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Abstract

We show how hand-centred visual representations could develop in the primate posterior parietal and premotor cortices
during visually guided learning in a self-organizing neural network model. The model incorporates trace learning in the feed-
forward synaptic connections between successive neuronal layers. Trace learning encourages neurons to learn to respond
to input images that tend to occur close together in time. We assume that sequences of eye movements are performed
around individual scenes containing a fixed hand-object configuration. Trace learning will then encourage individual cells to
learn to respond to particular hand-object configurations across different retinal locations. The plausibility of this hypothesis
is demonstrated in computer simulations.
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Introduction

Our understanding of the different functions of the posterior

parietal cortex (PPC) and its relevant role in visually guided actions

has been expanded and extensively explored over the last few

decades [1]. As part of the Jdorsal streamJ, this region receives

various sensory inputs (predominantly from early visual cortical

areas) and projects its outputs to several premotor and motor areas

within the parieto-frontal network [2]. Single-unit recording

studies have shown that both sensory and motor related activity

is present in this area [3] and it has been suggested that different

parts of the PPC, play a key role in the sensorimotor

transformations relevant for goal-directed movements. Further

studies have shown that there are specialized regions along the

PPC for specific actions and processes, generating further

functional subdivisions of this region. For example, the lateral

intraparietal area (LIP) has been suggested to play a major role in

the production of saccades, helping to focus the gaze toward a

visual target [4,5], while on the other hand the parietal reach

region (PRR) seems to be more active when reaches are planned

[6]. Anatomically, the PRR includes portions of medial intrapar-

ietal area (MIP) and area V6A. This region receives direct visual

inputs from early visual areas and projects directly to premotor

areas, providing one of the most immediate pathways of visual

information into the premotor cortex [7].

It has been suggested that sensorimotor transformations along

the parieto-frontal circuit may occur in ordered stages where

sensory information is initially represented in a reference frame of

the receptor (e.g. retinotopic) and later transformed gradually into

representations that would ultimately be encoded in the reference

frame of the effector [8]. Compatible with this view, it was found

that as part of the initial stages of the visuomotor processing for

reaching to a visual target, the PRR encoded the reach vectors in

eye-centred coordinates [9]. As the recording sites are moved

towards cortical area 5 in the superior parietal lobe (SPL),

intermediate representations of both eye and hand-centred

coordinates were reported, with the proportion of neurons coding

the reach vectors in a purely hand-centred reference frame

increasing nearer the cortical surface of area 5 [10] and

predominantly in area 5d [11]. Hand-centred representations

independent of eye positions have been reported as well in cells in

the ventral premotor area (PMv) [12,13]. A variety of cell

responses have been reported also in the dorsal premotor area

(PMd), including limb-centred cells [14] as well as cells that seem

to encode the spatial relation of the eye, the hand and the target

[15].

A variety of neural network models have been proposed to

reflect the different stages of sensorimotor transformations and

explain some of the response properties found in some neurons of

the PPC and premotor areas. For example, an artificial neural

network model was proposed for a subset of cells in LIP that was

able to transform visual input from eye centred coordinates into a

head-centred coordinates [16]. They combined visual information

of the target in eye-centred coordinates with eye-position signals,

developing visual receptive fields gain modulated by eye positions

in the hidden layer, as the authors have reported in some of the

cells in LIP. Similarly, Chang et al. [17] found cells in the PRR

that were gain modulated by eye position and hand position. In

the same fashion, they incorporated a hand-position signal to the

Zipser’s et al. [16] neural network model, developing gain-

modulated cells in the intermediate layer and hand-centred cells

in the output layer. However, both these models used a back-
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propagation algorithm to train the network, which is not

considered biologically plausible because the information to

change the synaptic weights is not available locally in the

presynaptic terminal. Additionally, not only has the nature and

role of gain fields in sensorimotor transformations been questioned

[18–20], but other reports have shown in fact a mixture of cells

responses at the different processing stages. For example cells in

the PRR, which were reported to be eye-centred and part of the

early stages of visuomotor transformations, include already cells

with a hand-centred representation [21].

Other computational approaches have suggested a different

form of implementing these transformations more flexibly and

robustly, with neurons encoding information in a mixture of

representations [19,22]. Despite their computational advantages,

we are still lacking fully unsupervised models that explain how the

hand-centred visual receptive fields can arise naturally in the

different parts of the parieto-frontal circuit in a plausible self-

organizing way.

In the present study we show how hand-centred representations

could develop during visually guided learning in a well-established

neural network model of visual processing in the primate brain,

called VisNet [23,24]. One of the main virtues of VisNet in

contrast with the previously mentioned models for reference frame

transformations, is that in VisNet learning is completely unsuper-

vised (i.e. there is no external teaching signal to tell the network

what the output should be). Therefore, instead of supervised

algorithms (e.g. backpropagation), we use a more biologically

plausible learning rule where the synaptic weights are updated

locally by associative Hebbian-like learning, in this case for

example, a trace learning rule [25,26]. The trace learning rule

incorporates a memory trace of recent cell firing activity, which

has the effect of encouraging cells to learn to respond to input

patterns that tend to occur close together in time. Although VisNet

was originally used as a model of the ventral visual stream, it has

been subsequently applied to simulate visual processes occurring in

the dorsal stream [27]. Both ventral and dorsal streams share

architectural similarities, each consisting of a hierarchical series of

neuronal layers with competition mediated by inhibitory inter-

neurons within each layer.

We explore the hypothesis that trace learning in the feed-

forward synaptic connections between successive neuronal layers

in the network is able to encourage neurons at the end of the visual

pathway to learn to respond to specific locations of a visual target

object with respect to the hand by exploiting natural eye

movements including fixational eye-movements like drifts and

microsaccades. Trace learning drives neurons in the later layers to

learn to respond to input images that occur in temporal proximity.

We assume that the eyes are continually performing rapid

sequences of eye movements, about any visual scene containing

a fixed spatial configuration of a hand and object. Trace learning

will then encourage individual cells to learn to respond to

particular hand-object configurations across the retinal shifts that

occur naturally due to rapid sequences of eye movements (e.g.

small drifts or microsaccades). The plausibility of this hypothesis is

demonstrated in the computer simulations described below.

Hypothesis
Neurons have been found in multiple areas along the parieto-

frontal network, that respond to the location of a visual target in a

hand-centred frame of reference, irrespective of where the target is

in the retinal frame of reference [10–12,21]. How might visually

driven cells in these areas develop their interesting firing

properties?

The central hypothesis of this paper is that a form of trace

learning rule may help neurons in these areas to learn to respond

to the location of visual targets in a hand-centred frame of

reference in the following manner. During early learning, the

visual system is exposed to image sequences similar to those shown

in Fig. 1. Each image sequence involves the target object shown in

a fixed position with respect to the hand. The eyes are constantly

performing movements around the visual scene. Even during

fixation, a range of fixational eye movements are performed (e.g.

drifts and microsaccades). This has the effect of creating image

sequences in which each fixed spatial configuration of the hand

and visual object are shifted across the retina. Consequentially,

images of a target object in a particular position with respect to the

hand, but occurring across different retinal positions, will tend to

occur close together in time. In this case, a trace learning rule may

be able to associate the images within a particular temporal

sequence, corresponding to one particular spatial configuration of

the hand and object, with the same subset of output neurons. After

enough training, individual output neurons will learn to respond to

a particular relative spatial arrangement of the hand and the visual

object across all possible retinal locations. This procedure can be

repeated for all possible positions of the visual object with respect

to the hand. Different output cells should learn to respond to

different image sequences corresponding to different positions of

the visual object with respect to the hand. We propose that this

kind of learning may take place continually as the eyes are moving

around the visual environment, even when the subject is not

involved in a reaching task.

In the simulations presented below, we demonstrate how trace

learning can lead to the development of individual output cells

which respond to specific positions of the object with respect to the

hand regardless of the retinal locations. We thereby show that

Figure 1. Image sequences. The three image sequences presented
to VisNet during training are shown in the separate rows. All of the
images in each sequence consist of a hand and a circular visual object.
For each image sequence, the visual object is fixed in one of three
possible positions with respect to the hand. Top row: visual object is
shown in the ‘Up’ location with respect to the hand. Middle row: visual
object is shown in the ‘Left’ location with respect to the hand. Bottom
row: visual object is shown in the ‘Right’ location with respect to the
hand. Each of the three image sequences arises from a series eye
movements that result in small shifts in the position of the hand and
visual object on the retina (e.g. drifts or microsaccades). The relative
positions of the hand and object are unchanged by these micro-
saccades. During each of the three image sequences, the fixed spatial
configuration of the hand and object is translated five pixels at a time
towards the right across columns 1 to 5.
doi:10.1371/journal.pone.0066272.g001
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trace learning is a potential mechanism for the development of the

hand-centred cell firing responses observed in subset of the PPC

and premotor areas.

Methods

The VisNet Model
The VisNet model consists of a hierarchical series of four

feedforward layers of competitive networks. Within each neuronal

layer there is lateral competition between neurons implemented by

local graded inhibition. During training, there is associative

learning at the synaptic connections between the successive layers

of neurons (See Figure 2). In VisNet, natural visual images are first

passed through an array of filters mimicking the response

properties of V1 simple cells, and subsequently these images are

fed to the first layer of the network architecture. The forward

connections to individual cells are derived from a topologically

corresponding region of the preceding layer, using a Gaussian

distribution of connection probabilities. These distributions are

defined by a radius which will contain approximately 67% of the

connections from the preceding layer. This leads to an increase in

the receptive field size of neurons through successive layers of the

network hierarchy. The network dimensions used for this study are

shown in Table 1. The architecture captures the hierarchical

organization of competitive neuronal layers that is common in

both the dorsal and ventral visual systems.

The simulations were conducted utilizing an updated version of

the VisNet model [23,24]. Previous research with VisNet used a

difference of two Gaussian function as input filters. In this study,

before the stimuli are presented to VisNet’s input layer, they are

pre-processed by an initial layer representing V1 with a dimension

of 1286128 where each x,y-location contains a bank of Gabor

filter outputs corresponding to a hypercolumn generated by
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The activation hi of each neuron i in the network is set equal to

a linear sum of the inputs yj from afferent neurons j weighted by

the synaptic weights wij . That is,

hi~
X

j

wijyj ð4Þ

where yj is the firing rate of neuron j, and wij is the strength of the

synapse from neuron j to neuron i.

Within each layer competition is graded rather than winner-

take-all, and is implemented in two stages. First, to implement

lateral inhibition the activation of neurons within a layer are

convolved with a spatial filter, I , where d controls the contrast and

s controls the width, and a and b index the distance away from the

centre of the filter

Ia,b~
{de
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Table 1. Network dimensions.

Dimensions Number of Connections Radius

Layer 4 32632 100 12

Layer 3 32632 100 9

Layer 2 32632 100 6

Layer 1 32632 100 6

Retina 1286128632 – –

Network dimensions showing the number of connections per neuron and the
radius in the preceding layer from which 67% are received.
doi:10.1371/journal.pone.0066272.t001

Figure 2. The VisNet model. Stylized image of the VisNet four-
layered network. The architecture of the network shows a hierarchical
organization which can be found in the dorsal visual system.
Convergence through the network is designed to provide fourth-layer
neurons with information from across the entire input retina.
doi:10.1371/journal.pone.0066272.g002

Table 2. Lateral inhibition parameters.

Layer 1 2 3 4

Radius, s 1.38 2.7 4.0 6.0

Contrast, d 1.5 1.5 1.6 1.4

doi:10.1371/journal.pone.0066272.t002
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Typical lateral inhibition parameters are given in Table 2

Next, contrast enhancement is applied by means of a sigmoid

activation function

y~f sigmoid (r)~
1

1ze{2b(r{a)
ð6Þ

where r is the activation (or firing rate) after lateral inhibition, y is

the firing rate after contrast enhancement, and a and b are the

sigmoid threshold and slope respectively. The parameters a and b
are constant within each layer, although a is adjusted to control

the sparseness of the firing rates. The sparseness a of the firing

within a layer can be defined, by extending the binary notion of

the proportion of neurons that are firing, as

a~

(
PN
i~1

yi=N)2

PN
i~1

y2
i =N

ð7Þ

where yi is the firing rate of the ith neuron in the set of N neurons

[28,29]. For the simplified case of neurons with binarised firing

rates ~0=1, the sparseness is the proportion [½0,1� of neurons that

are active. For example, to set the sparseness to, say, 5%, the

threshold is set to the value of the 95th percentile point of the

activations within the layer. Typical parameters for the sigmoid

activation function are shown in Table 3.

For these simulations we used a trace learning rule [25,26] to

adjust the strengths of the feed-forward synaptic connections

between the layers during training. The trace rule incorporates a

trace yt of recent neuronal activity into the postsynaptic term. The

trace term reflects the recent activity of the postsynaptic cell. The

effect of this is to encourage the postsynaptic cell to learn to

respond to input patterns that tend to occur close together in time.

The equation of the original trace learning rule as used by [30]

is the following

Dwj~aytxt
j ð8Þ

where the trace yt is updated according to

yt~(1{g)ytzgyt{1 ð9Þ

and we have the following definitions

xj : jth input to the neuron.

y: Output from the neuron.

yt: Trace value of the output of the neuron at time step t.

a: Learning rate. Annealed between unity and zero.

wj : Synaptic weight between jth input and the neuron.

g: Trace value. The optimal value varies with presentation

sequence length.

The parameter g may be set in the interval ½0,1�. For our

simulations the trace learning g is set to 0.8. If g~0 then the

equation (8) becomes the standard Hebb rule

Dwj~aytxt
j : ð10Þ

However, the version of the trace rule used in this paper only

includes the trace of activity from the immediately preceding

timestep, as used in other studies [24] [31] for improving the

performance of the standard trace rule and enhancing the effect of

the invariance representation. Thus, the rule takes now the

following form

Dwj~ayt{1xt
j : ð11Þ

Neuronal mechanisms that might support trace learning in the

brain have been previously discussed [26,30].

To restrict and limit the growth of each neuron’s synaptic weight

vector, wi for the ith neuron, its length is normalised at the end of

each timestep during training as is usual in competitive learning

[32]. Normalisation is required to ensure that the same set of

neurons do not always win the competition. Neurophysiological

evidence for synaptic weight normalization has been presented [33].

Stimuli and Training Procedure
The three image sequences presented to VisNet during training

are shown in the separate rows of Fig. 1. Each row displays a single

sequence consisting of a set of five computer-generated images

showing a hand and a circular visual object in a particular spatial

configuration. The visual object is fixed in one of three possible

positions with respect to the hand (Up, Left and Right). The

images belonging to a particular sequence arise from a series of eye

movements (e.g. drifts, microsaccades, etc.) and the resulting small

shifts in the position of the hand and visual target on the 128|128
‘retina’. During each of the three image sequences, the fixed

spatial configuration of the hand and object is translated five pixels

at a time towards the right across columns 1 to 5.

During the presentation of every image the activation of

individual neurons and their firing rates are calculated and

subsequently the synaptic weights are updated. The presentation

of all three image sequences (i.e. Up, Left and Right) across all five

retinal locations constitutes 1 epoch of training. The network is

trained one layer at a time starting with layer 1 and finishing with

layer 4. In the simulations described here, the numbers of training

epochs for layers 1–4 were 50, 50, 50 and 50, respectively.

Analysis of Network Performance Using Information
Measures

Single and multiple cell information theoretic measures are used

to assess the network’s performance. Both measures help to

determine whether individual cells in the output layer are able to

respond to a specific target location in a hand-centred frame of

reference over a number of different retinal locations.

In previous VisNet studies, the single cell information measure

has been applied to individual cells in the last layer of the network

and measures how much information is available from the

response of a single cell about which stimulus was shown. In this

current study, a stimulus is defined as one of the three different

hand-object configurations. If an output neuron responds to just

one of the three spatial configurations, and the cell responds to this

configuration across all five retinal locations, then the cell will

Table 3. Sigmoid parameters.

Layer 1 2 3 4

Percentile 95 95 95 95

Slope b 190 40 75 26

The sigmoid parameters used to control the global inhibition within each layer
of the model.
doi:10.1371/journal.pone.0066272.t003
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convey maximal single cell information. The amount of informa-

tion carried by a single cell about a stimulus is computed using the

following formula

I(s,R)~
X
r[R

P(rjs) log2

P(rjs)

P(r)
ð12Þ

where the stimulus-specific information I(s,R) is the amount of

information the set of responses R of a single cell has about a

specific stimulus (i.e. target location with respect to the hand) s,

while the set of responses R corresponds to the firing rate y of a

cell to each of the three stimuli presented in all five retinal

locations. Further details of how the single cell information is

calculated are provided in the literature [24,34].

The maximum single cell information measure is

Max: single cell info: ~log2(Number of stimuli), ð13Þ

where in this case the number of stimuli, i.e. spatial configurations

of the hand and target object, is 3. This gives a maximum single

cell information measure of 1.58 bits. This is achieved when the

cell responds selectively to just one of the three spatial

configurations, and responds to that spatial configuration over

all five retinal positions.

On the other hand, the multiple-cell information computes the

average amount of information about which stimulus was

presented obtained from the responses of all the output cells.

This procedure is used to verify whether, across the population of

cells, there is information about all of the three stimuli (i.e. hand-

object configurations) shown. Procedures for calculating the

multiple cell information measure have been described in more

detail [24,35]. In brief, from a single presentation of a stimulus, we

calculate the average amount of information obtained from the

responses of all the cells regarding which stimulus is shown. This is

achieved through a decoding procedure that estimates which

stimulus s0 gives rise to the particular firing rate response vector on

each trial. A probability table of the real stimuli s and the decoded

stimuli s0 is then constructed. From this probability table, the

mutual information is calculated as

I(S,S0)~
X
s,s0

P(s,s0) log2

P(s,s0)

P(s)P(s0)
: ð14Þ

Multiple cell information values are calculated for the subset of

cells which, according to the single cell analysis, have the most

information about which stimulus (i.e. hand-object configuration)

is shown. In particular, the multiple cell information is calculated

from five cells for each stimulus that had the most single cell

information about that stimulus. For example, in simulations with

three target locations this results in a population of 15 cells.

Previous research [36] found this to be a sufficiently large subset to

demonstrate that shift invariant representations of each stimulus

presented during testing were formed, and that each stimulus

could be uniquely identified.

Results

Visually Guided Learning of Hand-centred
Representations

The purpose of this simulation study was to demonstrate how

trace learning can produce cell responses in the output layer of

VisNet that are tuned to particular positions of a target object with

respect to the hand, irrespective of retinal location. We studied the

responses of the output (fourth) layer cells in VisNet before and

after the network was trained on the image sequences shown in

Fig. 1 as described above.

The response profiles of three neurons in the output layer of

VisNet before training are shown in Fig. 3. Each of the three

columns shows the firing responses of one particular cell. The

three rows show the responses of the cells to the three hand-object

configurations across five retinal locations. The top row shows the

cell responses when the visual object is in the ‘Up’ location with

respect to the hand. The middle row shows the cell responses when

the visual object is in the ‘Left’ location with respect to the hand.

The bottom row shows the cell responses when the visual object is

in the ‘Right’ location with respect to the hand. Fig. 3 shows that,

before training, all three cells respond randomly or not at all to the

different hand-object configurations.

Fig. 4 shows the response profiles of the same three neurons in

the output layer of VisNet after training. It can be seen that, after

training, each of the three cells has learned to respond to just one

of the hand-object configurations, and responds to that configu-

ration over all five retinal locations. The cell in the left column has

learned to respond when the visual object is in the ‘Up’ location

with respect to the hand. The cell in the middle column has

learned to respond when the visual object is in the ‘Left’ location

with respect to the hand. The cell in the right column has learned

to respond when the visual object is in the ‘Right’ location with

respect to the hand. Furthermore, each of the three hand-object

configurations is represented by one of the cells.

To provide a more global measure of network performance,

we analysed the information carried by the output (fourth) layer

neurons in VisNet about which of the three hand-object

configurations is presented to the retina. Intuitively, if an

output cell has learned to respond perfectly to just one hand-

Figure 3. Response profiles of three neurons in the top (fourth)
layer of VisNet before training. Each of the three columns shows
the firing responses of a particular cell. Each row shows the responses
of the cells to one of the three hand-object configurations over all five
retinal locations shown along the abscissae. Top row: visual object is
shown in the ‘Up’ location with respect to the hand. Middle row: visual
object is shown in the ‘Left’ location with respect to the hand. Bottom
row: visual object is shown in the ‘Right’ location with respect to the
hand. It can be seen that each of the three cells initially responds
randomly to each of the hand-object configurations over the different
retinal locations.
doi:10.1371/journal.pone.0066272.g003

A Self-Organizing Model of Hand-Centred Coding
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object configuration over all five retinal locations, then it will

convey maximal information about which hand-object config-

uration is currently presented. We, therefore, applied the single

and multiple cell information measures described above to the

entire population of 1024 neurons in the output layer before and

after training.

Fig. 5 shows the information measures for the output (fourth)

layer neurons before and after training. On the left is shown the

single cell information conveyed by individual output cells in rank

order. Before training, no cells conveyed the maximal single cell

information of 1.58 bits. However, after training, 111 cells had

reached this level of single cell information. These cells responded

to just one of the three hand-object configurations, and responded

to their preferred configuration over all five retinal positions. The

right plot shows the multiple cell information measures, which

were calculated using 15 cells with maximal single cell informa-

tion. After training, the multiple cell information is substantially

increased and asymptotes to the maximal value of 1.58 bits. The

multiple cell information results show that all three spatial

configurations of the hand and object are represented by the

output cells.

The simulation results described above confirm that trace

learning can indeed produce learned neuronal responses which

are tuned to a particular location of a visual object in a hand-

centred frame of reference, as found in some neurons in the

parietal cortex and premotor areas. The key observation is that,

after training, the cells respond to specific hand-centred

locations regardless of retinal location. The trace learning rule

has achieved this by encouraging output cells to learn to

respond to images that tend to occur close together in time while

the eyes are performing rapid (micro)saccades around the visual

scene. Images of a particular configuration of hand and object

presented across different retinal positions will tend to occur

close together in time. In this case, a trace learning rule can

associate all of the images of that spatial configuration with the

same subset of output neurons.

Performance of Model with Different Numbers of
Training Epochs

For the previous experiment we also examined the performance

of the network as the number of training epochs was reduced.

Fig. 6 shows single and multiple cell information analyses for six

degrees of training: untrained, 1 epoch, 2 epochs, 5 epochs, 10

epochs, and 50 epochs. The single cell information analysis shows

that already after the second epoch of training 57 output cells have

achieved the maximum information content. Furthermore, the

multiple cell information plot confirms that all of the three spatial

configurations are represented by cells which are responding

exclusively to one of the spatial configurations and not to any

other. These results show that learning of all the spatial

configurations occurs quite rapidly (e.g. already after 2 epochs)

and remains stable as the number of epochs is increased.

Performance of the Model as the Density of Training
Locations is Increased

A key issue is how the network will perform when the number of

training locations is increased. In theory, the model should be able

to represent a continuum of target locations with respect to the

hand. In this section, we explored the performance of the model

for eight test cases in which the number of training locations was

gradually increased from three to ten in a semicircle around the

central hand. The centres of all the objects were evenly distributed

along the semicircle (diameter = 36 pixels). The case of ten training

locations is shown in Fig. 7. It can be seen that the ten locations

effectively form a continuum of locations around the hand.

Fig. 8 shows single and multiple cell information analyses for all

the test cases. The single cell information analysis shows that in all

cases more than a 100 neurons conveyed the maximal single cell

information and the multiple cell information plot confirms that in

the eight cases, all the configurations are represented by cells

which are responding exclusively to one of the spatial configura-

tions and not to any other. In the simulations described here, the

numbers of training epochs for all layers were 50, 50, 50 and 50,

respectively.

Table 4 summarises for each of the eight test cases the number

of cells that are perfectively selective to each one of the target

locations with invariance over all five retinal locations. The results

are the average of five simulations conducted with identical model

parameters, but with different random synaptic weight initializa-

tions and different random synaptic connectivities.

We expect individual cells to learn to represent a localised

region of hand-centred space as the number of target locations

goes to infinity. When the number of target locations was

increased to 10, it can be seen from Fig. 7 that the density of

locations was approaching an effective continuum. At this point,

some cells started to respond to a localised region. For example, in

the simulations, when the number of target locations reached 10,

there were some cells that had learned to respond to two adjacent

hand-centred target locations, in addition to the cells that

responded to only one hand-centred target location across all five

retinal locations,. If the number of training locations were

increased further, we would find that individual neurons learned

to respond to a small subset of contiguous locations.

Performance of the Model with Larger Retinal Shifts
In the simulations described above we used relatively small

retinal shifts (i.e. five pixels). However, natural eye movements

around any visual scene include larger saccades, which produce

greater retinal shifts than the ones we have simulated. Therefore, it

is important to test whether the model could learn to respond to a

Figure 4. Response profiles of same three neurons in the top
(fourth) layer of VisNet after training. Response profiles of the
same three neurons from Fig. 3 after training on the images shown in
Fig. 1. Conventions as in Fig. 3. It can be seen that each of the three
cells responds selectively to just one of the hand-object configurations,
and responds to that configuration over all five retinal positions shown
along the abscissae. Moreover, each of the three hand-object
configurations is represented by one of the cells.
doi:10.1371/journal.pone.0066272.g004
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particular hand-object configuration across larger retinal shifts.

We hypothesized that since trace learning relies only on the

temporal proximity of the input patterns, this learning mechanism

should be able to learn to respond to particular hand-object

configurations across larger retinal shifts.

In this experiment we explore the performance of the model in

the case of larger retinal shifts. However, to do this we needed to

increase the size and hence resolution of the retina. In our previous

simulations we used a 128|128 ‘retina’. In order to effectively

simulate larger retinal shifts, we doubled the size of the model

‘retina’ (i.e. 256|2569) and adjusted other network dimensions

accordingly. The new dimension values of the network are given in

Table 5. All of the other model parameters were the same as in the

previous simulations. These dimension changes allowed us to

produce larger eye movements that still ensured the hand and

object appeared within the visual field.

We presented the network three image sequences similar to the

ones presented initially in Fig. 1. However, during each of the

three image sequences, the fixed spatial configuration of the hand

and object is translated 35 pixels at a time across the retina instead

of 5 pixels.

Fig. 9 shows the information measures for the output (fourth)

layer neurons before and after training. The single cell information

analysis on the left shows that, after training, 119 neurons

conveyed the maximal single cell information of 1.58 bits. After

training, the multiple cell information is substantially increased

and asymptotes to the maximal value of 1.58 bits. This confirms

that the three spatial configurations are each represented by cells

which are responding exclusively to one of the spatial configura-

tions and not to any other.

In the simulations described here, we can confirm that trace

learning can produce learned neuronal responses which are tuned

to a particular location of a visual object in a hand-centred frame

of reference, even when large eye movements are performed.

Images of a particular configuration of hand and object, even if

they occur across widely spaced retinal positions, can be associated

by trace learning if they occur close together in time.

Discussion

The results presented in this study have shown how a self-

organizing neural network model with a biologically plausible

learning mechanism, is capable of generating output cells that

are tuned to specific target locations in a hand-centred frame

of reference. Furthermore, the response profiles of cells within

the network and information measures validate trace learning

Figure 5. Information analysis. Analysis of the information about where the target object is with respect to the hand conveyed by the output
(fourth) layer neurons before and after training. The left plot shows the amount of single cell information carried by individual output cells in rank
order. It can be seen that training the network has produced a large increase in the information carried by the output cells. In particular, after training,
it was found that 111 cells reached the maximum amount of single cell information of 1.58 bits. In the untrained condition no cells reached maximal
information. These cells responded perfectly to just one of the three hand-object configurations, and responded to that configuration across all five
retinal locations. The right plot shows the multiple cell information measures calculated across 15 cells with maximal single cell information. It can be
seen that, after training, the multiple cell information asymptotes to the maximal value of 1.58 bits. This confirms that all three hand-object
configurations are represented by the output cells.
doi:10.1371/journal.pone.0066272.g005

Figure 6. Information analysis for different degrees of training. Analysis of the information about where the target object is with respect to
the hand conveyed by the output (fourth) layer neurons for six degrees of training: untrained, 1 epoch, 2 epochs, 5 epochs, 10 epochs, and 50
epochs. The left plot shows the amount of single cell information carried by individual output cells in rank order. After the second epoch it was found
that 57 cells reached the maximum amount of single cell information of 1.58 bits. The multiple cell information asymptotes to the maximal value of
1.58 bits after the second epoch. This confirms that all three hand-object configurations are represented by the output cells.
doi:10.1371/journal.pone.0066272.g006
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as the potential mechanism underlying the development of

these type of extraretinal representations.

The hand-centred representations in the parieto-frontal

circuit are thought to play a role in guiding movement toward

visual targets. These neurons, by providing a representation of

the location of the target with respect to the hand, are thought

to play a role in encoding the vectors for planning a reach

towards the visual target. The act of reaching, however, is a

complex process that integrates a wide range of sensory and

motor information to plan and also control movement

trajectories. It is important to emphasize that our model does

not pretend to be a model of reaching. The purpose of this study

is to provide an account of how cells may self-organize to

develop hand-centred representations from eye-centred input,

using local learning rules.

The Role of Visual Signals in the Development of Hand-
centred Representations

Our model shows that visual input of the hand and target object

could be used to drive the development of hand-centred

representations. Similarly, other models present the inputs of the

target and the hand visually [22]. More importantly, this

assumption is compatible with many experimental findings.

For example, it has been shown in non-human primates that

some neurons in PMv with visual receptive fields anchored to the

arm, can remap their response to the visible movement of a fake

arm instead of the occluded real arm which is stationary [13].

Visual sense of the arm or a realistic fake arm can also generate

significant activation in Area 5 and mostly in MIP cells [37,38]. In

humans, hand-centred representations in PPC and premotor

cortex have been also remapped to a prosthetic hand during a

rubber hand illusion [39].

Additionally, there is also evidence involving visual limb

position signals for direct visuomotor transformations between

PRR and Area 5 [40]. A portion of V6A neurons have been

reported to have an increased activity exclusively for reaching in

light conditions and strongly modulated by the sight of the arm

[41]. In humans, the superior parieto-occipital sulcus (sPOS)

considered as an homologue of the PRR, responds significantly

more during direct visual reaching which involves the view of the

hand [42]. Moreover, behavioural experiments have shown

improvements in the accuracy of reaches when vision of the hand

is available, and that vision seems to dominate over other

proprioceptive signals [43–47].

The Role of Additional Signals in the Development of
Hand-centred Representations

The model presented in this paper shows a biologically plausible

learning mechanism (i.e. local learning rule) by which hand-

centred visual receptive fields could be developed through visually

guided learning. Cells encoding the position of a target in a hand-

centred reference frame have been mostly reported in the parietal

cortex and premotor areas. However, it is well known that the

PPC and premotor areas not only receive bottom-up visual signals

[48,49], but they also receive afferent signals from the somato-

sensory cortex and top-down motor signals [50,51]. Experimental

studies have shown that, hand-centred cells in PRR and Area 5

can maintain their firing properties when guided only by motor

signals or proprioceptive signals in the absence of visual input of

Figure 7. Image of the hand with 10 target locations. With 10
target locations around the hand, the targets are highly overlapping. In
this case, the targets begin to form an effective continuum of hand-
centred locations.
doi:10.1371/journal.pone.0066272.g007

Figure 8. Information analysis as the number of target locations is increased. Analysis of the information conveyed by the output (fourth)
layer neurons about the location of the visual target with respect to the hand. Values on the y-axis were normalised by the maximal information
possible, log2(number of target locations), for each simulation. The single cell information analysis (left plot) shows that in all cases more than 10% of
the neurons conveyed the maximal single cell information. The multiple cell information measures (right plot) were calculated using five cells for each
stimulus that had the most single cell information about that stimulus. For simulations with three target locations this results in a population of 15
cells, while for ten target locations the multiple cell information analysis used 50 cells. It can be seen that in all cases the multiple cell information
asymptotes to the (normalised) maximal value, confirming that all of the hand-object configurations are represented by the output cells.
doi:10.1371/journal.pone.0066272.g008
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the hand and target [10,52]. Moreover, the delayed-reach

paradigm used in many of these studies [10,53] showed that these

neurons continued to maintain their activity when the visual target

disappeared from view. This suggests that the hand-centred

representations in PRR and Area 5 receive additional proprio-

ceptive input signals specifying the position of the hand, as well as

signals conveying a memory of the target location. These

additional position signals could be used to update hand-centred

representations in the PPC in the absence of visual input.

Positional information of the location of the hand is integrated

using inputs from different sensory modalities, including vision and

proprioception. Generally, the information from the different

sources is congruent helping to make our estimates more precise.

Many studies have explored the complex interaction of visual and

proprioceptive signals at different stages of motor planning and the

generation of reaching movements, and it still remains unclear

how and when visual and proprioceptive inputs converge in

visuomotor processing [13,44,54,55].

A considerable number of studies have manipulated systemat-

ically the availability and congruency between different modalities,

affecting and biasing in different ways, the localization of our

hands as well as reaching movements. For example, hand position

can be significantly biased by mirror-induced illusions, suggesting

that visual information is weighted more strongly when the

different signals are in conflict [47]. However, other studies have

shown the opposite under different paradigms [56].

It is therefore agreed that visual and proprioceptive signals

about the location of our hand might have distinct roles and

weight differently at different stages of goal-directed movements.

When available, visual information of the hand configuration

seems to be relevant for the encoding and initial planning of the

reach vectors, while proprioceptive signals of the hand position

seem to be relevant for transforming a reach plan into the

appropriate motor signals [57].

The proprioceptive localization of the hand is generally more

precise at distances closer to the shoulder [58]. Localizing the

hand using purely proprioceptive signals requires constantly

computing and combining the angles of the joints. The

representations of the locations of the visual targets with respect

to the hand must also be continually updated using the new

computed position of the hand. Relying on processing of internal

proprioceptive signals will introduce mild error in the estimated

hand-centred locations of the targets as well as taking longer to

compute. For these reasons, other authors have also suggested that

visually derived hand-centred representations, especially in PMv,

might be useful for providing more rapid and accurate information

of the hand-object configuration for the control of rapid actions

[59].

Table 4. Distribution of responses as the number of spatial locations is increased.

Total
number
of target
locations Specific target location

1 2 3 4 5 6 7 8 9 10 Total

3 Mean 46.0 39.4 36.6 – – – – – – – 122

SD 3.5 7.9 7.5 – – – – – – –

4 Mean 44.0 25.6 35.0 30.2 – – – – – – 134.8

SD 8.6 15.7 9.4 13.8 – – – – – –

5 Mean 45.0 43.4 44.4 44.4 41.6 – – – – – 218.8

SD 6.3 5.9 6.7 7.8 11.2 – – – – –

6 Mean 42.2 32.8 31.0 27.0 40.2 40.4 – – – – 213.6

SD 10.4 19.2 24.7 18.0 21.5 14.7 – – – –

7 Mean 44.4 35.4 34.0 28.0 38.2 48.2 47.2 – – – 275.4

SD 10.0 11.3 11.7 19.8 21.6 3.3 4.5 – – –

8 Mean 39.8 42.6 36.2 10.6 10.0 35.4 40.8 47.2 – – 262.6

SD 21.3 13.5 15.7 17.8 17.9 22.3 16.1 5.5 – –

9 Mean 37.2 31.0 27.6 19.2 10.8 17.0 42.6 32.6 38.0 – 256

SD 21.1 19.6 15.9 13.1 10.4 18.4 3.5 17.3 19.2 –

10 Mean 39.8 29.4 36.6 2.8 15.6 6.6 29.0 37.4 46.4 42.6 286.2

SD 7.4 15.0 15.4 3.0 21.7 9.2 23.7 21.7 4.3 6.9

This table shows the average number, over five simulations, of perfectly selective neurons responding to each specific spatial configuration of the hand and object
across all five retinal locations. Each row corresponds to averaged results and standard deviations from simulations with a fixed total number of target locations. While
each column refers to the number of perfect cells found for each specific target location.
doi:10.1371/journal.pone.0066272.t004

Table 5. Scaled up retina: Network dimensions.

Dimensions
Number of
Connections Radius

Layer 4 32632 200 48

Layer 3 32632 200 36

Layer 2 32632 200 24

Layer 1 64664 200 24

Retina 2566256664 – –

Network dimensions showing the number of connections per neuron and the
radius in the preceding layer from which 67% are received.
doi:10.1371/journal.pone.0066272.t005
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Despite the acknowledged relevance of both vision and

proprioception in the planning and execution of motor actions,

it has not been established exactly what the actual roles of these

signals are in the development of hand-centred visual receptive

fields. In this paper we explore a learning mechanism that could be

used to generate these extraretinal representations using visual

signals representing the location of the object and the hand. The

present model assumes that during initial training, the bottom-up

visual signals dominate activity in some of these cells. However,

hand-centred representations could also be derived from addi-

tional proprioceptive cues. Even when it remains unclear how

visual and proprioceptive signals converge, the learning mecha-

nism that we have presented here could be implemented using a

proprioceptive signal representing the position of the hand. The

proprioceptive signals could be either instead of, or in addition to,

the visual input of the hand. In future research, we intend to

combine the visual network presented in this paper with the

proprioceptive representation of the position of the hand, to

explain how hand-centred representations in the output layer can

be developed by competitive unsupervised training even when the

hand is out of sight. In this case, since the proprioceptive signal of

the hand position is always present as an input, we would then

expect that trace learning could work in a similar way. That is, as

the eyes explore a static visual scene, the network could use trace

learning to bind together sensory inputs comprised of a

combination of the proprioceptive representation of the hand

position and a visual representation of a target location. If the

proprioceptive signals of hand position entering Area 5 and PMv

are particularly dominant, then this may explain why visual

representations in these areas are specifically hand-centred rather

than in the reference frame of any other object in the visual world.

The model presented here provides a novel computational

account for how neurons responding in a hand-centred frame of

reference might develop in a biologically plausible way by

unsupervised visually-guided learning.
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