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Abstract

Change is a fundamental ingredient of interaction patterns in biology, technology, the economy, and science itself:
Interactions within and between organisms change; transportation patterns by air, land, and sea all change; the global
financial flow changes; and the frontiers of scientific research change. Networks and clustering methods have become
important tools to comprehend instances of these large-scale structures, but without methods to distinguish between real
trends and noisy data, these approaches are not useful for studying how networks change. Only if we can assign
significance to the partitioning of single networks can we distinguish meaningful structural changes from random
fluctuations. Here we show that bootstrap resampling accompanied by significance clustering provides a solution to this
problem. To connect changing structures with the changing function of networks, we highlight and summarize the
significant structural changes with alluvial diagrams and realize de Solla Price’s vision of mapping change in science:
studying the citation pattern between about 7000 scientific journals over the past decade, we find that neuroscience has
transformed from an interdisciplinary specialty to a mature and stand-alone discipline.
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Introduction

Researchers have developed a suite of network mapping tools

to highlight important features while simplifying the overall

structure of social and biological systems [1–6]. With such

tools we can abstract, quantify, and comprehend the nature of

systems with numerous and diverse interacting components. As

powerful as these tools have proven to be for understanding a

system’s structure, we do not yet have an adequate tool for

mapping how this structure changes. For example: How has the

network of global air traffic changed over the past half century?

How does the organization of social contacts change when

diseases develop and spread? How does the network structure of

the federal funds market change when credit markets freeze

up? How do gene regulatory networks differ between cancer and

non-cancer states? And how does science itself evolve as

research tools, strategies, and agendas shift through time? To

quantify change in large networks, we must first identify the

important structures, then assess which of these structures are

statistically significant, and finally capture how these structures

change.

Any tool for analyzing change must distinguish between

meaningful trends and statistical noise. For example, statistical

network models and stratified data make it possible to estimate

global properties from the observation of sample networks [7–9].

But when we are interested in the unique identities of the

individual network components — Chicago O’Hare plays a

unique and irreplaceable role in the global air traffic network, for

example — we need another approach. Recent network

approaches have become prominent in the study of complex

systems because they can capture and respect the identities and

characteristics of the components [10,11]. Often these individual

differences matter critically and clustering rather than stratification

must be employed to comprehend the data [1–6].

Moreover, many of the systems to which we apply network

approaches are idiosyncratic in nature and preclude replicate

observations. There is one and only one global air traffic network

for the year 2009, for example. Therefore we cannot establish

statistical significance by looking at multiple samples. Nor can we

rely on temporal stability. While structures that remain unchang-

ing over time may be statistically significant, we will not find

significant changes by looking for features that stay the same.

One possibility would be to use a resampling technique such as

the bootstrap, which assesses the accuracy of an estimate by

resampling from the empirical distribution of observations [12].

But we have only a single observation, a single network — so from

what can we resample? When the single observation is composed

of numerous components, as a network is composed of nodes and

links, we can use the parametric bootstrap to assemble bootstrap

networks by resampling from the components. Instead of

resampling directly from the empirical distribution, a parametric

model is used to fit the data. For the networks discussed in this

paper, resampling nodes is not the right approach — it makes no

sense to talk about the US air transit network without O’Hare, let

alone the US network with two O’Hares. However, the link

weights can be parametrized and resampled without undermining

the individual characteristics of the nodes. With this approach we

can assess the significance of clusters and estimate the accuracy of

summary statistics, based on the proportion of bootstrap networks

that support the observation (see Fig. 1).

Finally, to reveal stories in the network data and to be able to

connect structural and functional changes, we use alluvial diagrams

to highlight and summarize the significant structural changes. Our

method could be applied to study, for example, how the global
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flight traffic pattern changes over time or how the federal funds

market adapts structurally to cope with disturbances, but here we

illustrate the method by mapping change in the structure of

science itself [13].

One possibility would be to use a resampling technique such

as the bootstrap, which assesses the accuracy of an estimate by

resampling from the empirical distribution of observations [12].

But we have only a single observation, a single network — so from

what can we resample? When the single observation is composed

of numerous components, as a network is composed of nodes

and links, we can use the parametric bootstrap to assemble

bootstrap networks by resampling from the components. Instead

of resampling directly from the empirical distribution, a paramet-

ric model is used to fit the data. For the networks discussed in this

paper, resampling nodes is not the right approach — it makes no

sense to talk about the US air transit network without O’Hare,

let alone the US network with two O’Hares. However, the link

weights can be parametrized and resampled without undermining

the individual characteristics of the nodes. With this approach we

can assess the significance of clusters and estimate the accuracy of

summary statistics, based on the proportion of bootstrap networks

that support the observation (see Fig. 1).

Finally, to reveal stories in the network data and to be able to

connect structural and functional changes, we use alluvial diagrams

to highlight and summarize the significant structural changes. Our

method could be applied to study, for example, how the global

flight traffic pattern changes over time or how the federal funds

market adapts structurally to cope with disturbances, but here

we illustrate the method by mapping change in the structure of

science itself [13].

Results

Journal Citation Networks
Science is a dynamic, organized, and massively parallel human

endeavor to discover, explain, and predict the nature of the

physical world. In science, new ideas are built upon old ideas.

Through cumulative cycles of modeling and experimentation,

scientific research undergoes constant change: scientists self-

organize into fields that grow and shrink, merge and split. Citation

patterns among scientific journals allow us to track this flow of

ideas and how the flow of ideas changes over time [13]. Here we

use citation data from Thomson-Reuters’ Journal Citation Reports

1997–2007, which aggregate, at the journal level, approximately

35,000,000 citations from more than 7000 journals over the past

decade. We include citations from articles published in a given

year to articles published in the previous two years and, because

we are interested in relationships between journals, we exclude

journal self-citations.

Significance Clustering
We first cluster the networks with the information-theoretic

clustering method presented in ref. [5], which can reveal

regularities of information flow across directed and weighted

networks. We emphasize that, with appropriate modifications, our

method of bootstrap resampling accompanied by significance

clustering is general and works for any type of network and any

clustering algorithm (see Materials and Methods for a detailed

description of the method). To assess the accuracy of a clustering,

we resample a large number B&1000 of bootstrap networks from

the original network. For the directed and weighted citation

network of science, in which journals correspond to nodes and

citations to directed and weighted links, we treat the citations as

independent events and resample the weight of each link from a

Poisson distribution with the link weight in the original network as

mean. This parametric resampling of citations approximates a non-

parametric resampling of articles, which makes no assumption about

the underlying distribution (see, for example, refs. [14–16] for

other resampling techniques). Figure 1 illustrates an example

network, the clustering of this network, and the clusterings of four

of its bootstrap networks. For scalar summary statistics, it is

straightforward to assign a 95% bootstrap confidence interval

as spanning the 2.5th and 97.5th percentiles of the bootstrap

Figure 1. Significance clustering of networks. The standard
approach to cluster networks is to minimize an objective function over
possible partitions of the network, as in the left side of the diagram. By
repeated resampling of the weighted links from the original network,
we create a ‘‘bootstrap world’’ of resampled networks. By clustering
these as well, and comparing to the clustering of the original network,
we can estimate the degree of support that the data provide in
assigning each node to a cluster. In the bottom network, the darker
nodes are clustered together in at least 95% of the 1000 bootstrap
networks.
doi:10.1371/journal.pone.0008694.g001
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distribution [16], but working with sets and assessing the accuracy

of the clusters requires a different approach.

To identify the journals that are significantly associated with the

clusters to which they are assigned, we use simulated annealing to

search for the largest subset of journals within each cluster of the

original network that are clustered together in at least 95% of all

bootstrap networks. To identify the clusters that are significantly

distinct from all other clusters, we search for clusters whose

significant subset is clustered with no other cluster’s significant

subset in at least 95% of all bootstrap networks (see Materials and

Methods). The significance-clustering step of Fig. 2 illustrates this

process as applied to a network at two different time points.

Alluvial Diagrams
Once we have a significance cluster for the network at each time

point (or each state), we want to reveal the trends in our data: we

need to simplify and highlight the structural changes between

clusters. In the mapping-change step of Fig. 2, we show how to

construct an alluvial diagram of the example networks that highlights

and summarizes the structural differences between the time 1 and

time 2 significance clusters. Each cluster in the network is

represented by an equivalently colored block in the alluvial

diagram. Darker colors represent nodes that are assigned with

statistical significance, while lighter colors represent non-significant

assignments. Changes in the clustering structure from one time

period to the next are represented by the mergers and divergences

that occur in the ribbons linking the blocks at time 1 and time 2.

The alluvial diagram for the citation data reveals the significant

structural changes that have occurred in science over the past

decade. Rather than viewing the entire diagram, let us highlight a

couple of interesting stories. Figure 3 shows a subset of biomedical

fields for the years 2001, 2003, 2005, and 2007 (see Fig. S1 for all

years and Fig. S2 for an additional alluvial diagram illustrating

changes in the area of physics).

The alluvial diagram illustrates, for example, how over the years

2001–2005, urology gradually splits off from oncology and how

the field of infectious diseases becomes a unique discipline, instead

of a subset of medicine, in 2003. But these changes are just two of

many over this period. In the same diagram, we also highlight the

biggest structural change in scientific citation patterns over the

past decade: the transformation of neuroscience from interdisci-

plinary specialty to a mature and stand-alone discipline,

comparable to physics or chemistry, economics or law, molecular

biology or medicine. In 2001, 102 neuroscience journals, lead by

the Journal of Neuroscience, Neuron, and Nature Neuroscience, are assigned

with statistical significance to the field of molecular and cell

biology (dark orange, 84 of 102 journals are assigned significantly).

Further, Brain, Behavior, and Immunity, Journal of Geriatric Psychiatry

and Neurology, Psychophysiology, and 33 other journals appear with

statistical insignificance in psychology (green, 6 of 36 journals are

assigned significantly) and Neurology, Annals of Neurology, Stroke and

77 other journals appear with statistical significance in neurology

(blue, 75 of 80 journals are assigned significantly). In 2003, many

of these journals remain in molecular and cell biology, but their

assignment to this field is no longer significant (light orange, 5 of

102 journals are assigned significantly). The transformation is

underway. In 2005, neuroscience first emerges as an independent

discipline (red). The journals from molecular biology split off

completely from their former field and have merged with

neurology and a subset of psychology into the significantly

stand-alone field of neuroscience. (In 2006, shown in Fig. S2,

the structure reverts to a pattern similar to 2003.)

In their citation behavior, neuroscientists have finally

cleaved from their traditional disciplines and united to form

what is now the fifth largest field in the sciences (after

molecular and cell biology, physics, chemistry, and medicine).

Although this interdisciplinary integration has been ongoing

since the 1950s [17], only in the last decade has this change

come to dominate the citation structure of the field and

overwhelm the intellectual ties along traditional departmental

lines.

Figure 2. Mapping change in networks. An alluvial diagram
(bottom), with clusters ordered by size, reveals changes in network
structures over time. Here the height of each block represents the
volume of flow through the cluster, with significant subsets in darker
color. The orange module merges with the red module, but the nodes
are not clustered together in 95% of the bootstrap networks. The blue
module splits, but the significant nodes in the blue and purple modules
are clustered together in more than 5% of the bootstrap networks. With
a 5% significance threshold, neither change is significant.
doi:10.1371/journal.pone.0008694.g002
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Discussion

The problem of detecting structural change in large networks

adds two new challenges to the basic problem of network

clustering: (1) we need appropriate statistical methods to identify

significant features of network clustering and to distinguish

between trends and noise in the data, and (2) we require effective

visualizations to bring out the stories implicit in a time series of

cluster maps. To resolve the first of these challenges, we have

developed a method for significance clustering based on the

parametric bootstrap. To address the second, we have presented

the visualization technique of alluvial diagrams. These methods

are general to many types of networks and can answer questions

about structural change in science, economics, and business.

Materials and Methods

Here we lay out the details of how we generate significance

clusters and alluvial diagrams for mapping change in networks.

Because this method assesses how much confidence we should

have in the clustering of a network, we can detect, highlight, and

simplify the significant structural changes that occur over time or

between states in large networks, for example, citation networks,

traffic networks, and monetary flow networks. This approach to

mapping change in large networks works for any clustering

algorithm. The choice of algorithm depends on the network type

(undirected, directed, unweighted, weighted) and the scope of the

study. Here we focus on the general case of weighted directed

networks. We also assume that the weight of the links can be

described by a Poisson-like process. That is, the weights

represent, or can be modeled by, independent events in time.

This can be generalized to other distributions of link weights; see

section 2 below.

The method consists of four steps, described below and

illustrated in Fig. 4:

1. Cluster the original networks observed at each time point.

2. Generate and cluster the bootstrap replicate networks for each

time point.

3. Determine significance of the clustering for at each time point.

4. Generate an alluvial diagram to illustrate changes between

time points.

For simplicity of description, here we map the change between

two states G1 and G2 of a network — but it is straightforward to

extend the procedure to more states. We enumerate the N nodes

by a~1,2, . . . ,N . (The set of nodes in G1 need not be identical to

the set in G2.) By wab we denote a directed link from node a to

node b with weight w. Because the significance clustering

procedure described below works exactly the same for each

particular state of the network, we omit the superscript of G in

what follows unless necessary to avoid confusion.

1. Cluster Real-World Network
We first partition the network G into the modular description

M. In the modular description, each node is assigned to one

and only one module. The number of modules depends on the

network and the objective function of the clustering algorithm. To

capture the dynamics across the links and nodes in directed

weighted networks, we use the map equation as the objective

function [5,18]. For a dynamic visualization of the mechanics of

the map equation, see http://www.tp.umu.se/,rosvall/livemod/

mapequation/. In Appendix S1, we present a short review and a

new efficient algorithm to search for a partition of the network that

minimizes the expected description length of a random walk across

the nodes and links of the network. This description length is

quantified by the map equation, but the search algorithm can also

be generalized for other objective functions.

2. Generate and Cluster Bootstrap-World Networks
The bootstrap is a statistical method for assessing the accuracy

of an estimate by resampling from the empirical distribution. This

method is particularly powerful when the variance of the estimator

Figure 3. Mapping change in science. This set of scientific fields show the major shifts in the last decade of science. Each significance clustering
for the citation networks in years 2001, 2003, 2005, and 2007 occupies a column in the diagram and is horizontally connected to preceding and
succeeding significance clusterings by stream fields. Each block in a column represents a field and the height of the block reflects citation flow
through the field. The fields are ordered from bottom to top by their size with mutually nonsignificant fields placed together and separated by half
the standard spacing. We use a darker color to indicate the significant subset of each cluster. All journals that are clustered in the field of
neuroscience in year 2007 are colored to highlight the fusion and formation of neuroscience.
doi:10.1371/journal.pone.0008694.g003
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Figure 4. Significance clustering and alluvial diagram for mapping change in large networks. By repeatedly resampling of the weighted
links from the original networks, we create ‘‘bootstrap worlds’’ of 1000 resampled networks. By clustering these bootstrap networks, and comparing
to the clustering of the original networks, we can estimate the degree of support that the data provide in assigning each node to a cluster. In the
bottom networks, the darker colors represent nodes that are clustered together in at least 95% of the 1000 bootstrap networks. The alluvial diagram
highlights and summarizes the structural changes between the time 1 and time 2 significance clusters. The height of each block represents the
volume of flow through the cluster. The clusters are ordered from bottom to top by their size, with mutually nonsignificant clusters placed together
and separated by a third of the standard spacing. The orange module merges with the red module, but the nodes are not clustered together in 95%
of the bootstrap networks. The blue module splits, but the significant nodes in the blue and purple modules are clustered together in more than 5%
of the bootstrap networks. Neither change is significant.
doi:10.1371/journal.pone.0008694.g004
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cannot be derived analytically or when the underlying distribution

is not accessible. Because the cluster assignments are a result of a

computational method and the network is idiosyncratic by nature,

the bootstrap is indispensable for the process described here.

To generate a single bootstrap replicate network G�b , we

resample every link weight wab of the original network G from a

Poisson distribution with mean equal to the original link weight

wab. That is, w�ab*Pois(wab) for each link in the bootstrap

network. Because of the parametric resampling of the link weights,

this method formally falls under parametric bootstrapping. If the

link weights cannot be modeled by a Poisson process, or if the links

are unweighted, the Poisson resampling should be replaced by an

appropriate alternative resampling procedure (see for example

refs. [14,15]).

Subsequently we partition the bootstrap replicate network with

the same clustering method we used on the original network; this

yields the bootstrap modular description M�
b. This procedure —

generating a bootstrap replicate network and clustering it into

modules — is repeated to generate a large number B*1000 of

bootstrap modular descriptions M�~fM�
1,M�

2, . . . ,M�
Bg. Each

Bootstrap world panel in Fig. 4 illustrates four of these modular

descriptions for four different bootstrap replicate networks, each

created by the Poisson resampling procedure described above.

Because this step requires that we cluster approximately 1000

bootstrap networks per time point, we have developed a new fast

stochastic and recursive search algorithm for finding an accurate

modular description of a given network (see Appendix S1).

3. Identify Significant Assignments
The basic idea behind significance clustering is that we can look

at the bootstrap replicates to see which aspects of the modular

description of the original network are best supported by the data.

Features of the original network that occur in all or nearly all of

the bootstrap replicates are well-supported by the data; features

that occur in only some of the bootstrap replicates are less well-

supported.

What features do we consider? First, we consider the assignment

of each node to a module. By looking at the set of bootstrap

modular descriptions, we can assess which of these assignments are

strongly supported by the data, and which node assignments are

less certain. To identify the nodes that are significantly assigned to

a module, we search for the largest subset of nodes in each module

of the original modular description M that are also clustered

together in at least 95% of all bootstrap modular descriptions M�.
To pick the largest subset, of course we need some measure of size.

The size of a subset could simply correspond to the number of

nodes in the subset, but in line with our general clustering

philosophy, we use the volume of flow through the subset. This is

the total PageRank of the cluster, which corresponds to the steady-

state flow of random walkers that we use in the information-

theoretic clustering algorithm.

To efficiently search the large space of possible subsets in each

cluster, we use simulated annealing [19]. Initially the nodes are

randomly assigned to be members or non-members of the

candidate largest subset. The score S of the configuration is the

size of the subset minus a penalty to account for the constraint that

only nodes that are clustered together in at least 95% of all

bootstrap modular descriptions should be included. To implement

the penalty, we first, and for each bootstrap modular description,

count the number of nodes in the subset that do not belong to the

largest group of nodes assigned to the same cluster. These are the

mismatch nodes that break the constraint. To allow for a 5%

error, we add together the number of mismatch nodes for all

bootstrap modular descriptions, excepting the 5% with the highest

number of mismatches. Finally we multiply this sum by ten times

the cluster size, to make sure that the subset size and the penalty

are of comparable size. This is necessary for an efficient search and

a zero penalty at the end of the procedure (this ad hoc scaling factor

of 10 was found by optimizing the convergence to a configuration

with zero penalty and maximal subset size). After initiating with

random assignments, we follow the standard simulated annealing

scheme [19]. At successively lower temperatures T , a node’s subset

assignment (member or non-member) is flipped and the score S’
for the new state is calculated. As in the Metropolis-Hastings

algorithm [20,21], the new state is always accepted if the new score

is higher (DS~S’{Sw0) or, conversely, if the new score is lower,

the new state is accepted with probability equal to the Boltzmann

factor of the score difference exp (DS=T). Starting at T~1, we

iterate this step as many times as there are nodes in the cluster, and

then reduce the temperature according to T ’~0:99T . We repeat

this procedure for as long as at least one new state is accepted for a

given temperature. The nodes assigned to the subset at the final

state serve as our approximation of the largest significant subset.

In addition to telling us about the assignment of individual

nodes to specific modules, the set of bootstrap replicates also

contains information about which modules stand alone and which

are possibly subsets of other modules. To reveal this information,

we need to identify the modules that are always, or almost always,

separate from any other module. We consider a module to be

significant if its significant subset is clustered with no other

significant subset in at least 95% of all bootstrap modular

descriptions. Conversely, two clusters are mutually nonsignificant

if their significant subsets are clustered together in more than 5%

of all bootstrap modular descriptions. In this way, each module

can be mutually nonsignificant with more than one other module.

In the alluvial diagram described in section 4, we want to associate

each nonsignificant module with the module together with which

it most likely forms a subset. The search for these pairs of modules

is straightforward: For each pair of modules, we count in how

many bootstrap modular descriptions all nodes in the two

significant subsets are clustered together and record this number

if it exceeds 5% of all bootstrap modular descriptions (the criterion

for nonsignificant modules). Then, starting at the smallest module,

we associate the module with the other larger module with which

it is most often clustered, and proceed to the next smallest module,

and so on.

4. Construct Alluvial Diagram
To reveal change over time or between states of real-world

networks, we summarize the results of the significance clusterings

of the different states G1,G2, . . . in an alluvial diagram. The

diagram is constructed to highlight the significant changes, fusions,

and fissions that the modules undergo between each pair of

successive states Gi and Giz1. Each significance clustering for a

state Gi occupies a column in the diagram and is horizontally

connected to preceding and succeeding significance clusterings by

stream fields. Each block in a row of the alluvial diagram

represents a cluster, and the height of the block reflects the size of

the cluster (here in units of flow through the cluster, though other

size measures, such as number of nodes, could be used instead).

The clusters are ordered from bottom to top by size, with mutually

nonsignificant clusters placed together and separated by a third of

the standard spacing. We use a darker color to indicate the

significant subset of each cluster. Different colors can be used for

clusters or groups of clusters to highlight particular stories in the

data.

We use the stream fields to reveal the changes in cluster

assignments and in level of significance between two adjacent

Mapping Change in Networks
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significance clusterings. The height of a stream field at each end,

going from the significant or nonsignificant subset of a cluster in

one column to the significant or nonsignificant subset of a cluster

in the adjacent column, represents the total size of the nodes that

make this particular transition. By following all stream fields from

a cluster to an adjacent column, it is therefore possible to study in

detail the mergers with other clusters and the significance

transitions. To reduce the number of crossing stream fields, the

stream fields are ordered by the position of the clusters to which

they connect. For smooth transitions, we draw the stream fields

with splines and use gradient shading for the component colors.

Finally, to reduce visual clutter and improve clarity, we apply a

threshold and do not show the thinnest stream fields.

Supporting Information

Appendix S1 Here we briefly review our information theoretic

approach to revealing community structure in weighted and

directed networks and present a new fast stochastic and recursive

search algorithm to minimize the map equation — the objective

function of our method.

Found at: doi:10.1371/journal.pone.0008694.s001 (0.14 MB

PDF)

Figure S1 Mapping change in medicine 1997–2007

Found at: doi:10.1371/journal.pone.0008694.s002 (0.07 MB

PDF)

Figure S2 Mapping change in physics & chemistry 1997–2007

Found at: doi:10.1371/journal.pone.0008694.s003 (0.06 MB

PDF)
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