix exon array. We downloaded the raw Affymetrix

Human Exon 1.0 ST array CEL files published by Huang et al.

(2007) [18] from GEO (GSE7792). As for the Illumina array, we

first remapped the probes to build 36 (hg18) of the human genome

using MAQ [23], selecting only those probes which matched a

single unique location with zero mismatches. The probe sequences

were obtained from the Affymetrix website (http://www.

affymetrix.com/Auth/analysis/downloads/na25/wtexon/HuEx-1

_0-st-v2.probe.tab.zip). Of the 5,431,924 probes on the array,

4,839,062 fulfilled these criteria. We next selected only those probes

that overlapped an annotated exon while removing probes

interrogating exons shared by at least two distinct genes (66,347

probes). This yields a core set of 1,355,061 single gene exonic

probes.

We performed GC-bin background correction of each array

followed by a quantile normalization on natural scale within each

population (CEU and YRI) using an in-house implementation. We

then removed ‘‘non-expressed’’ probes defined as probes with a

median normalized intensity level below 24 within both popula-

tions (this is based on visual inspection of both the distribution of

the normalized median probe expression levels within each

population and the probability that the probe intensity is not

drawn from the distribution of background intensities empirically

defined by the corresponding matched GC content negative-

controls probes). For the final set of 1,060,605 pre-processed

exonic probe expression levels and as for the Illumina dataset, we

performed a principal component-based adjustment by combining

the expression levels from both populations. Using the same

approach as previously described we thus regressed out the effect

of 35 PCs including population and sex covariates within the

elastic-net model. Finally, as for the Illumina dataset, we used a

conservative approach and removed all the probes which overlap

with a 1000 Genomes SNP inside yielding to a final core set of

444,306 exonic probes.

Table 1. eQTN enrichment within exons is strongly supported by all three datasets while there is relatively weak evidence that the
last exon is special.

Model Annotation Odds Ratio Estimates [95%CI]

Illumina Affymetrix RNA-seq

1 intragenic/intergenic 7.51 [6.70, 8.43] 4.25 [3.29, 5.53] 9.12 [6.36, 13.41]

2 exon/intron 12.13 [10.78, 13.60] 11.13 [8.54, 14.33] 6.68 [4.37, 9.89]

3 exon (except last)/intron 5.95 [5.05, 6.96] 8.67 [6.42, 11.49] 7.29 [4.69, 10.94]

3 last exon/intron 28.66 [24.71, 33.13] 21.46 [13.69, 31.94] 4.03 [0.86, 10.50]

The table displays the odds ratio estimates together with their corresponding 95% confidence intervals, as estimated by the empirical Bayesian model (see Methods) for
each expression dataset (Illumina, Affymetrix, RNA-seq). Model 1 (TSS, intragenic) estimates the odds ratio that a SNP inside the transcribed region is an eQTN compared
to a SNP outside the transcribed region (controlling for distance from TSS). For Model 2 (TSS, intron, exon) and Model 3 (TSS, intron, exon, last exon) we used the intron
annotation as the reference: the reported exon and last exon odds ratio can then be interpreted as the relative odds that a SNP within these regions is an eQTN with
respect to an intron SNP at the same distance from the TSS.
doi:10.1371/journal.pone.0030629.t001
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To compute entire-gene expression levels we used a simple

summarization approach based on the median polish procedure

[29,30]. Briefly we considered all the probes that span the entire

transcribed region and build a two-way layout matrix where the

probes are in columns and the samples in rows. We then fit the

additive model yi~mizpjzei, where yi is the gene expression

level for sample i, pj is the effect of probe j and ei is the residual, by

iteratively removing the median of rows and columbs until

convergence. As mentioned in the main text we also considered an

alternative by applying the median polish procedure first at the

exon level followed by a second median polish procedure on the

sample x exon expression matrix to get the gene expression levels.

Finally, to perform our splicing-QTN mapping we computed

splicing exon expression levels as described in [31]: specific exon

expression levels are thus derived from the residuals of the gene

level median polish procedure. Note that for sQTN mapping we

used only exons from genes having at least two exons with

expression level measurements (85,524 exons from 6,884 distinct

genes).

RNA-seq analysis. We obtained published RNA-seq data

from 60 CEU individuals and 75 YRI individuals [13,19]. Both

data sets were pre-processed roughly as described in the

Supplementary Information of Pickrell et al. [13]. We performed

the correction for GC content as described using all 135

individuals together.

From the original 241,639 exons we removed 118,548 exons for

which the median counts within both populations were 0. Using

this core set of 123,091 exon level expression measurements we

performed a PCA-based adjustment but this time separately within

each population (since sequencing was performed in two distinct

environments each one may have its own hidden factor structure).

Thus, including sex as a covariate, we regressed out 12 specific

PCs for the YRI dataset and 16 other specific PCs for the CEU

dataset.

For subsequent analyses, we used only the 43 CEU and 59 YRI

samples that were included within our genotype dataset. As for the

expression arrays, gene expression levels were computed by

applying a median polish procedure onto the sample x exon

expression level matrix, thus removing exon specific effects.

Similarly specific exon expression levels have thus been derived

from the residuals of the gene level median polish procedure [31].

As for the Affymetrix dataset, sQTN mapping is based only on

exons from genes having at least two exons with expression level

measurements (91,960 exons from 8,658 distinct genes).

Analyses
For the technical details of the statistical analyses we invite the

reader to refer to our previous article [9]. The main differences

here are:

N for eQTN mapping we restricted the cis-candidate region to

100 kb around both gene ends (instead of 500 kb),

N for sQTN mapping we used a 10 kb window around both

exon ends, since it has been previously show that sQTNs are

mainly concentrated nearby the spliced-exon [13].

The exon-level FDR for the sQTN analysis has been obtained

in the same way as the gene-level FDR described in [9]. Finally,

the extension of our empirical Bayesian model is detailed in [11].

Supporting Information

Table S1 Summary of the three expression datasets
used in this study. For Illumina and Affymetrix datasets the

number of probes corresponds to the final number of probes used

after filtering. Both the number of eQTNs and sQTNs are

reported for an empirically estimated FDR of 5% (see Material

and Methods). For eQTNs, the corresponding p-value cutoffs are:

i) Illumina (p-value~5|10{5), ii) Affymetrix (p-value

~8|10{6), iii) RNA-seq (p-value ~3|10{6). For sQTNs the

p-value cutoffs are: i) Affymetrix (p-value ~1|10{5), ii) RNA-seq

(p-value ~3|10{6). The smaller number of sQTLs in the RNA-

seq data may be due to lower power in the RNA-seq data, except

for the highest expressed genes (Supplemental Figure 15 of [13]).

(PDF)
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