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Abstract

Experimental evidence is increasingly being used to reassess the quality and accuracy of genome annotation. Proteomics
data used for this purpose, called proteogenomics, can alleviate many of the problematic areas of genome annotation, e.g.
short protein validation and start site assignment. We performed a proteogenomic analysis of 46 genomes spanning eight
bacterial and archaeal phyla across the tree of life. These diverse datasets facilitated the development of a robust approach
for proteogenomics that is functional across genomes varying in %GC, gene content, proteomic sampling depth,
phylogeny, and genome size. In addition to finding evidence for 682 novel proteins, 1336 new start sites, and numerous
dubious genes, we discovered sites of post-translational maturation in the form of proteolytic cleavage of 1175 signal
peptides. The number of novel proteins per genome is highly variable (median 7, mean 15, stdev 20). Moreover, comparison
of novel genes with the current genes did not reveal any consistent abnormalities. Thus, we conclude that proteogenomics
fulfills a yet to be understood deficiency in gene prediction. With the adoption of new sequencing technologies which have
higher error rates than Sanger-based methods and the advances in proteomics, proteogenomics may become even more
important in the future.
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Introduction

With the advance in sensitivity and computational power of

high throughput proteomics, many datasets now offer expansive

proteome coverage. A growing trend is to use these data to re-

evaluate protein sequence predictions, i.e. proteogenomics [1,2].

As most genome annotation pipelines consist of automated gene

finding, they lack experimental validation of primary structure

[3,4]. Thus proteogenomics offers valuable opportunity to correct,

corroborate, and supplement genomic predictions as an orthog-

onal data-type from DNA-centric evidences (e.g., sequence

homology, transcriptome mapping, codon frequency, etc.). In a

variety of organisms, new insight from proteogenomics has

consistently improved genome annotation [5,6,7,8,9].

Fundamentally, an accurate primary structure implies knowing

the correct start/stop coordinates of the protein, which may be

erroneously predicted for 20% of genes in some bacterial and

archaeal genomes [10,11], as well as recognizing any true frame-

shifting events, that should be distinguished from sequencing

errors. A more advanced gene model should contain information

about the mature protein sequence. For example, protein cleavage

events such as N-terminal signal peptides are particularly valuable

clues for protein localization in the prokaryotic cell. Similarly,

characterizing a mature antimicrobial from the nascent pre-

protein can add valuable information as to how such a protein

assumes its biological role [12]. Furthermore, modifications to

amino acids (e.g., phosphorylation) can implicate a protein in

distinct and often transient biological processes (e.g., regulation of

gene expression). None of these protein maturation events are

observable via DNA sequencing.

Proteogenomics as a field has tended to utilize datasets

generated from a single organism or biological system. Although

various techniques have been explored to gain more proteome

coverage [13] or to recover specific subsets [14] or target protein

N-termini [15], little work to re-evaluate protein annotation has

been performed with datasets from multiple organisms. Gupta et

al. first explored the concept of comparative proteogenomics with

the analysis of three different Shewanella [16]. A major finding of

this work was that the confidence of ‘one-hit-wonder’ proteins

could be increased by the observation of orthologs in a different

species’ proteomics dataset.

We have previously published a proteogenomics methodology

for discovering novel protein coding regions using only a single

organism, Yersinia pestis [17]. To ensure the generality of our

approach, we tested it on 46 organisms from eight bacterial and

archaeal phyla. This expansive diversity uncovered shortcomings

and flaws observable only in certain datasets, and produced a

more robust pipeline. Selected results are highlighted to describe

the types of events that can be discovered, including new genes,

conflicts with current genes, disputation of pseudogenes, and

mature protein events. In total we reveal over 2000 new and

corrected genes. We also looked for reasons why novel genes
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identified in this study may have been missed in the original

genome annotations.

Results

Proteogenomic analyses are defined by a search for novel

protein coding regions in an organism’s genome. To accomplish

this, proteomic data is searched to identify sequences which are

not currently part of the genome annotation. Tandem mass

spectra are typically interpreted using a protein sequence database

to facilitate peptide identification [18]. In our proteogenomic

pipeline [17], peptide/spectrum matches (PSMs) are identified

from a six frame translation of the genome, instead of simply the

predicted protein sequences. Only highly confident identifications

are kept; the default cutoff for our pipeline is an MSGF score of

1e-10 [19]. Peptide sequences are mapped to their genomic locus

and grouped with other peptides within an open reading frame

(ORF). Many proteogenomics methodologies do not perform any

additional filtering and simply assert novel coding regions from all

novel peptides. After testing our pipeline on numerous datasets, we

have found that this is insufficient. We adapted our existing

proteogenomics pipeline [17] to be functional across genomes

varying in %GC, gene content, phylogeny, and genome size.

Additionally, our pipeline has been tested on datasets with over 15

million tandem mass spectra and those with only ,100,000,

showing robustness regardless of proteomic sampling depth. Using

46 organisms (Table S1) with a wide variety of characteristics, we

refined the data processing path, most notably FDR stringency

and ORF filtering (see Methods for a full description).

Pipeline Updates
As a first step towards improving the proteogenomics pipeline,

we replaced the local false-discovery rate (lFDR) with the exact p-

value of a PSM. An lFDR is a heuristic approximation of a pvalue,

which bins PSMs by score and calculates the false-discovery of

each bin [20]. This method is not robust for small or medium

datasets where too few results of a given score range force the bin

size larger, removing most of the intended discriminating power.

Moreover, the pvalue as calculated by the scoring algorithm

MSGF is PSM specific, and not a grouped approximation [19].

Finally, we have dramatically decreased the permissible FDR; the

current default cutoff for MSGF is 1e-10 which typically results in

a spectrum level FDR of 0.01% (peptide FDR,0.3%).

Even at high PSM specificity (spectrum FDR,,0.01%), some

of the proteogenomic predictions such as novel genes could be

wrong. The need for filters which operate on open reading frames

(not simply PSMs) was identified from the observation of multiple

suspect coding regions at zero false-discovery. False-discovery of

0.0% was achieved by increasing MSGF stringency to 1e-13 or 1e-

14 instead of 1e-10. In these tests zero spectra were identified with

peptides from the decoy database. Therefore, all novel peptides

were inspected as potentially confirming novel genes, not requiring

two peptides per ORF. In multiple organisms, we observed

proposed novel coding regions that completely overlapped

currently annotated proteins with substantial peptide support

(Figure S1). Additionally many of these ORFs lacked a start codon.

Such ORFs were always represented by one peptide. As a result of

these suspect coding regions which are present even at a presumed

zero false-discovery, we found it necessary to utilize ORF filters

(see Methods). ORF filters are not meant to overcome loose PSM

filters, but rather to help identify putative coding regions that are

likely false-positive even when all PSMs are highly confident. We

previously used four ORF filters [17], however in the analysis of

genomes with high GC, it was necessary to add a peptide length

clustering filter. High GC genomes have many long open reading

frames that are not genic. These long ORFs have a potential to

contain multiple false-positive peptides, which would pass the two

peptide filter. After modeling the interpeptide distance from all

known proteins with proteomic data, we set a maximum

interpeptide distance at 750 nucleotides. Using this length filter,

we were able to remove many false-positive protein predictions in

high GC genomes.

Conflict Resolution
We further discriminate potential novel coding regions by

characterizing their location relative to other genes. Of the over

2000 novel coding events we discovered, most are located in

empty regions of the genome lacking any annotation. Regardless

of whether the genes have strong homology to known proteins

(Figure 1A and B), they can still be confidently added to a

genome’s annotation. However, complications can arise when

proposed novel coding regions overlap current genomic features.

As bacterial genomes have a very high coding density, new coding

regions occasionally overlap with current annotations (e.g. utilizing

a different frame of translation). Therefore, we created a ‘‘conflict

report’’ to judge the accuracy and specificity of proposed

proteogenomic corrections. Overlapping proteins were split into

six categories, each with an a priori interpretation of biological

feasibility (see Methods). Levels 1 and 2 consisted of protein

overlaps under 40 bp, a common event in bacterial genomes

[21,22], and were not considered conflicts.

Conflict levels 3–6, which consisted of overlaps in excess of

40 bp, required more careful inspection. Conflict levels 3 and 4

had proteomic support (i.e. peptides) for only one of the genes

involved in the overlap, and are differentiated by the unsupported

protein. In a level 3 conflict, the non-observed protein is

hypothetical (Figure 1C), and almost all level 3 conflicts arise

from dubious annotation. Commonly, the genomic DNA at these

loci contains multiple competing open reading frames, and the

gene prediction algorithm failed to choose the correct frame.

Although the number and type of conflicts were widely variable

between datasets, level 3 conflicts were generally more common

than levels 4, 5, or 6 (Table S2). A level 4 conflict occurred when

the unobserved protein was named anything but ‘hypothetical’.

Before stringent PSM and ORF filters, we encountered many level

4 conflicts. Based on our observations, a large number of level 4

conflicts were generally indicative of high protein FDR. Conflict

levels 5 and 6 occurred when both overlapping proteins had

proteomic support (see Methods). Again, most often these conflicts

were signs of high protein FDR. Although two proteins rarely

overlap by more than 40 nucleotides in bacteria [23], we have

observed a few in high GC organisms.

The decline in conflict levels 4,5,6 as PSM stringency increases

closely mirrors the decline in novel genes predicted. For example,

in Caulobacter changing the MSGF cutoff from 5e-08 to 1e-10

changes the PSM FDR from 0.5% to 0.02% (peptide FDR 5%

and 0.3% respectively). Coordinated with this increased stringency

is a decrease in novel genes (195 to 25) and conflicts levels 4, 5, 6

(261 to 49). Moreover, at the stringent level, almost all remaining

conflicts (45/49) are between current genes, not involving

proposed novel genes. As a comparison, the number of protein

identifications for current annotations decreases only marginally

over this range, 2725 identifications to 2551. The decrease in

conflicts (levels 4, 5, 6) coordinated with PSM stringency is a

general principle (Table S3). On average when going from MSGF

cutoff of 5e-08 to our default f 1e-10, the number of conflicts

decreases 4 fold (mean 4.0, median 2.2). The number of novel

proteins is also over inflated with less stringent FDR (mean 3.46
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inflation, median 1.86). This result shows two important things.

First loose FDR leads to numerous false-positive predictions.

Second, conflict classification as presented here shows good

specificity in highlighting likely false-positives.

Genome Annotation Deficiencies
In an effort to discover why novel genes identified in this study

were missed during the original genome annotation we first looked

at whether the omission is strictly a function of older annotation,

i.e. have gene prediction algorithms solved the problem already?

There was no correlation between the number of annotation

corrections and date of the genome annotation or genome GC

levels: correlation coefficient of 20.38 and 0.15 respectively

(Figure S2, S3). Looking gene by gene at characteristics like %GC

and codon usage, we did not find novel genes distinct or outside of

the norm (Figure S4, S5). Although many of the novel genes were

short, they were not below the cutoff for annotation (Figure S6).

We also looked at genome context for novel genes: those that

overlapped an annotated gene, those that overlapped a pseudo-

gene, and those that did not overlap any genomic feature. The

relative proportion of these three groups varied widely by genome.

For example, in Caulobacter almost all novel genes overlapped an

annotated gene (level 3 conflict); however, in Synechocystis, all genes

were simple novel genes, and did not overlap any genomic feature.

In many of the genomes, peptides overlap a genomic region

demarcated as a pseudogene. We observed at least three categories

of pseudogene misannotation (Figure 2). In the first type of

misannotation, peptides were identified in a single open reading

frame spanning the entire start-stop of the predicted pseudogene

(Figure 2A). As the peptides within this span make a coherent gene

model without frameshifts or interruptions, it was unclear why

these were annotated as a pseudogene. Figure 2B shows the murF

locus of Geobacter sulfurreducens; peptides lie in two different frames

of translation. Thus according to the straightforward interpreta-

tion of the genome, this cannot make a single protein. One

possible explanation is that there is a DNA sequence error (indel)

causing the apparent frame shift; a separate possibility is that there

are two protein products at this locus, although there are no other

examples of this gene being split. The third pseudogene

misannotation shows the true conceptual translation of a

pseudogene, where the reading frame ends before the gene model,

Figure 2C. Thus the translation could be described as a partial

gene product. The original Genbank annotation notes that the

open reading frame is a partial hit to Pfam PF02518, a histidine

kinase-like ATPase, but other protein family profiles support this

sequence as containing the full domain (e.g. cd00075 from NCBI’s

CDD).

In vivo cleavage - Signal peptides and lipoproteins
Many subcellular localization mechanisms utilize conserved

sequence motifs that serve as molecular addresses and often

involve enzymatic cleavage in proximity of the motif. This

cleavage creates a new protein N-terminus that is amenable to

discovery via proteomics.

Figure 1. Novel coding content. Regions of a genome are shown where novel peptides (grey arrows) are not contained within a currently
annotated protein. A, an unannotated region of Geobacter sulfurreducens corresponding to ribosomal protein S12. B, an unannotated region of
Rhodobacter sphaeroides plasmid for which there are no blast matches. C, a level 3 conflict in Caulobacter crescentus. Currently annotated protein
CCNA_003785 (white arrow) is dubious and should be replaced with a gene model on the opposite strand.
doi:10.1371/journal.pone.0027587.g001
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Proteins exported from the cytoplasm through the Sec-

dependant pathway contain a ,20 residue N-terminal sequence

to target the protein to the membrane and mediate cleavage. The

signal peptide contains three conserved motifs: early basic

residue(s), a hydrophobic patch, and a three residue recognition

motif for signal peptidase I [24]. We identify sites of signal peptide

cleavage in proteomics data by finding the first peptide of a protein

as non-tryptic on its N-terminus, and then requiring the three

conserved motifs. Requiring these three elements filters the

proposed signal peptide set by 20–80% as compared to previous

methods [9], greatly increasing specificity. We identified 1175 sites

of signal peptide cleavage. By aligning the three residues prior to

cleavage (23, 22, 21) with the two following cleavage (+1, +2),

we determined the observed signal peptidase I recognition motif

by taxa (Figure 3). In general, the motif is similar between taxa and

alanine is expectedly prominent at residues 21 and 23. Previous

reports of bacterial signal peptides have uniformly reported the

‘AxA’ motif for signal peptidase I cleavage [25,26].

We observed additional maturation signals in proteins that

contained a non-tryptic first peptide, but failed to contain at least

one of the three signal peptide criteria. In Arthrobacter, many

proteins lacked the signal peptidase I recognition motif, but instead

contained the common sequence L-x-G/A-C, the lipoprotein

signature. A final type of N-terminal maturation was N-terminal

methionine excision, or NME. An exceptionally large fraction of

proteins lacking a hydrophobic patch had methionine immediately

prior to the first peptide (e.g., 45% for Caulobacter and 55% for

Cyanothece). In most of these instances the first peptide started with

alanine or other residues consistent with NME [27], suggesting

that the protein is predicted too long.

Discussion

Although intense effort has gone into determining the correct

functional annotation of proteins [28], primary gene structures are

still imperfect. Proteomics provides a powerful experimental data

type to access and improve the quality of genome annotation. A

key advantage is the direct correlation between protein annotation

and a protein based assay. In this study, analysis of 46 genomes

spanning eight bacterial and archaeal phyla across the tree of life

allowed us to develop a robust approach for proteogenomics

annotation that is functional across genomes varying in %GC,

gene content, proteomic sampling depth, phylogeny, and genome

size. In proteogenomics, specificity proves more important than

sensitivity and leniency at the hopes of greater genome coverage

can dramatically increase the chance for false-positive novel

protein identification. We evaluate the quality of proposed

proteogenomic corrections through the conflict report. By no

means implying that overlapping proteins are not real or cannot

be found by proteogenomics [29], the vast majority of novel

proteins with significant overlap were typically low quality and

weeded out by stringent filters.

Our effort to understand why genes are missed in the initial

annotation revealed that the only consistent problem was the

expected sensitivity/specificity decline for short proteins. Citing

the diversity of other errors, we suggest that all genome

annotations leverage proteomics, either through concurrent

Figure 2. Classes of translated pseudogenes. Peptides (light grey arrows) are shown to map within pseudogene boundaries (dary grey arrows),
proving that the region is translated to protein. A, peptides in a single coherent open reading frame spanning the entire length of the pseudogene
LIC 12015 from Leptospira interrogans. It is unclear why such regions were designated as pseudogenes. B, peptides fall within two different translation
frames which are located within Geobacter sulfurreducens pseudogene GSU3073. This situation can arise when the underlying genome sequence is
erroneous and contains artificial indels, or if the two regions are separately translated. C, peptides fall in a single open reading frame which only
partially covers the genomic regions annotated as a pseudogene, Desulfovibrio vulgaris pseudogene DVU0699. This confirms the conceptual
translation of the pseudogene (i.e. ending in an in-frame non-sense codon).
doi:10.1371/journal.pone.0027587.g002
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proteomics/genomics sampling, or by utilizing the compendium of

proteomically verified ORFs as a part of their extrinsic evidence

set (i.e. in addition to blast or hmm searches).

For pseudogenes, we showed three types of misannotation, each

resulting from a different deficiency in the sequencing and

annotation process. Resolving the annotation of these is difficult,

partially attributable to the potential for genome sequence errors.

More pointedly, there is not a consensus on the meaning of

‘pseudogene’, whether ‘non-functional’ applies to the translated

product’s biochemical function or to the ability of a genomic locus

to produce a viable transcript which gets translated. While this

discussion is outside of the scope of this work, our perspective as

proteomic scientists is that all translated products should be

included in common database downloads.

We focused largely on false-negative annotations, where a

region of DNA was not assigned to be protein-coding, but should

have been. A more difficult misannotation is false-positives, which

we find as novel/dubious pairs in the data and are more apparent

for some genomes. These dubious genes can have far reaching

effects, as they propagate through future genome annotations in

what is known as ‘‘transitive disaster’’.

As a final part of our methodology, we analyze the datasets to

discover in vivo protein cleavage. Proteomic determination of

cleavage sites offers several distinct advantages over strictly

computational approaches that predict cleavage events directly

from sequence. In addition to providing experimental validation of

cleavage, proteomics yields a broad and unbiased sample of

cleaved proteins. For example, in the Geobacter data sets over 150

proteins were identified as having a signal peptide, yet the overlap

between these three genus members was only nine proteins. Thus

a large number of distinct proteins were identified. This diverse set

could serve as a powerful training/testing set to improve

computational tools.

Materials and Methods

The pieces of the data processing path are outlined below.

MS/MS data generation
All datasets were generated using Thermo LTQ mass spectrom-

eters. Vendor specific RAW formats were converted to mzXML

using the ReadW program (version 4.3.1). One dataset came from

PeptideAtlas: Streptococcus pyogenes (PAe000284-7). The Bacillus anthracis

data was published as part of the NIAID PRC and is available

at [ftp://141.161.76.88/pub/proteomics_ftp/michigan/uom_09/].

Yersinia pestis data have been previously described [17]. The rest of the

data were generated at PNNL; these data are available at

omics.pnl.gov. PNNL datasets were reported previously [30]. Almost

all were generated as part of a broad bottom-up proteomics

characterization of their respective organism. Global, soluble and

insoluble protein lysates were subjected to 2D LC-MS/MS.

MS/MS Interpretation
Mass spectra were searched by Inspect [31] against a translation

of the genome and subsequently rescored with PepNovo and MSGF

[19]. Searches did not include any post-translational modifications,

but in accord with Inspect’s searching paradigm did not require

tryptic specificity. We downloaded genomic DNA from RefSeq, and

translated all six frames to generate a protein database. Each stop to

stop open reading frame (ORF) was included regardless of coding

potential. We concatenated decoy records by shuffling each ORF.

We included a decoy database to help measure the relative peptide

FDR even though the final scoring algorithm (MSGF) does not use

the decoy hits to calculate its probability values. Significant peptide/

spectrum matches (PSM) were those with an evalue of e-10 or

better, which led to a peptide level FDR of ,0.3%. We note here

the distinction between PSM level FDR and peptide level FDR.

PSM level FDR is calculated from the collection of all spectra

passing filters and the number of those spectra with peptides

matching the decoy database. Peptide level FDR is calculated from

the list of peptide sequences passing filters (many of which were

identified in multiple spectra). This number is always larger than the

PSM FDR. For example, in the Mycobacterium tuberculosis dataset,

160,795 spectra passed the MSGF filter; 40 spectra identified

peptides from the decoy database. Thus the PSM or spectrum FDR

is 40/160,795 or 0.024%. Within these spectra, 23,451 peptides are

identified, of which 37 come from the decoy database. The Peptide

FDR is 0.1%.

Peptide spectrum matches from Inspect and MSGF, as well as

the mapped peptide locations for all datasets can be downloaded

from the PNNL website: http://omics.pnl.gov/pgp/overview.php.

ORF Filters
ORF filters are based on the set of peptides within an open

reading frame. All confident peptide identifications were mapped

Figure 3. Signal peptidase I motifs. The amino acid residues surrounding signal peptidase cleavage sites are shown for four organisms. The five
amino acid residues are three residues prior to cleavage (23, 22, 21) and two residues post cleavage (+1, +2). A, E. coli; B, Caulobacter crescentus;
C, Deinococcus radiodurans; D, Cyanobacterium synechocystis. Figures were created using weblogo.berkeley.edu with default parameters.
doi:10.1371/journal.pone.0027587.g003
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onto their genomic location (nucleotide coordinates) and grouped

into sets within an ORF. We employ five ORF filters. First we

remove low complexity peptides, with .70% glycine and alanine

[17]. Next we remove peptides which are more than 750 bp from

the next in-frame peptide. We remove ORFs which lack a uniquely

mapping peptide or which lack a fully tryptic peptide. Finally, we

require two peptides per protein. The interpeptide length filter is

designed to overcome weakness in the min-peptide filter. The two

peptide rule relies on the low probability of two false-positives falling

within the same open reading frame. Yet for high GC genomes

there are numerous long open reading frames that are not genic.

Thus the likelihood of two peptides within one of these is higher. To

determine the average interpeptide distance we sorted all peptides

within a current protein annotation and then tallied the nucleotide

distance between consecutive pairs. We plotted a histogram of all

distances and found that 750 bp was an appropriate cutoff.

Conflict report
We created a conflict report to describe overlapping (i.e.,

conflicting) protein annotations. The types of conflict were

differentiated by the nucleotide length of the conflict and the

biological implication. We distinguished between annotated protein

region and proteomic evidence region. The annotated region was

obtained from the RefSeq record. The proteomic evidence region

was from the 59 most peptide through to the stop codon. Conflict

levels were defined as:

Level 1 –overlap by less than 10 bp.

Level 2 – overlap by less than 40 bp.

Level 3 – overlap by 40 bp or more. There is proteomic support

for only one protein; the unsupported protein contains ‘‘hypo-

thetical’’ in the name.

Level 4 – overlap by 40 bp or more. There is proteomic support

for only one protein; the unsupported protein does not contain

‘‘hypothetical’’ in the name.

Level 5 – overlap by 40 bp or more. There is proteomic support

for both proteins. The overlap is limited to the annotated region

and is not in the proteomic evidence region.x

Level 6 – overlap by 40 bp or more. There is proteomic support

for both proteins. The overlap is within the proteomic evidence

region.

Proteogenomic reannotation
Open reading frames passing filters were compared against the

RefSeq annotation. ORFs that contained peptides but not a

protein annotation were reported as novel proteins. ORFs that

have peptides upstream of a protein annotation are reported as

‘new start’ proteins. As a caveat for new start assignments, we

required that peptides contain at least two upstream amino acids

[17]. We also reported new starts when proteomic evidence was

indicative of an alternative start codon TTG or GTG translated as

Leucine or Valine. To determine the start site of proteogenomic

corrections (novel gene and new start), our overriding choice was

to find the upstream start site closest to the peptides found by mass

spectrometry, unless blast homology strongly suggested consensus

at another start site. We took a conservative approach; it is always

easier to add sequence (i.e. extend further upstream) than remove,

because of the difficulty of proving negative evidence. For peptides

that overlapped pseudogenes, we did not attempt to update

RefSeq with a new gene. Additionally, we did not attempt to

update a start sites when peptides had no upstream start site.

In Vivo Cleavage
To report a protein as containing a signal peptide, we started

with proteins where the first observed peptide was not tryptic on its

N-terminus, and was within 15–50 amino acids of the predicted

start site. Between the initial methionine and the first observed

peptide is the putative signal peptide. We filtered this set using

previously recognized signal peptide characteristics [24]. We

required a hydrophobic patch of at least eight contiguous amino

acids and examined the signal peptide terminus for the expected

cleavage motif. We also required a basic residue between the start

and the hydrophobic patch.

Lipoproteins were found in a similar manner, but with a distinct

motif L-x-G/A-C, where cysteine forms the first residue of the

mature protein and is modified with a lipid. In all instances,

however, the peptide identified in MS/MS began immediately

after the cysteine. As we did not search for any lipid modifications,

we did not expect to find any cysteine-modified peptides.

Observed peptides starting immediately after the cysteine were

considered evidence for a lipoprotein.

Supporting Information

Figure S1 False Positive Peptide at Zero FDR. The red

peptide (GGVGGHLAPDAAAR) is a fully tryptic peptide with an

MSGF e value of 7e-17. It lies in a small unannotated open

reading frame of 272 amino acids. This ORF has 100% overlap

with the current C. crescentus gene CCNA_00970, which is both a

well-known gene and also well supported by proteomics. This

proposed novel ORF is an example of a false-positive, which is

present even at presumed zero FDR.

(TIF)

Figure S2 Errors in annotation by year. Novel genes

discovered by proteogenomics are plotted by the year that the

original annotation was published. The high mark in the dataset

(y = 113) is the Deinococcus genome, which suffers from significant

genome sequence errors (see errata in White et al 1999) likely

causing the exceptionally high misannotation rate. Discounting

that data point, errors seem to be uncorrelated with year.

(TIF)

Figure S3 Errors by GC. Novel genes discovered in

proteogenomics are plotted according to the GC content of the

genome. There appears to be no strong correlation between high

GC and error rate. As with figure S1, the high mark in the data set

(y = 113) is believed to be an outlier due to abundant errors in the

genome sequence.

(TIF)

Figure S4 GC content by gene type. The GC distribution of

four gene categories. Grey is the genes for which proteogenomics

does not suggest a change. Blue is novel genes. Red is the novel

extension to a current gene. Green is the original (now c-terminal)

portion of genes that have been extended. In all datasets except the

Cyanobacterium, the unchanged and novel genes show similar GC

content. In Cyanobacterium, the novel genes appear to have lower

GC. The extensions to current genes (red) show a wider

distribution than their parent gene models (green).

(TIF)

Figure S5 Codon usage. Codon usage frequencies from all

unchanged genes have been dimension reduced to 2D through

principal component analysis (see Medigue et al., 1991). The

codon frequencies for novel genes were transformed using the

same pca vector weighting and mapped in blue on top of the

unchanged genes. Codon usage does not appear to be substan-

tively different between the novel and unchanged gene sets. A, C.

crescentus; B, C. synechocystis; C, D. desulfricans; D, L. interrogans.

(TIF)
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Figure S6 Length comparison. The length of all genes (grey)

has a median of ,900 nucleotides with a long tail out to 10,000

nucleotides. Novel genes (blue) are on average shorter than the

background distribution. However, they are not too short to have

fallen below cutoff.

(TIF)

Table S1 List of organisms presented in this study.
Along with each organism is listed the following information: the

percent GC of the genome, the date of genome submission to

genbank, the RefSeq accession of the primary chromosome, the

genome size in megabases, the number of novel genes discovered

through proteogenomics, the number of genes for which

proteomics data suggests a new start site, the number of validated

signal peptide cleavages, the total number of peptides discovered

in the MS/MS data for an organism.

(XLSX)

Table S2 Gene conflicts. This table presents the number of

conflicting loci, separated by type, for each genome.

(XLS)

Table S3 Change in conflicted loci according to PSM
specificity. For each organism, the number of conflicts (levels

4,5,6) are shown at two different PSM specificity cutoffs, a loose

5e-08 and the default 1e-10. With the loose cutoff there is often a

much larger number of conflicted loci, indicating a high false-

discovery at the protein level.

(XLS)
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