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Abstract

Background: How transcription factors (TFs) interact with cis-regulatory sequences and interact with each other is a
fundamental, but not well understood, aspect of gene regulation.

Methodology/Principal Findings: We present a computational method to address this question, relying on the established
biophysical principles. This method, STAP (sequence to affinity prediction), takes into account all combinations and
configurations of strong and weak binding sites to analyze large scale transcription factor (TF)-DNA binding data to discover
cooperative interactions among TFs, infer sequence rules of interaction and predict TF target genes in new conditions with
no TF-DNA binding data. The distinctions between STAP and other statistical approaches for analyzing cis-regulatory
sequences include the utility of physical principles and the treatment of the DNA binding data as quantitative
representation of binding strengths. Applying this method to the ChIP-seq data of 12 TFs in mouse embryonic stem (ES)
cells, we found that the strength of TF-DNA binding could be significantly modulated by cooperative interactions among
TFs with adjacent binding sites. However, further analysis on five putatively interacting TF pairs suggests that such
interactions may be relatively insensitive to the distance and orientation of binding sites. Testing a set of putative Nanog
motifs, STAP showed that a novel Nanog motif could better explain the ChIP-seq data than previously published ones. We
then experimentally tested and verified the new Nanog motif. A series of comparisons showed that STAP has more
predictive power than several state-of-the-art methods for cis-regulatory sequence analysis. We took advantage of this
power to study the evolution of TF-target relationship in Drosophila. By learning the TF-DNA interaction models from the
ChIP-chip data of D. melanogaster (Mel) and applying them to the genome of D. pseudoobscura (Pse), we found that only
about half of the sequences strongly bound by TFs in Mel have high binding affinities in Pse. We show that prediction of
functional TF targets from ChIP-chip data can be improved by using the conservation of STAP predicted affinities as an
additional filter.

Conclusions/Significance: STAP is an effective method to analyze binding site arrangements, TF cooperativity, and TF
target genes from genome-wide TF-DNA binding data.
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Introduction

The spatial-temporal patterns of gene expression are controlled

by cis-regulatory sequences [1], through binding of transcription

factors (TFs) to specific sites in these sequences. Numerous studies

point out that the final transcriptional ‘‘read-out’’ is determined, not

by an individual TF, but by the combinatorial interactions of

multiple TFs with DNA. Most notably, in developmental genes,

multiple binding sites of different TFs are often located close to each

other in genomes, forming so called cis-regulatory modules (CRMs),

and work together to generate precise expression patterns [2].

Sequence-specific binding of TF molecules to DNA has been

well studied, both in theory [3] and in practice [4]. In contrast, the

interactions between TF molecules that enhance or inhibit their

DNA binding affinities or transcriptional effects are not well

understood. Although the importance of cooperative interactions

among TF molecules in gene regulation were clearly demonstrated

[5–8], it is not clear, at a quantitative level, what are the roles of

such interactions, and in most systems the identities of interacting

TFs remain unknown. In cases where multiple TF molecules do

interact, it is generally unknown how the spatial organization of

their binding sites affects DNA binding. Some studies suggest that

binding sites must be arranged in specific ways, following

‘‘grammar-like rules’’ [9,10] in order for them to interact properly;

others provide evidence of a flexible organization of regulatory

sequences [11,12]. Knowledge of the role of TF interactions and
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how they interact will be central to our understanding of gene

regulation.

Genome-wide DNA-binding data from chromatin immunopre-

cipitation followed by either genome tiling array analysis (ChIP-

chip) or sequencing (ChIP-seq), provide an opportunity to address

the above-mentioned problems quantitatively [13,14]. DNA-

binding by TFs is a key step in transcriptional regulation, thus

modeling combinatorial TF-DNA interactions will serve as a

bridge to understanding the complex transcriptional process.

Focusing on ChIP-based data, instead of gene expression data,

simplifies the task at hand. Gene expression is often accomplished

through an intricate process involving not only TF-DNA

interactions, but also chromatin remodeling, epigenetic modifica-

tions, communications among multiple enhancers, etc [15]. For

this reason, several studies have argued for studying combinatorial

interactions among TFs using ChIP-based technologies [16,17].

The central task of this work is to build a predictive model of TF

binding affinity from DNA sequences, incorporating both TF-

DNA and TF-TF interactions. This would allow us to learn how

cooperative interactions among TFs may contribute to their DNA

binding affinities. By varying the assumptions of TF interactions

and observing their effects on the model predictability, one may be

able to understand the details of how binding site arrangements

affect interactions. Moreover, a model trained from one set of

sequences in one situation can be applied to a different setting to

make more predictions about TF targets. This extrapolative ability

will be useful, for instance, when we only have TF binding data for

part of the genome (e.g. only promoters) and want to identify more

TF targets (a large portion of regulatory sequences may lie outside

the promoter regions in higher organisms). In one of the analyses,

we applied the binding models learned from one genome to

predict affinities of the orthologous sequences in a related

organism. Such predictions facilitate the analysis of the evolution

of TF binding even when ChIP-chip or ChIP-seq data are

available in only one organism.

A number of computational methods have been proposed to

study the TF binding profiles [18,19] and combinatorial aspect of

gene regulation through predictive models [20]. Typically, these

methods attempt to extract information from statistical patterns in

DNA sequences, e.g., the occurrence of sequence motifs. Various

techniques from statistical learning, such as Bayesian networks

[10], multivariate regression [19,21,22], decision trees [20],

regression trees [23], SVM and artificial neural networks [24],

were applied to extract important features from sequences, using

either gene expression or ChIP-chip data. However, these

methods do not reflect underlying physical principles. As such, it

is not clear to what extent their assumptions, e.g., additivity of

different features, are valid. Additionally, important sequence

features, such as interactions among adjacent binding sites, are

often not represented in these approaches. Quantitative methods

that are not based on predictive modeling are also available for

analyzing ChIP-chip or ChIP-seq data for the purpose of

identifying binding sites in the data [25,26] or patterns of co-

occurrence of motifs [27,28]. These methods serve somewhat

different goals and do not offer the benefits of predictive models.

Interested readers are referred to recent reviews [14,20].

By directly modeling the underlying processes, a biophysics-

based approach can overcome many limitations of the statistical

methods mentioned above. Shea and Ackers [29] and Buchler et

al. [30] pioneered the use of thermodynamic principles in the

study of regulatory mechanisms. A number of recent studies

applied these principles to model expression data on promoters/

enhancers [6,23,31–33] or TF-DNA binding data from ChIP-chip

experiments [18,19,34]. However, these methods have not

adequately addressed the interaction of multiple transcription

factors with each other and with DNA. Also, most of these studies

focused on individual regulatory sequences [31–33] rather than

genome-wide data, while others have taken the route of

simulations [33], or studied artificial promoters [6], which are

by design far simpler than natural systems. In summary, no

existing work has provided a quantitative framework to analyze

genome-wide TF-DNA binding data based on realistic biophysical

modeling, especially of combinatorial interaction among multiple

TFs and their DNA binding sites.

We developed a novel method, called STAP (Sequence To

Affinity Prediction), to analyze large scale TF-DNA binding data.

The heart of this method is a thermodynamic model adapted from

earlier theoretical studies [29,30]. The key novel feature of STAP

is the explicit treatment of cooperative interactions among

different TF molecules. Different from existing thermodynamic

models, STAP explicitly expresses the expected number of TFs

bound to a regulatory sequence, and thus it is directly applicable to

analyze binding intensities reflected in whole-genome binding

data. In addition, our specially developed computational tech-

niques based on dynamic programming will enable the model to

be efficiently applied to complex sequences and large scale data.

Another main feature of STAP is the utility of genome-wide

binding data not only as binary indicators of TF binding regions,

as been done by most existing studies, but also as quantitative

measurements of the binding strengths. Thus, more information

from these data will be utilized by this new method. STAP was

applied to analyze the ChIP-seq data of 12 TFs in mouse

embryonic stem cells (ESCs) [35] and the ChIP-chip data of two

TFs involved in fruit fly blastoderm development [16]. The

analysis results demonstrated the effectiveness of the new method

to address issues in combinatorial gene regulation using genome-

wide binding data.

Results

ChIP-Seq Data Can Be Quantitatively Reproduced
We hypothesized that ChIP-seq data quantitatively reflect the

binding strength between the TF and the respective genomic

binding regions, and therefore should be quantitatively reprodu-

cible. To verify this hypothesis, we randomly picked 28 Nanog

ChIP-seq detected binding regions from [35] and repeated the

ChIP experiments in E14 mouse ES cells. We used real-time

qPCR to quantify the ChIP precipitated DNA on the 28 pre-

selected regions. The ChIP-seq and ChIP-qPCR signals exhibited

a strong correlation (r2 = 0.656, Figure S1). We performed the

same experiment on 11 SUZ12 binding regions from ChIP-seq

data and similarly found a strong correlation (r2 = 0.792, Figure

S1). These data suggest that the counts of overlapping ChIP-seq

tags are quantitatively reproducible by independent experiments.

Thus it becomes possible to model and utilize the quantitative

nature of ChIP-seq data for investigating the biophysical rules of

protein-protein and protein-DNA interaction.

Transcription Factors Are Extensively Co-Localized
We studied ChIP-seq data on 12 TFs active in embryonic stems

cells [35]: cMyc, CTCF, E2f1, Esrrb, Klf4, Nanog, nMyc, Oct4,

Sox2, STAT3, Tcfcp2l1 and Zfx. Combinatorial gene regulation

leads to a statistical tendency of multiple factors to bind to

proximally located sites, a phenomenon we call TF ‘‘co-

localization’’. We developed a statistical test for co-localization

of TF pairs (Text S1) and found extensive evidence for this

phenomenon (Table S1). The majority (121) of all 132 possible

pairs show significant co-localization (p,0.01, Pearson’s x2 test).

TF-DNA Interaction
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Our results are broadly consistent with those of Chen et al. [35],

which also revealed extensive co-localization (though no statistical

tests were provided). In summary, both analyses strongly suggest a

combinatorial mode of action by multiple factors.

A Biophysical Model of TF Binding to DNA Sequences
A possible explanation for TF co-localization is that DNA-

binding of one factor helps recruit another factor to its binding site,

through favorable TF-TF interaction. (Note that the binding sites

in this paper refer to 10–20 bp regions actually occupied by TFs,

while other papers may refer to putatively larger regions identified

in ChIP-chip or ChIP-seq experiments – these will be called TF-

bound regions in our paper). Thus, when co-localized, both factors

may access the DNA with higher affinity than their individual

binding sites alone would allow. We adapted the biophysical

model from [30] that incorporates such cooperative binding, for

the purpose of analyzing TF-DNA binding data. Given a

transcription factor (called ‘‘TFexp’’), our goal is to predict the

binding affinity of TFexp to any sequence. The basic assumption is

that many putative binding sites, including the sites of TFexp and of

other factors, not just the single best match, may contribute to

interaction of this sequence to TFexp. Indeed, the importance of

weak binding sites and cooperative interactions has been

supported by a number of recent studies [6,18,23,34]. Under this

picture: binding sites of TFexp directly attract TFexp, and sites of

other factors may interact cooperatively with TFexp, thus indirectly

recruiting TFexp. The cooperative interactions may occur among

adjacent binding sites of the same TF (self-cooperativity) or of

different TFs (heterotypic cooperativity). Thermodynamically,

each binding site of a sequence may be occupied or not, thus a

sequence with n sites exists in 2n states, where each state represents

the occupancy status of all sites (Figure 1). The probability of a

state depends on interactions of TFs with their binding sites, as

well as TF-TF interactions, as quantified by Equation (2) in

Methods. Following earlier work on ChIP-chip data analysis

[19,34], we assume that the binding affinity of TFexp to this

sequence is proportional to the average number of TFexp

molecules occupying their sites, over all states weighted by their

probabilities (Figure 1). Note that the number of states is

exponential to the number of binding sites, thus it is computa-

tionally difficult to calculate the binding affinities of complex

sequences by the brute-force method. We developed a dynamic

programming algorithm to carry out the computation efficiently.

The details of the model and the algorithm can be found in

Methods.

When analyzing the genome-wide binding data of some TF

(hereafter called the primary factor), the goal is to learn the TFs

(called cooperative factors) that interact with this factor, as well as

the relevant model parameters. The STAP model is fit by

maximizing the Pearson’s correlation coefficient between the

predicted binding affinities and the overlapping ChIP-seq counts

(or ChIP-chip intensities). To search for interacting factors, we

iterate the motifs in a motif collection, such as the JASPAR

database [36]. Each motif in this collection is tested by whether

adding this motif to the STAP model with only the primary factor

will significantly improve the Pearson’s correlation coefficient. The

significance of this improvement is assessed by using a large

number of randomized motifs as negative controls. After all

cooperative factors are learned, and STAP re-trains the model

parameters. The STAP model is designed for analyzing ChIP data

from a single TF; a variation of STAP is developed for

simultaneously analyze ChIP data from several TFs (see

‘‘Exploring the effects of binding sites arrangement’’).

ChIP-Seq Data Reveals a Novel Characterization of Nanog
Binding Specificity

Our method needs to use motifs of TFs, representing binding

specificities, to identify putative binding sites in target sequences

(though it is theoretically possible to learn novel motifs under our

framework, similar to [19]). So at the first step, we identified the

motifs of the 12 TFs. For each factor, we ran the MEME program

[37] on the top 100 regions (ranked by tag counts) detected in the

ChIP-seq experiments. These motifs (Figure S2) are by and large

similar to those reported in the original ChIP-seq paper [35].

However, we noted that the motifs of Oct4, Sox2 and Nanog,

learned by [35] were remarkably similar to each other. We

hypothesized that this similarity was due to co-localization of the

factors, which resulted in similar collections of genomic regions

being used for enrichment-based motif finding. To test this

hypotheses, we used sequences bound exclusively by each of these

three factors and performed MEME analysis again (NestedMICA

[38] and Gibbs sampler [39] gave similar results). The resulting

Oct4 and Sox2 motifs are similar to the corresponding parts of the

previously identified Oct4-Sox2 joint motif, while the Nanog motif

is different (Figure 2A, Nanog1). We also note that several other

DNA binding profiles of Nanog were reported from previous

studies [35,40,41], but they do not resemble each other. Inspired

by the importance of Nanog as an essential regulator in ESC

proliferation and self-renewal [40], we set out to characterize the

binding specificity of Nanog using a combination of computational

and experimental approaches.

Even though STAP was not designed for de novo motif finding, it

is applicable to compare multiple motifs of the same factor. By

setting these motifs as alternative inputs and comparing the model

Figure 1. Model of cooperative DNA binding. The sequence contains three binding sites, two for factor A, and one for factor B. All eight
configurations of this sequence, in terms of binding site occupancy, are shown. The arrow connecting two adjacent bound molecules indicates
cooperative interaction. For each configuration, the first column represents the weight, i.e., un-normalized probability, and the second column
represents the number of bound molecules of A. The parameters in the weight terms are: qA (qB) – strength of factor A (B) binding to DNA; wAB – strength
of the interaction between A and B. The binding affinity of A to this sequence is the average of the second column, weighted by the first column.
doi:10.1371/journal.pone.0008155.g001
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fit to genome-wide binding data, the best motif can be recognized.

We applied this strategy to the new Nanog motif as well as two

previously published ones (Nanog2 [40] and Nanog3 [41],

Figure 2A) to test if the new motif better explains the ChIP-seq

data. The new Nanog motif resulted in a higher correlation than

the other two in the sequences bound only by Nanog, but not Oct4

and Sox2 (Figure 2B, Nanog-only), providing initial support to the

novel Nanog motif. In a second test, we utilized STAP’s capability

of analyzing cases where multiple factors are bound. As discussed

before, the enrichment of Oct4 and Sox2 binding sites in the

Nanog-bound sequences tend to confuse the motif discovery tools.

This obstacle was resolved by setting Oct4 and Sox2 as

cooperative factors, and varying the candidate primary motif. In

this way, the difference of results was attributed to the different

Nanog motifs, with the effects of Oct4 and Sox2 sites automatically

disentangled. Again, the new Nanog motif provided a significantly

better fit to the ChIP-seq counts of the Nanog bound sequences

than the other motifs (Figure 2B, Nanog-500). In addition, the

fitting of observations with the new Nanog motif is highly

significant under a test using randomized motifs (Figures S3).

The enhanced model fitting with the new Nanog motif tempted

us to experimentally test it. Electrophoretic mobility shift assay

(EMSA) was used to test the novel Nanog motif (Text S1). First,

from the Nanog ChIP-seq positive regions, we randomly selected

five sequences that match the new Nanog motif but do not match

the Oct4-Sox2 joint motif (Table S2). EMSA produced the same

band from these five sequences, which also match the band

produced from a positive control region known to interact with

Nanog (Figure S4). Second, we performed a series of point

mutations to a wild type sequence that matches the new Nanog

motif (Table S3). Since ‘‘TGA’’ from position 2 to position 5 is the

most conserved part of the new motif, we focused the point

mutations to these three positions. Mutating the ‘‘TGA’’ core of

the motif completely abolished the binding. Except the ‘‘G to A’’

mutation on position 3, the other six point mutations to the

‘‘TGA’’ core severely reduced or completely abolished binding

(Table S3). These mutation results were not affected by the wild-

type Nanog binding site (Figure S5). We also compared binding

specificities of the DNA binding domain of Nanog and the whole

Nanog protein. No difference was found in all EMSA experiments.

In summary, the EMSA data on the five wild-type sequences and

point mutations were consistent with the notion that Nanog binds

to the novel motif.

Cooperativity among TFs Is Frequently Associated with
DNA Binding

We next identified cooperative interactions among TFs for

DNA binding. For each ChIP-seq experiment, we created training

and testing data sets, each consisting of 500 bound and 500

randomly chosen unbound sequences. STAP was applied to learn

the significant cooperative factors (among all eleven possible

candidates) for each experiment in the training data, following the

procedure described in Methods (Table 1). This analysis

reproduced some known (functional or physical) interactions,

including Sox2-Oct4 [42] and cMyc-E2f1 [43]. In addition, the

pairs Nanog-Esrrb and Oct4-Esrrb, which were reported to

interact in ESCs [44,45], exhibited small p values (0.06 and 0.08

respectively). The results also suggested that Klf4 may cooperate

with a number of other factors, i.e., Oct4, Sox2, Nanog and

STAT3. Klf4 facilitates self-renewal of ESCs and promotes the

efficiency of inducing pluripotency [46], through mechanisms that

are not completely clear. The predicted cooperative interactions

between Klf4 and other key TFs may underlie the function of

Klf4. Using the testing data, we were able to confirm most of

predicted interactions. All cooperative pairs, except CTCF as a co-

factor of Klf4, improved the basic models where only the primary

factor was used, in the testing data, suggesting that the results were

not due to model overfitting (Table S4). These results seem to

suggest that even though eleven motifs were tested simultaneously

Figure 2. Comparison of three versions of the Nanog motif. (A) Nanog1 – the motif learned from the sequences bound by Nanog, but not
Oct4 and Sox2, in the ChIP-seq data; Nanog2 – the motif in [40]; Nanog3 – the motif in [41]. (B) Performance of models using three different versions
of the motif, measured by the correlation between model predictions and observations. The models are applied to two different sets of data. Nanog-
only: the sequences bound by Nanog, but not Oct4 and Sox2; Nanog-500: the 500 sequences with strongest binding to Nanog.
doi:10.1371/journal.pone.0008155.g002
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at each experiment, the significance threshold (p value = 0.05) is

stringent in practice. We therefore chose not to further correct for

multiple hypothesis testing.

After training a single binding model for each factor using all its

significant cooperative factors, we compared the effectiveness of

this cooperative model with the ‘‘non-cooperative model’’ where

no cooperative interaction (not even self-cooperativity) is allowed,

in the independent testing data. For most factors, incorporating

TF interactions substantially improved the predictive ability of the

models (Table 1). These results were consistent with our initial

intuition that incorporating TF-TF interactions may improve the

predictive model, and hence we recommend the final trained

model for predictive purposes (to classify a new sequence as being

bound to the TF or not). Interestingly, for CTCF and to a small

extent Zfx, the cooperative model outperformed the non-

cooperative one, even though no significant cooperative factor

was found, suggesting that self-cooperativity may play a role in

these factors.

To explore other interacting factors that did not have genome-

wide binding data, we repeated the above analysis using motifs

from the JASPAR database [36], in addition to the motifs in this

dataset. We found several cooperative pairs involving factors not

in the original TF list in ChIP-seq experiments, including for

example, Elk1-Klf4, SP1-Nanog, Zfx-TFAP2A and GABPA-Oct4.

The most interesting pair seems to be GABPA-Oct4. GABPA

expression is known to be induced in undifferentiated ES cells and

its expression decreases during differentiation [47]. Moreover,

GABPA has been shown to regulate the expression of Oct4 in

mouse ESCs [48]. Thus, it would be interesting to test

experimentally how GABPA is related to the function of Oct4.

This is an example where our method can be utilized to

automatically discover biologically plausible hypothesis from

existing resources of DNA binding and motif data.

STAP Improves Prediction of TF Targets over Existing
Methods

An intended application of STAP is to use the learned binding

model to predict affinities of unseen sequences to a set of TFs. An

initial support to this application came from the results above

showing incorporating cooperative interactions were more pre-

dictive than simple models without interactions (Table 1). We then

compared STAP with the existing methods that are also capable of

predicting TF target sequences. Two popular programs were

chosen for this purpose, Cluster-Buster [49] and Stubb [50]. Both

programs take a set of TF motifs as input, and predict if some

binding site clusters appear in a test sequence. To use these

programs to predict the targets of some TF, it was necessary to

obtain the relevant motifs (in addition to the motif of this TF).

Neither program provides such capabilities, and therefore we used

another program Clover for this purpose [51]. In summary, the

executed procedure of applying these two programs was: first learn

all overrepresented motifs using Clover from TF-bound sequences

in the training data, and then classify all sequences in the test data

using Cluster-Buster or Stubb (the same training and testing data

as used in the previous section). We evaluated the classification

performance with the standard ROC curves, which quantifies the

tradeoff of specificity and sensitivity as the classification threshold

varies.

Clover identified a number of overrepresented motifs from the

collection of 12 motifs of the 12 assayed TFs (Table S5). These

results were similar to STAP’s predictions in some aspects: both

predicted few interacting factors for CTCF, E2f1 and Esrrb, and

some pairs were predicted by both including Nanog-Sox2 and

Tcfcp2l1-Esrrb. But Clover and STAP generated quite different

results on other factors (compare Table 1 and Table S5). We noticed

that Clover results were largely parallel to the co-localization results

in [35], with Oct4, Sox2, Nanog and Esrrb forming a cluster of

mutually interacting factors. Clover effectively identified motifs

whose presence in the training sequences could not be explained by

chance alone, regardless of whether these motifs actually facilitate

binding of the primary factor. We comment on these different ways

of defining ‘‘interacting’’ factors in Discussion. For now, this motif

set was simply applied to predict TF targets by Cluster-Buster and

Stubb. In almost all cases, STAP better classified the sequences in

the testing data than the other two programs (see Figure 3 for the

Oct4 result, and Figure S6 for the rest).

Table 1. Cooperative interactions among factors are important in explaining TF-DNA binding data.

Factor Non-coop. Model Coop. Model Improvement Significant Coop. Factor (p-value)

cMyc 0.57 0.82 44% E2f1(0.004), Klf4(0.04), Zfx(0.033)

CTCF 0.75 0.81 7%

E2f1 0.50 0.66 31% Nanog(0.048)

Esrrb 0.62 0.78 26% Zfx(0.003)

Klf4 0.58 0.74 28% CTCF(0)

Nanog 0.24 0.50 107% Sox2(0), Klf4(0.012), Zfx(0.05)

nMyc 0.67 0.83 23% E2f1(0.005)

Oct4 0.45 0.56 22% E2f1(0.029), Klf4(0.032), Zfx(0.017)

Sox2 0.50 0.62 24% Klf4(0.014), Oct4(0.039), Zfx(0.045)

STAT3 0.52 0.65 24% Klf4(0.004), E2f1(0.049), Zfx(0.039)

Tcfcp2l1 0.74 0.76 3% Esrrb(0.121)

Zfx 0.70 0.71 1%

In non-cooperative (non-coop.) model, only the motif of TFexp is used for fitting the data and no cooperativity is allows. In cooperative (coop.) model, both the motif of
TFexp and the motifs of significant cooperative factors are used, and the cooperative interactions among factors, including the homotypic interaction, are allowed. The
performance of a model is measured by the Pearson correlation between model predictions and observations in an independent testing data (not used for training the
models). Significance of a cooperative factor is determined through comparison with a large number of randomized motifs. Only the factors with p value less than or
equal to 0.05 are shown.
doi:10.1371/journal.pone.0008155.t001
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Exploring the Effect of Binding Site Arrangement
How binding sites are arranged in a regulatory sequence is an

important, but poorly understood aspect of combinatorial gene

regulation. Our biophysical model includes a component that

describes how the strength of interaction between bound TF

molecules depends on the arrangement (distance and relative

orientation) of their respective binding sites. By varying this

component, we tested if the data supports a particular mode of TF

interaction over others. In each of the three models we studied (see

Methods), we assume a maximum distance dmax between the two

bound factors, beyond which there is no interaction. Under the

‘‘Binary’’ model, which is also our default model used in the

analysis reported above, the strength of interaction is constant

within the range of 0 to dmax. Under the ‘‘Linear’’ model, the

interaction is stronger when the two cooperative sites are closer.

For both Binary and Linear models, there may be an orientation

bias: the interaction of two factors may depend on the relative

orientation of the two binding sites. The extent to which one

orientation is favored is encoded by a bias parameter. Finally,

under the ‘‘Periodic’’ model, the strength of interaction is a

periodic function of the distance. This periodicity has been

reported in a few cases before and often corresponds to the helical

period of DNA molecules [52,53].

Because the analysis here is focused on likely subtle details of

binding site arrangements, we decided to work on the TF pairs

with the strongest evidence of cooperative interactions. From

Table S4, we chose the most significant cooperative factor, as

defined by p values, for each primary TF (removing those not

showing large improvements in the testing data). Further

combining these significant pairs with prior knowledge of

interacting TFs in ESCs led to five TF pairs: cMyc-E2F1,

Nanog-Esrrb, Oct4-Zfx, Sox2-Oct4 and STAT3-Klf4. The overall

patterns from the five pairs were very similar. Shown here are the

results of Sox2-Oct4 and Nanog-Esrrb, both interactions suggested

before by experimental work [44,54], and the rest are presented in

Figure S7. We note that the model fitting procedure is different

from the other parts of the paper. Instead of learning the model

separately for each TF, we learn a single model, where the same

interaction parameters are used for the data of both factors (see

Methods). This procedure was designed to maximize the use of

data and enhance the signals.

The first studied was the Binary model of cooperative

interaction. We varied the dmax parameter and for each value of

dmax, we optimized the orientation bias parameter and compared

this optimized model with the one without bias. Small orientation

bias was found in the cases of Nanog-Esrrb, Sox2-Oct4 and cMyc-

E2f1, where the free energy that penalizes one orientation is about

20% of the interaction free energy, and no such bias was detected

for STAT3-Klf4 and Oct4-Zfx. What is more revealing is that the

performance of the models which optimized the bias parameter

was close to the one without bias (Figure 4A, 4C, Figure S). The

differences in terms of correlation coefficients are less than 1% in

most cases (except Nanog-Esrrb, which reaches about 2%). In

contrast, the parameter dmax plays a much larger role (Figure 4A,

4C, Figure S7). More tested TF interactions occur in the range of

150–200 bp. (Figure 4A, Figure S7). Next, we observed that the

Linear model did not improve the predictability (the Linear model

actually does better only in the case of Oct4-Zfx, but the

improvement is less than 1%), suggesting that interaction between

two factors does not decrease significantly with distance. Finally,

for the Periodic model, we varied the periodicity from 10.0 to

12.0 bp (corresponding roughly to the range of DNA helix), and

for each of these values, we also varied the amplitude parameter,

which is a measure of the strength of periodicity (see Methods).

Figure 3. ROC curves comparing the performance of three methods for classification of Oct4 target sequences in the ChIP-seq data
of Oct4. For evaluation of Cluster-Buster and Stubb, the Clover program is run first on the training data to extract a set of overrepresented motifs,
which will be used as inputs of Cluster-Buster and Stubb.
doi:10.1371/journal.pone.0008155.g003
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Similar to the results from the Linear model, we found that this

more complex model is no better than the simpler Binary model.

In fact, the performance of the Periodic model always decreases

when the amplitude parameter is increased under all values of

periodicity we tested, suggesting that the interactions are not

periodic for these pairs (Figure 4B, 4D, Figure S7). All these

results: the lack of clear orientation bias, tolerance to distance

change and the lack of periodicity together seem to indicate that

binding site interactions do not follow strict rules, at least in these

tested cases.

Application to Drosophila ChIP-Chip Data of
Segmentation Factors

This section presents the results on testing STAP for its

capability of making cross-species extrapolations. We constructed

binding models of the TFs regulating pattern formation in the

early embryonic development of D. melanogaster (Mel) and applied

them to the genome of D. pseudoobscura (Pse). While the original

paper reported the ChIP-chip data of six TFs, we focused on two

of the most well characterized, Bcd and Kr, as the other factors did

not have sufficient amount of data or reliable binding profiles

[31,55]. We trained the binding models of Bcd and Kr in 1000

Mel sequences, half from bound sequences at 1% FDR level, and

the other half from random unbound sequences. These models

were then applied to the Pse orthologs of all bound sequences (at

25% FDR level) and 250 random unbound sequences. A sequence

was considered conserved if the predicted binding affinity of its

ortholog was above certain threshold (learned from the training

data in Mel).

STAP successfully predicted binding affinities of orthologous

sequences in the Pse genome. We assumed that the majority of the

random unbound sequences should remain unbound in Pse. Since

STAP predicted that 13% (for Bcd) and 22% (for Kr) of these

random sequences have high binding affinities (Table 2), the

specificities of STAP predictions were no smaller than 87% and

78%, respectively. Based on the observation that many known

enhancers are also functional in Pse [23,56,57], we estimated the

model sensitivities at 83% and 48%, respectively, corresponding to

the fractions of known enhancers that have conserved orthologs in

Pse (Table 2). We note that some enhancers do not have

orthologous sequences in Pse (from UCSC alignment), thus the

classification of these enhancers as having non-conserved affinity is

not a fault of our prediction method. If adjusting for these cases,

the model sensitivities would become 91% (Bcd) and 62% (Kr).

Overall, STAP achieved medium to high sensitivities for

predicting Bcd and Kr targets in the Pse genome with low false

positive rates.

Interestingly, STAP predicted that the binding affinities of a

large fraction of TF-bound sequences are not conserved. Among

all bound regions at 1% FDR level, only 45% (Bcd) and 34% (Kr)

Figure 4. The effect of binding site arrangement on TF interactions. (A,C) Under the Binary model of interaction, the relationship between
model performances, measured by correlation between predictions and observations, and the distance parameter (maximum distance, measured in
bp, where two factors can interact along DNA sequence). For each value of the distance parameter, two models are compared: one in which the
orientation bias parameter is optimized, and the other not allowing the bias. (B,D) Under the Periodic model of interaction, the relationship between
model performances and the amplitude parameter (the change of the interaction strength within a period). Only two values of periodicity are shown.
doi:10.1371/journal.pone.0008155.g004
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were predicted to have conserved affinities in Pse (Table 2), and

the fraction of conservation for bound sequences at 25% FDR was

even lower. Such a low level of conservation could be attributed to

errors in model prediction, where some conserved sequences

might be missed by STAP predictions. However, this alone cannot

account for the low conservation level we observed, as the

numbers of sequences with low affinities in Pse (692 - 310 = 382 for

Bcd and 2001 - 685 = 1316 for Kr, Table 2) are too large to be

explained by misclassification of high affinity sequences (p,10215

for both factors assuming the misclassification rates at 0.13 for Bcd

and 0.22 for Kr, Binomial test). Correcting for false positives and

false negatives, we estimated the fraction of bound sequences with

conserved affinities by multiplying the observed fraction with (1 –

false positive rate), to account for false positives, and by dividing

the result by sensitivity, to account for false negatives. This led to

the estimates that 46% of Bcd targets and 55% of Kr targets

remain bound by their respective factors in the Pse genome.

Interestingly, even if we limit to sequences not only bound by TFs

in the ChIP-chip experiments, but also adjacent to some gene

transcribed in blastoderm, the fractions of sequences with

conserved affinities are virtually unchanged (compare the last

two rows in Table 2). These results suggest a high level of turnover

of TF-binding across Mel and Pse genomes. While similar

observations have been made before in other organisms [2,58],

what is striking here is that even the strongest bound sequences

whose nearest genes are transcribed (a sign of regulatory functions)

display low levels of affinity conservation across species.

While there may be alternative interpretations of the lack of

conservation (see Discussion), one simple hypothesis would be that

TF binding, and even with the transcription of adjacent genes, is

not sufficient to establish functionality. We reasoned that if this is

true, we might be able to filter the non-functional sequences from

all bound ones by testing the binding affinities of the orthologous

sequences, an idea successfully applied in yeast studies [2]. We

classified the bound sequences in Mel (at 1% FDR, with the extra

requirement of being adjacent to some expressed gene) into two

categories: those with high predicted affinities in Pse (Conserved

group) and those with low affinities (Non-conserved group). We

extracted the adjacent genes of these two groups of sequences to

analyze the putative functions of these sequences (we limit to the

top 50 sequences in each group as the total number of genes in

each group is large). We found that the sequences in the conserved

group are much more likely to be associated with genes in the

relevant functional classes, such as ‘‘developmental processes’’

(Figure 5). These results suggest that by using the predicted

affinities of orthologous sequences as a filter, one can enrich the

functional sequences in the results from genome-wide binding

experiments. This approach of improving function sequence

prediction from conservation is different from the more common

approach of using nucleotide-level conservation, which is sensitive

to alignment between orthologous sequences.

Discussion

In this work, we adapted the theoretical models pioneered by

Shea-Ackers [29] and formulated by Buchler et al. [30] to the

analysis of large-scale TF binding data. Different from these

previous works, we explicitly expressed the expected number of

TFs bound by a given regulatory sequence, and thus derived a

variation of the Shea-Ackers model suitable for analysis of

genome-wide binding data. We developed a dynamic program-

ming algorithm that efficiently computes the binding affinity of

any sequence. We provided software, STAP, to automatically

learn the best models from the binding data. Through extensive

evaluations, we demonstrated that this is an effective computa-

tional framework to extract information from and extrapolate over

TF-DNA binding data.

STAP was applied to several important analysis tasks, including

comparison of TF binding profiles, identification of TF interac-

tions, studying the effect of binding site arrangement (regulatory

grammar) and prediction of TF target sequences. These tasks are

commonly encountered in analysis of genome-wide data, and we

believe STAP offers key benefits over existing methods. First,

STAP was applied to compare several putative Nanog motifs.

Such functionality can be useful, for example, when one needs to

compare outputs from multiple motif-finding programs or from

different experiments. Furthermore, when multiple factors access

the same target regions, STAP is able to disentangle the effects of

confounding factors. This was demonstrated in the analysis of

Nanog-bound sequences, which are often bound by Oct4 and

Sox2 as well. Second, we took advantage of the new method to

predict TF-TF interactions. Similar analyses were done previously

by first predicting the binding sites of the pair of motifs, and then

analyzing the co-occurrence pattern of two types of sites [27,28].

Co-occurrence based analysis does not utilize the measured TF-

binding intensities, sacrificing a significant amount of available

information. Co-occurrence based analysis also requires the

explicit annotation of binding sites, a task known for its inaccuracy.

Weak binding sites were shown to contribute significantly to TF

binding [23,34], making a binary demarcation of sites and non-

sites more problematic. Thirdly, STAP was applied to test

different regulatory rules for binding site arrangement. This task

has been gaining attention from the community [11,12], but a

computational tool for addressing this challenge has been missing

so far. Finally, we demonstrated that STAP is able to make more

accurate predictions of TF targets in new sequences than other

state-of-the-art programs. This capability enables the study of the

evolution of TF binding across species despite that the binding

data are often available in only one species. We also found that

limiting to sequences with conserved affinities would improve the

identification of functional TF targets.

The recent work by Segal et al. [23] also uses the thermodynamic

model to predict the functional properties (expression patterns) of

DNA sequences, and it is worthwhile to point out the similarity and

the difference between the two papers. Both Segal et al. and this

work rely on the same thermodynamic framework of Buchler et al.

[30] to model TF-DNA interactions as well as cooperative DNA

binding by multiple TFs. In the algorithmic side, both use dynamic

Table 2. The conservation of binding affinities to Bcd and Kr
of different groups of sequences in D. melanogaster.

Sequences Bcd Kr

Random 0.13 (32/250) 0.22 (54/250)

Enhancers 0.83 (29/35) 0.48 (16/33)

Bound (1% FDR) 0.45 (310/692) 0.34 (685/2001)

Bound (1% FDR) and expressed 0.43 (141/331) 0.33 (205/621)

A sequence is conserved if the predicted affinity of its orthologous sequence in
D. pseudoobscura is above a specified threshold. Shown in each cell is the
fraction of conserved sequences, and in parenthesis, the number of conserved
sequences and the total number of sequences in that group. Random: random
unbound sequences; Enhancers: known blastoderm enhancers that overlap
with some bound regions (25% FDR); Bound: all bound sequences at 1% FDR;
Bound and expressed: all bound sequences that are also adjacent to some
genes transcribed in blastoderm.
doi:10.1371/journal.pone.0008155.t002
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programming to optimize the computational task, which is also a

familiar technique in statistical mechanics (known as the transfer

matrix method), and has been used before for similar calculations

involving cis-regulatory sequences [59,60]. These similarities are not

surprising as both attempt to capture the same underlying physics.

There are two main differences. Segal et al. uses a logistic function

as the expression ‘‘readout’’ of any molecular configuration (s in our

notation) and predicts the expression of the sequence as the average

readout over all configurations. The downside of this approach is

that the logistic function has no connection to thermodynamics, and

the computation involves expensive sampling. In this work, the

relevant quantity we compute has a clear physical interpretation:

the average number of TF molecules bound to the sequence. This

also enables the derivation of dynamic programming, which is far

more efficient than sampling. The other main difference lies in the

intended applications of the models. STAP was applied to questions

that were not addressed previously, such as the characterization of

rules of cooperative interactions and evolution of TF-target

relationship.

Combinatorial gene regulation by definition involves the

relationship among different transcription factors. However, how

such relationships should be defined and inferred is not clear in

practice. We believe it is important to distinguish among three

types of relationship between a pair of transcription factors (Figure

S8): (A) co-localization of two factors as revealed by ChIP

experiments; (B) direct binding of two factors to the neighboring

DNA sites (co-binding) and (C) cooperative interaction of two

factors bound in the neighborhood. Note that these three classes

correspond to progressively more specific relationships. Co-

localization of two TFs in a ChIP experiment may be due to co-

binding, or due to one of the TFs being bound to DNA and

recruiting the other TF (without the latter directly binding to

DNA). Similarly, when two factors bind to adjacent sites on DNA

(co-binding), they may not actually interact with each other, i.e. no

cooperative interactions. The different results we obtained from

our co-localization analysis, from motif enrichment test using

Clover and from our identification of cooperative factors may

partly come from these distinctions (compare Tables S1, S5 and

Figure 5. The functional characterization of sequences bound by Bcd and Kr (1% FDR) in the D. melanogaster genomes. The sequences
are divided into the Conserved and Non-conserved groups, depending on whether the orthologous sequences in D. pseudoobscura also have high
binding affinities. The GO annotations of the nearest genes of sequences in each group are analyzed (only top 50 sequences in each group, ranked by
the strength of binding).
doi:10.1371/journal.pone.0008155.g005
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Table 1). This picture of a hierarchy in the relationships of TFs (in

the context of DNA binding) suggests that it is important to

interpret the results in a way that is appropriate for the type of

analysis performed.

We assumed that cooperative interactions are due to protein-

protein interactions, but this may not always be true. For example,

the factor B may stimulate DNA-binding of the factor A through

chromatin modification that makes DNA more accessible. This

point has also been commented before [59]. It is difficult to

distinguish different mechanisms of cooperative interactions when

only DNA binding data is available. This is important for

interpreting the results, as the predictions may not be confirmable

through protein-protein interaction assays. In addition, this

suggests that the cooperative interactions, as defined by stimulated

effects of DNA binding on another factor, may not be symmetric.

In the example we cited above, the factor A itself may not modify

chromatin structure, thus has no effect on DNA binding affinity of

the factor B.

We studied the effect of binding site orientation and relative

distance on the cooperative TF interactions. Because the effect is

likely to be subtle, we focused on the TF pairs with the strongest

signals in the data. We did not found evidence supporting rigid

rules, such as the periodicity of distance (in the range of period

tested). This may suggest that the interactions may occur

indirectly, rather than through physical protein-protein interac-

tions, such as the well known case of lambda repressor [5]. If a TF

modifies the chromatin structure through chemical modifications

of histones or remodeling of nucleosomes, the effect of this TF on

other TFs will be less specific (as it could affect all binding sites in

the neighborhood) and less likely to follow strict rules. We

recognize there are several limitations in our methodology: only

several forms of cooperative functions were tested while the actual

function may be much more complex; and in the thermodynamic

model, only immediately adjacent binding sites may interact with

each other, an assumption taken for the ease of computation

without much theoretical justification. These limitations coupled

with the fact that only five TF pairs were tested in a single dataset

limit our ability to extrapolate any general regulatory rules. Still,

the STAP method is relatively sensitive, as demonstrated by the

large effect of dmax and the amplitude parameters we observed

(Figure 4), and represents one concrete step towards an important

but difficult problem.

STAP can be applied to learn TF binding models in one species

and extrapolate to another species. This enabled the study of the

evolution of sequences in terms of their interaction with TFs. That

TF-binding of DNA sequences may not be constrained evolution-

arily has been reported in yeasts and mammals [58,61]. In

Drosophila, it was reported that important TFBSs are subject to

turnover across related species [31,62–64]. The analysis based on

the conservation of individual binding sites, however, does not

address the question whether a promoter or enhancer, which

typically have multiple binding sites, would have conserved

functionality or not, as the gains and losses of binding sites in

the neighborhood may compensate each other so that the overall

affinity remains largely unchanged [56,64,65]. By predicting

binding affinities directly in the Pse genome, without relying on

sequence alignment and tracing the fate of individual sites, we

showed that even the overall affinities are largely un-conserved.

The fact that this also applies to sequences adjacent to transcribed

genes adds another interesting dimension to the findings. One

possible explanation is that these ‘‘biochemically active’’ sequences

provide no evolutionary advantages, but merely serve as sequence

‘‘warehouse’’ for future functional elements [61]. Another

possibility is that many of these sequences are functional,

lineage-specific elements that evolve from adaptation to specific

environment of D. melanogaster [66].

Methods

Biophysical Model of TF-DNA Interaction
Given a sequence S, our goal is to predict its binding intensity

with the experimental TF, denoted as TFexp. We first scan the

sequence with the position weight matrices of all relevant TFs

(including TFexp and possible cooperative factors) using very low

thresholds to identify putative binding sites [4]. Thus our sequence

would contain both strong and weak binding sites, instead of a

single best match site for each factor. Note that this step is not

absolute necessary as each position in theory can bind to any TF.

We choose to discard those very weak sites only for the purpose of

speeding up computation. For a binding site Si, its affinity to its

corresponding TF is given by [3]:

qi~½TF �K(Si)~½TF �K(Smax)e{DE(Si) ð1Þ

where ½TF � is the TF concentration, K(:) is the equilibrium

constant of a site, Smax denotes the consensus sequence of this TF,

and DE(Si) is the mismatch energy of Si in the unit of b~1=kT .

Note that ½TF �K(Smax) can be considered as a single TF-specific

constant, denoted as R and the mismatch energy is related to the

commonly used PWM matching score [3,4]. Suppose S contains n
binding sites, a state s of S is represented by an n-bit vector, where

si represents whether the i-th site is occupied by its corresponding

TF (equal to 1) or not (0). The probability of s, P(s), is determined

by its Boltzmann weight, W (s) [30]:

W (s)~P
n

i~1
qi

si P
ivj

v(i,j)sisj ð2Þ

where v(i,j) denotes the interaction between the two sites i and j
when both are occupied (Figure 1, the first column). The state

where two overlapped binding sites are occupied simultaneously is

not allowed, i.e. its weight is zero. Sites i and j may denote the

motifs of the same TF, and therefore self-cooperativity (the

cooperative interactions among binding sites of the same TF) is

accounted for in the model. Note that the interaction may depend

on the arrangement of the binding sites. Our default model of

interaction is a simple binary model: the bound factor at position i,
f , and the bound factor at position j, f ’, can interact with constant

vf ,f 0 if the distance of their binding sites is less than dmax. Basically,

the above equation states that the weight of a particular state has

two components: one from binding of TF to individual sites; and

the other from cooperative interactions among bound TFs. In

theory, any two bound TF molecules can form interactions; in

reality, however, this is quite unlikely to be true. So we make the

assumption that only two adjacent bound TF molecules can

interact with each other. We assume that the binding affinity of the

whole sequence to TFexp (denoted as index k) is proportional to the

expected number of bound molecules of k, averaging over all

states:

Nk~
X

s

Nk(s)P(s)~

P
s

Nk(s)W (s)P
s

W (s)
ð3Þ

where Nk(s) is the number of bound molecules of k in s (Figure 1,

the second column).
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Because the number of states is exponential to the number of sites

in a sequence, the brute-force computation of the above quantity is

expensive. The computation of the partition function (the

denominator) follows the transfer matrix method in statistical

mechanics and is similar to the dynamic programming algorithms in

other related work [23,59,60]. We show that dynamic programming

can also be applied to compute the summation in the numerator,

due to the simplicity of the functional form of Nk(s) (note that

summation of some function defined on s may not always be

solvable by dynamic programming). Let s½i� be one configuration

up to the site i, where i is bound by its cognate TF fi, we define:

Z(i)~
P

s½i� W (s½i�) and Yk(i)~
P

s½i� W (s½i�)Nk(s½i�). We have

the following recurrence equations:

Z(i)~q(i)
X
j[W(i)

v(i,j)Z(j)z1

" #
ð4Þ

Yk(i)~q(i)
X
j[W(i)

v(i,j) Yk(j)zI(fi,k)Z(j)½ �zI(fi,k)

( )
ð5Þ

where I(fi,k) is the indicator variable of whether fi is equal to k.

Finally we have:
P
s

W (s)~1z
Pn

i~1 Z(i) and
P

s W (s)Nk(s)~Pn
i~1 Yk(i). The details of deriving these equations can be found in

Text S1.

Implementation and Model Fitting
We implemented this model and the fitting procedure in the

software, STAP. It can be used for analyzing both ChIP-chip

and ChIP-seq data, available at: http://biocomp.bioen.uiuc.edu/

STAP.

STAP takes as input a set of sequences and their measured

binding intensities to TFexp, a set of TF motifs (including TFexp)

and learns TF-binding models that can be used to predict binding

affinity of any new sequence. A TF-binding model consists of two

parts: the set of cooperative factors, and the free parameters, which

include Rf for each factor f , and the interaction parameters

between the primary factor and any cooperative factors (including

self-cooperative interactions). We note that when there are more

than one cooperative factor, we do not allow interactions among

these factors, as doing so will greatly increase the number of

parameters (quadratic to the number of factors), and we may not

be able to estimate them since we only have binding data for the

primary factor.

At the first step of creating the binding model, we learn the

motifs in the input motif collection that are cooperative to TFexp.

For each of these motifs, we calculate the correlation coefficient of

the model including this motif as well as TFexp. We estimate the

statistical significance of this value by comparing with a null

distribution constructed from randomized motifs. Specifically, we

choose randomly a motif from a background motif library (we used

JASPAR [36]), which could be different from the input motif

collection, and then randomly shuffle the columns of this motif.

The correlation coefficient of the model using this random motif

and the primary factor will be estimated. The null distribution

consists of the correlation values from 1000 randomized motifs.

We use p value 0.05 as the threshold for significance judgment.

After learning all significant motifs, we combine them into a single

model and estimate the model parameters. For parameter

estimation, we use the combination of the Nelder-Mead simplex

method and the quasi-Newton method (the BFGS algorithm), both

provided in the GNU Scientific Library [23,67]. We alternate the

two optimization methods until the solutions converge (as defined

by the respective criterion of the two methods) or a specified

number of alternations are reached. This approach is not

guaranteed to find the global optimum, but we find through

simulation that it usually produces reasonable solutions, while the

global optimization method we tested, Simulated Annealing, is too

slow for our purpose.

When running STAP on a TF dataset from ChIP-chip or ChIP-

seq experiments, we generally need to use only a subset of data for

training the binding model, while the rest can be used as testing

data. In our experiments with both stem cell ChIP-seq data and

Drosophila ChIP-chip data, we first identify the peak positions of the

strongest bound regions (provided in both cases from our data

sources) and extract the surrounding sequences, defined as 250 bp

upstream/downstream of the peaks. Since these sequences only

represent regions bound by TFs, we also add an equal number of

sequences that do not show significant binding, chosen randomly

from the genome. The binding affinities of these negative

sequences are not always available, so we use some value below

the lowest binding affinity among all bound sequences, as the

substitute of measurements. In our experiments, the size of the

training data is 1000 sequences (500 for both positive and negative

sets). Our construction of testing data is similar: we choose the next

500 bound sequences and 500 random unbound sequences.

Models of Cooperative Interactions
We denote the cooperative interaction between two bound

factors, v(d), where d is the distance between two sites. It may also

depend on the orientations of the two sites. Let dmax be the

maximum distance where two bound factors can interact. We

consider several forms of the function v(d). Under the Binary

function, the interaction term is equal to a constant, v if d is less

than dmax; and 1.0 otherwise (no interaction, corresponding to free

energy at 0). The orientation bias is modeled by multiplying a

constant to v if the two sites are at different strands. The Linear

function is defined by:

v(d)~

v dƒd0

1z(dmax{d):(v{1)=(dmax{d0) d0vdƒdmax

1 dwdmax

8><
>: ð6Þ

The orientation bias is modeled similarly. To derive the

Periodic function, we assume that the free energy of interaction

consists of a constant plus a term corresponding to the energetic

cost of DNA looping. Following [52], the effective interaction

between two factors A and B is given by:

DG~DGA{B{DG’ sin(2p
d

T
z ) ð7Þ

where T is the period, is the phase parameter and DGA{B and

DG’ are constants. The interaction weight is exp({DG=RT)
when d is less than dmax and 1.0 otherwise. The amplitude

parameter we used is the amplitude of the interaction weight,

which is also a periodic function. Also note that can in fact take

two values, depending on whether the two sites are in the same

orientation.

Learning the Interaction Model between Two TFs
In studying the effect of binding site arrangement on TF

interaction, we adopt a different model fitting procedure. Suppose
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we want to study the interaction of the factors A and B. We

estimate a single set of parameters: RA, RB and the relevant

interaction parameters (depends on how we model their

interaction) from the binding data of both factors. The objective

function is the average correlation coefficients between predictions

and observations in the two sets of sequences. Also we vary the

interaction parameters to observe their effects on the predictability

of the model, as shown in the text, instead of estimating single

optimal values. We note that such procedure is not applicable to

fitting a ‘‘global’’ model of a large number of TFs (e.g. all 12 TFs

in the mouse ESC dataset). In that case, the number of possible

interactions is probably too large (66 in the ESC case) to be

reliably estimated. Our software, however, does support estimating

the global model when the number of factors is small (less than

four, for instance).

Data Used in Drosophila ChIP-Chip Analysis
We downloaded the processed ChIP-chip data of Li et al.

[16], at both 1% FDR level and 25% FDR level, This dataset

also includes the information of the nearest genes of the bound

sequences and whether they are expressed in blastoderm. The

random unbound sequences were extracted from the genome of

D. melanogaster, Release 4 [16], and those overlapped with

coding regions or bound regions at 25% FDR were removed.

The known enhancers were taken from REDFly with the

constraint that they must function in blastoderm development

[68]. We extracted the orthologous sequences of all Mel

sequences in the Pse genome using the alignment provided at

UCSC [69]. The binding profiles of the factors Bcd and Kr

were taken from the results of in vitro bacterial one hybrid (B1H)

experiments [55]. When training the binding models, we used a

collection of 66 motifs to learn the putative cooperative factors

to Bcd and Kr. This collection is constructed by combining

motifs from B1H experiments [55] and from DNA footprinting

analysis [70].

Supporting Information

Text S1 Additional details of experimental procedures and the

algorithms.

Found at: doi:10.1371/journal.pone.0008155.s001 (0.05 MB

PDF)

Figure S1 ChIP-seq and ChIP-qPCR signals. Independent

ChIP-qPCR experiments on randomly selected binding regions

of Suz12 and Nanog generated highly correlated signals with the

counts of overlapping ChIP-seq tags.

Found at: doi:10.1371/journal.pone.0008155.s002 (0.08 MB

PDF)

Figure S2 Motifs identified by MEME. For all factors except

Oct4, Sox2, Nanog and E2f1, we ran MEME on the top 100

regions from ChIP-seq experiments (defined by 30 bp upstream

and downstream of the peaks). For Oct4, Sox2 and Nanog, we ran

MEME on all regions bound exclusively by Oct4, Sox2 and

Nanog, respectively (i.e., for Oct4, we only consider regions bound

by Oct4, but not Sox2 and Nanog; and similarly for Sox2 and

Nanog). For E2f1, MEME failed to produce any specific motif, so

we used the motif in the Transfac database.

Found at: doi:10.1371/journal.pone.0008155.s003 (0.12 MB

PDF)

Figure S3 Comparison of three versions of the Nanog motif:

He09 - the one described in this paper, Mitsui03 from [40], Loh06

from [41]. The performance of a motif is assessed by the

correlation coefficient of the model that uses this motif to fit the

data of overlapping sequence counts of the 500 Nanog bound

regions. We created the null distribution of the performance (the

histogram) from 1000 random permutated motifs.

Found at: doi:10.1371/journal.pone.0008155.s004 (0.06 MB

PDF)

Figure S4 EMSA experiments of five genomic regions with high

similarities to the new Nanog motif. Probes 1 to 5 correspond to

the genomic regions 1 to 5 in Table S2. Probes P and N are

positive and negative control probes, respectively. Negative control

region: chr12:122668133–122668172 (mm8). Positive control

region: chr18: 46513245–46513285 (mm8).

Found at: doi:10.1371/journal.pone.0008155.s005 (0.08 MB

PDF)

Figure S5 Mutation results do not depend on the wild-type

binding sites. A subset of mutations chosen from Table S3 were

repeated on two independent wild-type sequences. EMSA results

of these mutated sequences are shown. The two independent wild-

type sequences in the mutagenesis analysis generated similar

results.

Found at: doi:10.1371/journal.pone.0008155.s006 (0.11 MB

PDF)

Figure S6 ROC curves comparing the performance of three

methods for classification of TF target sequences in the ChIP-seq

data. Red - STAP, purple - Clover + Cluster-Buster, blue -

Clover + Stubb, black - Random classifier. For evaluation of

Cluster-Buster and Stubb, the Clover program is run first on the

training data to extract a set of overrepresented motifs, which will

be used as inputs of Cluster-Buster and Stubb.

Found at: doi:10.1371/journal.pone.0008155.s007 (0.64 MB

PDF)

Figure S7 The effect of binding site arrangement on TF

interactions. The left column shows the results under the Binary

model of interaction: the relationship between model performanc-

es, measured by correlation between predictions and observations,

and the distance parameter (maximum distance, measured in bp,

where two factors can interact along DNA sequence). For each

value of the distance parameter, two models are compared: one in

which the orientation bias parameter is optimized, and the other

not allowing the bias. The right column shows the results under

the Periodic model of interaction: the relationship between model

performances and the amplitude parameter (the change of the

interaction strength within a period). Only two values of

periodicity are shown.

Found at: doi:10.1371/journal.pone.0008155.s008 (0.05 MB

PDF)

Figure S8 Co-localization, co-binding and cooperative interac-

tions between two TFs. (A) Co-localization without co-binding.

The molecule of B is recruited to DNA by its interaction with a

molecule of A that is already bound to the sequence. (B) Co-

binding without cooperative interaction. The molecules of A and

B bind independently to the DNA sequence. (C) Cooperative

binding of the molecules of A and B. The arrow indicates the

interaction between two molecules.

Found at: doi:10.1371/journal.pone.0008155.s009 (0.03 MB

PDF)

Table S1 Pearson X2 statistics of TF co-localization test using

ChIP-seq data of multiple TFs. The larger the X2 value, the

stronger evidence of co-localization (statistically significant if

X2.6.63, or p,0.01).

Found at: doi:10.1371/journal.pone.0008155.s010 (0.03 MB

PDF)
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Table S2 Five Nanog ChIP-seq positive regions containing the

new Nanog sequence motif. All chromosome coordinates refer to

UCSC mm8 mouse genome assembly.

Found at: doi:10.1371/journal.pone.0008155.s011 (0.01 MB

PDF)

Table S3 Binding affinities between Nanog and its mutated

binding sequences. These biding affinities were derived from

EMSA results of the point mutations of the new Nanog motif. A

conserved motif TGATGGC/GC/T was identified in the screen.

+++ strong binding, + weak binding, 2 no binding. All the results

were reproduced by at least two independent assays. The DNA

binding domain of Nanog and the complete Nanog protein

produced the same binding affinities.

Found at: doi:10.1371/journal.pone.0008155.s012 (0.04 MB

PDF)

Table S4 Significant ESC cooperative factors. Each motif is

evaluated by the model including this motif as well as the

experimental factor (if the motif is the experimental factor itself,

only homotypic cooperativity will be considered). The third

column shows the p value estimated from the training data, and

the last shows the correlation of the model in another testing data

set.

Found at: doi:10.1371/journal.pone.0008155.s013 (0.05 MB

PDF)

Table S5 The overrepresented motifs identified by Clover. For

each TF in the first row, the top 500 bound sequences are

analyzed by Clover. The threshold of motif is set as 7.

Found at: doi:10.1371/journal.pone.0008155.s014 (0.01 MB

PDF)
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