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Abstract

Noroviruses (family Caliciviridae) are the primary cause of viral gastroenteritis worldwide. The virus is highly infectious and
touching contaminated surfaces can contribute to infection spread. Although the virus was identified over 40 years ago the
lack of methods to assess infectivity has hampered the study of the human pathogen. Recently the murine virus, MNV-1, has
successfully been used as a close surrogate. Copper alloys have previously been shown to be effective antimicrobial surfaces
against a range of bacteria and fungi. We now report rapid inactivation of murine norovirus on alloys, containing over 60%
copper, at room temperature but no reduction of infectivity on stainless steel dry surfaces in simulated wet fomite and dry
touch contamination. The rate of inactivation was initially very rapid and proportional to copper content of alloy tested.
Viral inactivation was not as rapid on brass as previously observed for bacteria but copper-nickel alloy was very effective.
The use of chelators and quenchers of reactive oxygen species (ROS) determined that Cu(II) and especially Cu(I) ions are still
the primary effectors of toxicity but quenching superoxide and hydroxyl radicals did not confer protection. This suggests
Fenton generation of ROS is not important for the inactivation mechanism. One of the targets of copper toxicity was the
viral genome and a reduced copy number of the gene for a viral encoded protein, VPg (viral-protein-genome-linked), which
is essential for infectivity, was observed following contact with copper and brass dry surfaces. The use of antimicrobial
surfaces containing copper in high risk closed environments such as cruise ships and care facilities could help to reduce the
spread of this highly infectious and costly pathogen.
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Introduction

Gastroenteritis is a major cause of morbidity and mortality

worldwide and is responsible for approximately 5–8 million deaths

per year. It is estimated that norovirus (family Caliciviridae) gives

rise to more than 267 million infections worldwide per year

including 23 million in the US alone. This small, single stranded,

positive sense RNA virus is responsible for over 90% cases of non-

bacterial and approximately half of all cases of gastroenteritis

(reviewed in [1,2,3]). Norovirus is now as important as rotavirus as

a cause of diarrhoea and vomiting in hospitalised children in some

countries [4].

The disease is usually contracted by ingestion of contaminated

food, water, person-to-person contact and touching contaminated

surfaces [5,6]. Infection is also transmitted by aerosols and

prolonged viral shedding of high virus load, including asymptom-

atic individuals, increases the risk of infection spread [7].

Norovirus gastroenteritis is self-limiting but extremely infectious

with a low infectious dose and is responsible for many outbreaks,

often seasonal, especially in closed environments e.g. cruise ships

and health-care facilities. Most reported cases are in the under 5

years old but the highest economic costs are in the care of elderly

patients in residential care [5]. The disease may be life threatening

in severely ill and vulnerable patients and has been linked to

Crohn’s disease and necrotising enterocolitis in neonates [8].

The virus does not have an envelope, conferring resistance to

some cleaning detergents, alcohols, food preservation chemicals; it

can survive on surfaces (especially if surfaces are contaminated

with detritus and food residues [9] in the environment, and resist a

wide pH range and temperatures from 220uC to 72uC [10,11,12].

The contribution of contaminated surfaces in the spread of

infection has been described previously [3,6]. In human challenge

studies Gerhardts et al. [13] demonstrated a chain of bacterial and

viral transfer from a single contaminated individual to surfaces and

from there to other personnel with the risk of infection greatest in

pathogenic strains with a low infectious dose. Thornley et al. [14]

suggested that persistently contaminated fomites resulted in

transmission of infection in flight attendants over an 8-day period

following a single vomiting incident of a passenger with norovirus.

Studies have also shown the transfer of noroviruses from cleaning

cloths of varying composition and absorbency to surfaces and vice

versa and also spread of virus from a single fingertip to up to 7

surfaces [15,16] perpetuating the spread of infectious virions.

The use of antimicrobial surfaces in clinical and community

environments may help to reduce the spread of infection,

especially if combined with rigorous and effective cleaning

regimes. Laboratory studies have described the rapid death of

bacterial, fungal and viral pathogens on copper alloy surfaces [17–

27] and also prevention of antibiotic resistance horizontal gene

transfer between pathogens [27]. The results from these studies led

to clinical trials worldwide in clinical and children’s facilities where

a reduction in microbial bioburden was observed in rooms with

copper surfaces [28,29]. Of great significance, a recent study of 3

US hospital intensive care units has shown more than a 50%

reduction in the infection rate when copper alloys have replaced

conventional touch surfaces for 6 highly touched objects (bed rails,
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over-bed tables, chair arm, call button, computer accessories and

intravenous poles [30]).

Sensitive detection methods for human norovirus are available,

primarily PCR amplification of genes encoding viral capsid or

viral RNA dependant RNA polymerase (RdRp) from cDNA [31].

However, there is no correlation between these methods and

infectivity [32] and there are no available methods to assess viral

infectivity, other than human challenge, because of the absence of

suitable tissue culture systems [33]. Therefore research has

concentrated on feline or murine surrogates. In this study we

have investigated the infectivity of murine norovirus (MNV), the

closest phylogenetic surrogate to the human virus, exposed to dry

touch copper and copper alloy surfaces, containing at least 60%

copper, assessed by plaque assay in mouse macrophage monocyte

cell line, RAW 264.7 [34,35]. Stainless steel was used as a control

surface throughout. We investigated the possible roles of Cu (I)

and Cu (II) in viral inactivation and their effect on the integrity of

the viral genome following contact of the virus with copper

surfaces. The norovirus genome consists of a positive strand RNA

of approximately 7.5 kb, and replicates in the host cell cytoplasm.

There are 4 open reading frames (ORF); ORF 2 and 3 encode for

the capsid proteins and a recently discovered ORF 4 [36]

produces a protein that, although not essential for infectivity,

affects virulence. The production of sub-genomic strand duplicat-

ing ORF 2–4 increases the capacity of the relatively small genome.

The ORF1 encodes a polyprotein that is cleaved by viral protease,

NS6, into several non-structural proteins. One of these, NS5,

encodes for VPg (viral-protein-genome-linked), which is essential

for infectivity. It binds to 59 end of the viral genome acting as a

primer initiating translation of viral RNA and also as a protein

primer for the viral RdRp [37]. We have observed previously the

destruction of bacterial plasmid and genomic nucleic acid on

copper and copper alloy dry surfaces. In this study we investigated

the effect of norovirus exposure to copper surfaces on the entire

genome and as a more sensitive and quantitative assay investigated

the effect on a single gene i.e. production of VPg using reverse

transcriptase quantitative PCR (RT-qPCR).

Results

Infectivity of murine norovirus (MNV) is destroyed on
copper and copper alloy surfaces but not on stainless
steel for simulated wet fomite and dry touch
contamination

An inoculum of 56104 pfu MNV applied to copper, and high

copper content alloys, phosphor bronze and copper nickel, to

simulate wet fomite contamination was rapidly inactivated at

room temperature using plaque assay. No infectious virus was

evident after 30 minutes on copper and 60 minutes on copper

nickel (Figure 1A). There was a 2–4 log reduction for phosphor

bronze, cartridge brass and nickel silver respectively after 2 hours

at room temperature. Increasing the viral load 506did not affect

kill times (data not shown). There was no significant reduction in

infectivity following 2 hours contact with stainless steel at room

temperature.

Figure 1B demonstrates that virus inactivation is even more

rapid if a ‘dry’ inoculum of virus is used i.e. same size inoculum is

applied in very low volume (1 mL) which dries instantly on contact

and corresponds to dry touch contamination. All virus is

inactivated on copper and copper nickel over the first 5 minutes

contact and after 10 and 30 minutes for phosphor bronze and

cartridge brass, respectively. Nickel silver, which has the lowest

copper content, was inactivated after 2 hours. There was a slight

reduction in infectivity on virus exposed to stainless steel,

suggesting rapid drying also has an effect.

Calculation of inactivation rate at specific times reveals that the

highest rate of MNV inactivation on copper surfaces occurs upon

immediate contact (Figure 2). Inactivation was up to 10 times

faster in ‘dry’ touch contamination (Figure 2B); on copper rates

were 22.06 and 20.3 for dry and wet contamination,

respectively (for the initial timepoints). Inactivation rates were

proportional to percentage copper: R2 = 0.926 (Figure S1

Supporting Information) except that copper nickel (89% copper)

was slightly more effective than phosphor bronze (95%). This is

now being investigated further with a larger range of copper

nickels and also investigating if the surface finish affects the virus

inactivation rate.

Rate of inactivation of MNV on copper surfaces is
affected by temperature

If MNV is inoculated onto surfaces at 4uC inactivation still

occurs on copper but at least 4 times more slowly and significant

reduction was seen after 2 hours on copper nickel. Little

inactivation had occurred on other metals at this time. The

inoculum remained wet over the 2 hour testing period (Figure 3A).

In contrast at 37uC although for the first 30 minutes of contact

there was little reduction of MNV infectivity subsequent inacti-

vation was faster with at least a 3-log reduction on all alloys at

2 hours (Figure 3B). It is unclear if the initial lag is due to any

differences between the temperatures of inoculum and the metal.

After 2 hours contact with stainless steel at 37uC norovirus was still

infectious but there was a considerable reduction in infectivity (2-

log) compared to results at room temperature.

Inactivation of MNV on dry copper surfaces involves
copper (II) and especially copper (I) ions but not
superoxide or hydroxyl radicals (‘wet’ inoculum)

Addition of D-mannitol or Tiron, at the same time as virus, to

quench hydroxyl radicals or superoxide (Figure 4A striped and

cross hatch bars respectively) does not protect MNV from

inactivation on copper and the virus is inactivated following 60

minutes contact, the same as virus inoculated without quenchers

(Figure 4A white bars). Varying the concentration of the

quenchers and addition of superoxide dismutase did not affect

results (data not shown). There was no significant loss of infectivity

for virus inoculated onto stainless steel compared to virus

inoculated with or without quenchers with approximately

104 pfu recovered after 2 hours contact (Figure 4C).

Addition of EDTA at the same time as the virus to chelate

Cu(II) was protective for the initial 60 minutes of virus contact

with copper (Figure 4B striped bars) but prolonged protection was

observed in the presence of BCS (Figure 4B cross hatch bars).

This suggests that Cu (I) is important in the inactivation of MNV

on dry copper. Inoculation without chelators present resulted in

total inactivation by 60 minutes (Figure 4B white bars). There

was no significant loss of infectivity in virus inoculated onto

stainless steel compared to virus inoculated with or without

chelators (Figure 4D).

Degradation of the entire MNV genome occurs on
copper and brass surfaces

PEG concentrated virus was exposed to copper, brass and

stainless steel for 2 hours. Virus was removed and total RNA

purified and fragments separated by non-denaturing agarose gel

electrophoresis (Figure 5). There is a band of native viral RNA

from stainless steel that is not visible in samples exposed to

Inactivation of Norovirus on Copper Surfaces
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copper or cartridge brass. There is some evidence of degraded

RNA (less than 300bp) in all three samples. Negative controls

were prepared from mock infected cells. MNV used for

inoculation but not exposed to metal surfaces was used as a

control; purified genomic RNA was analysed by non-denaturing

electrophoresis producing band at 2000–2500 bp for native

conformation (total size denatured genome is 7382 bp)(Figure

S2, Supporting Information)

MNV exposed to copper and brass surfaces has a lower
concentration of viral gene, NS5, essential for infectivity
because of production of VPg (viral-protein-genome-
linked)

The genomic RNA of MNV exposed to copper, brass and

stainless steel surfaces was purified and cDNA prepared. qPCR

amplification of a 70 bp region of VPg demonstrated a reduction

Figure 1. Efficacy of copper alloys to reduce infectivity of wet fomite (A) and dry touch (B) contamination with MNV at room
temperature. Plaque assay is described in the text but briefly a dilution series of control and test virus was plated for 60 minutes onto a monolayer
of RAW 264.7 cells, then overlaid with agarose and incubated 48–72 hours. Monolayers were stained with vital stain, Neutral Red, and areas of
infected and lysed cells can be visualised as plaques and enumerated. Approximately 56104 pfu were applied to test surfaces (copper (N), phosphor
bronze (95% copper) (#), copper nickel (89% copper) (.), cartridge brass (70% copper) (D), nickel silver (65% copper) (&), stainless steel (%)) in
either 20 mL (dries in 30 minutes) or 1 mL (dries in seconds) to represent wet and dry contamination, respectively. No significant loss of infectivity was
observed on stainless steel for both types of inocula. Error bars represent 6 SD and data are from multiple experiments.
doi:10.1371/journal.pone.0075017.g001

Figure 2. Comparison between inactivation rates of MNV in wet fomite (A) and dry touch (B) contamination on copper surfaces.
Inactivation rates were calculated for various contact times of MNV exposed to test surfaces as described in the text (from the results generated in
Figure 1). (copper (white bars), phosphor bronze (95% copper) (forward diagonal striped bars), copper nickel (89% copper) (backward diagonal
striped bars), cartridge brass (70% copper) (cross hatch bars), nickel silver (65% copper) (horizontal striped bars) and stainless steel (vertical striped
bars)). Error bars represent 6 SD and data are from multiple experiments.
doi:10.1371/journal.pone.0075017.g002
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in the copy number of virus removed from copper and brass

(Figure 6A). Analysis of the PCR products by electrophoresis

showed a reduction in intensity of amplified region that is

proportional to percentage copper (Figure 6B). Virus that has been

removed from stainless steel is similar to equivalent volume of virus

not exposed to surfaces. Virus was also removed from all test

surfaces immediately (time 0) and there was no significant

difference in copy number from the stainless steel 2 hour sample

shown (time 0 samples not shown).

Discussion

The human cost and also the economic burden of norovirus

infection is a huge problem worldwide. In the UK, norovirus costs

the National Health Service at least £100 million/year, in times of

high incidence, and up to 3000 people admitted to hospital per

year in England. The incidence in the community is thought to be

about 16.5% of the 17 million cases of infectious intestinal disease,

in England per year and there is evidence that this burden is

increasing [38]. In the US the costs escalate to more than $2

billion per year on outbreaks with endemic costs of more than

$500 million per year (reviewed in [1]). The low infectious dose,

prolonged survival at a range of temperatures and humidity for up

to 7 days on dry inanimate surfaces, resistance to commonly used

disinfectants, long infectious period and prolonged shedding all

increase the risk of disease spread. Approximately 30% of

infections from norovirus are asymptomatic and the virus can be

transmitted although at a lower frequency compared to symp-

tomatic individuals who can shed up to 1010 copies of viral RNA

per gram faeces [39]. Lopman, et al. [5] suggested the highest risk

in transmission of infectious norovirus is initially, over the first

24 hours, from direct contact but subsequent contamination of the

environment produces a risk that lasts much longer, for at least 2

weeks. In addition, direct hand contact or even cleaning cloths

used to wipe contaminated surfaces can spread infectious virus to

other environmental surfaces. Because norovirus is resistant to

many commonly used cleaning agents it is necessary to use 0.1%

hypochlorite (equivalent to 1000ppm chlorine) to disinfect

surfaces. However, regular use of this biociode bleaches and

degrades a range of commonly used touch surface materials and is

hazardous in poorly ventilated areas [40].

In this study we have shown that murine norovirus is also

rapidly inactivated on copper surfaces. A significant reduction

occurred on copper, cartridge brass and nickel silver after 2 hours

at room temperature. The rate of inactivation was approximately

proportional to copper content but further studies are required to

evaluate the effect of different metal surface finishes and the

copper ion release rate from individual alloys. In dry touch

contamination viral inactivation is extremely rapid, with the

highest rate of inactivation occurring in the first 5 minutes. The

process appears to be a result of a combination of copper action

and drying process followed by a slower rate of inactivation; Li and

Dennehy [41] observed that bacteriophages also lost infectivity on

copper but as soon as the inoculum dried no further inactivation

occurred and Abad et al. [42] observed that the drying process

affected persistence of poliovirus and adenovirus on environmental

fomites. Sharps et al. [43] observed that virus retained infectivity

in transfer ‘wet’ fomite from stainless steel to fingertips and fruits

but transfer was reduced if contaminating inoculum was allowed

to dry. We have found that the rate of inactivation is also affected

by temperature: inactivation occurs more slowly at 4uC and is

faster over a 2 hour period at 37uC. It is unclear if the mechanism

of copper inactivation of norovirus is different in wet or dry

scenarios. The clear stages of inactivation may reflect populations

of virions at various stages of replication (e.g. complete or

incomplete capsids and packaging) with varying susceptibilities

and rates of inactivation.

We have previously shown that although dry copper surfaces

are efficacious against a range of bacteria the copper killing

mechanism is different. In Gram-negative cells the outer

membrane is the initial target and Fenton reactions between

respiration generated oxygen radicals and copper ions results in

generation of reactive oxygen species causing the cells to commit

‘metabolic suicide’ [25]. In this current study we have observed

Figure 3. Efficacy of copper alloys to reduce infectivity of wet fomite contamination with MNV at 46C (A) and 376C (B). Approximately
56104 pfu were applied to test surfaces that had been acclimatised to required temperature (copper (N), phosphor bronze (95% copper) (#), copper
nickel (.), cartridge brass (70% copper) (D), nickel silver (65% copper) (&), stainless steel (%)) in 20 mL (‘wet’ inoculum). Virus was removed and
assessed for infectivity using plaque assay.
doi:10.1371/journal.pone.0075017.g003
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that Cu(II) was important in the short term but it is Cu(I) that is

the primary effector of copper surface inactivation of norovirus.

Shionoiri et al. [44] observed Cu(I) was important in inactivation

of feline norovirus (FCV), but they investigated copper iodide

nanoparticles in solution and Sagripanti et al. [45] discovered that

superoxide was not involved in the destruction of the double

stranded DNA of Herpes Simplex Virus on copper and only

partial protection was seen for hydroxyl radicals. We also found

that Cu(I) release on contact surfaces did not result in the

generation of hydroxyl radicals or superoxide indicating Fenton

chemistry is not important. This suggests that copper ions are

having direct effect in virus inactivation. Copper ions have been

observed to cause aggregation of virus particles [46].

We investigated if the viral RNA was affected by the copper

because virus inactivation is possible without obvious effects on the

genome [31]. The entire RNA genome was destroyed on copper

suggesting the function of other genes could also be affected so the

next step was to investigate if individual genes are affected by more

sensitive and quantitative molecular methods. Norovirus replica-

tion is rapid and efficient because the positive strand genome does

Figure 4. Inactivation of MNV on copper surfaces in the presence of quenchers D-mannitol or Tiron (A) or chelators EDTA or BCS (B)
and to remove hydroxyl radical or superoxide, copper II or Cu I, respectively. Approximately 56104 pfu MNV was inoculated onto metal
surfaces in the presence of chelators or quenchers of reactive oxygen species and assessed for infectious virus using plaque assay as described in text.
The results were compared to those obtained without chelators or quenchers to ascertain if there was a protective effect. No quenchers or chelators
present is represented by white bars; D-mannitol (A) or EDTA (B) represented by diagonal striped bars; Tiron (A) or BCS (B) represented by cross
hatched bars. No significant reduction of infectivity occurred in the presence of any quenchers or chelators on stainless steel surfaces (even though
D-mannitol has been reported to interfere with HSV replication) (C and D respectively). Error bars represent 6 SD and data are from multiple
experiments.
doi:10.1371/journal.pone.0075017.g004
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not need a DNA stage, produces its own primer in VPg and a viral

RNA polymerase and occurs within the cytoplasm without the

need to traverse the cell’s nuclear membrane. Exposure to copper

and brass resulted in a reduction in the copy number of VPg gene

that was unaffected on stainless steel. The extent of RNA

destruction was proportional to the percentage of copper.

Investigations into the effect on other genes and the viral capsid

are now underway to determine the sequence of events as

norovirus inactivates on copper surfaces and actual targets.

Recombination events resulting from small amino acid substi-

tutions affecting antigenic domains (P2) and in the viral

polymerase have led to the evolution of more virulent norovirus

strains. GII.g/GII.12 was first isolated in Australia 2008 and

results in an increased severity of disease that is not restricted to

individuals with specific blood groups, unlike earlier strains, and is

capable of zoonotic transmission [1,47]. The survival of infectious

norovirus for long periods on surfaces and foods may contribute to

interspecies transmission and the evolution of more virulent

strains. The destruction of the viral genome we have observed on

copper surfaces may mitigate against this as well as prevent the

spread of infection.

There is now a considerable body of evidence from laboratory

based studies that copper alloys are efficacious against a diverse

range of pathogenic microorganisms. Earlier studies demonstrated

a rapid kill of Escherichia coli O157 [17,19,26], Listeria monocytogenes

[20] and methicillin-resistant Staphylococcus aureus (MRSA) [18]

which evolved from commensals into a serious threat to world

health. This was followed by observations that both vegetative cells

and spores of virulent toxin producing Clostridium difficile,

responsible for numerous hospital acquired infections (HAI), were

also destroyed on copper [22]. The increased antimicrobial

therapies required to combat MRSA has resulted in the evolution

of potentially more serious multi-drug resistant bacterial pathogens

including vancomycin-resistant enterococci and more recently the

rise in serious, difficult to treat infections by Gram-negative

Enterobacteriaceae producing extended spectrum b-lactamases and

metallo-b-lactamases, including NDM-1(New Delhi metallo-b-

lactamase) which is resistant to all b lactams. This is often located

on plasmids containing many other resistance and virulence genes.

Figure 5. Destruction of entire MNV genome occurs on copper.
MNV (PEG concentrate) was exposed to copper (lane 1), cartridge brass
(lane 2) or stainless steel (lane 3) for 2 hours. Viral RNA was purified
using Qiagen mini prep viral RNA kit and fragments separated on non-
denaturing 1% agarose gel electrophoresis and visualised in UV light
box. Viral RNA has degraded on copper, less on brass and not at all on
stainless steel (see control RNA S2 Supplementary Information). Lanes 4,
5 and 6 are PEG precipitation of uninfected cells (mock) applied to
stainless steel, brass and copper respectively. Virus added to all surfaces
and removed immediately was similar to lane 1 although some
reduction in intensity on copper was visible (not shown). DNA ladder is
Bioline hyperladder I (HL1 1 Kb)
doi:10.1371/journal.pone.0075017.g005

Figure 6. The degradation of viral RNA observed on copper and brass surfaces affects individual genes. cDNA was generated from the
RNA of virus recovered from dry surfaces following 2 hours at room temperature. Detection of VPg which is essential for infectivity was performed by
qPCR and copy numbers determined from standard curve (A). A large copy number is present in virus removed from stainless steel and untreated
virus but greatly reduced from brass and copper. This is also evident from electrophoresis of PCR products (B). Lanes 2–4 is virus removed from
stainless steel, brass and copper showing reduction in VPg intensity respectively. Lanes 5–7 are mock infected cells. Lane 8 and lane 9 are mock
infected cells and infected cell lysate, respectively, that had not been applied to surfaces. Lane 10 is amplified gene from standard cDNA.
doi:10.1371/journal.pone.0075017.g006
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However, all these emerging pathogens are destroyed on copper

and copper alloy surfaces although we now know the killing

mechanism is not universal [24–27]. We also observed in a

previous study the rapid transfer of bla NDM-1 to other bacterial

contaminants on stainless steel surfaces which did not occur on

copper [27]. Therefore copper surfaces could also help to prevent

horizontal gene transfer (HGT) which is ultimately responsible for

the spread in resistance to our existing antibiotics. We have now

shown that MNV is also rendered non-infectious on dry copper

alloy surfaces and we are currently investigating efficacy against a

range of respiratory viral pathogens following an earlier study on

influenza A [21].

There have been numerous clinical trials following encouraging

results from laboratory studies [28,29]. The recent report by

Salgado et al. [30] based on trials at 3 hospitals is extremely

encouraging, that replacing only 6 items within a hospital ICU

room could have such an impact on reducing the infection rate by

more than 50%. This suggests that copper alloy surfaces may also

be usefully employed in other high risk areas such as care homes,

public transport and even in the home.

The use of copper alloy dry surfaces in health care and

community environments could be invaluable in preventing the

spread of bacterial, fungal and viral pathogens, including

norovirus, that contaminate dry surfaces and perpetuate the

infection cycle. The race to develop effective antimicrobials against

pathogens that have evolved mechanisms to evade our existing

ones is fierce and led to a fear that we are entering a pre-antibiotic

era.

Copper alloys, although they provide a constant killing surface,

should always be used in conjunction with regular and efficient

cleaning and decontamination regimes using non-chelating

reagents that could inhibit the copper ion activity.

Materials and Methods

Viral strains and cell lines
Murine norovirus 1, MNV-1, CW1, and the mouse monocyte

macrophage line, RAW 264.7, were supplied by Professor Herbert

Virgin IV, Washington University, US. The semi-adherent cell

line was maintained at sub-confluence to prevent loss of

characteristic phenotype and maintained in HEPES buffered

Dulbecco’s Modified Eagle Medium (DMEM) containing Gluta-

MAX, 25 mM D-glucose, 10% foetal bovine serum and without

sodium pyruvate at 37uC in the presence of 5% CO2. The cells

adhere to tissue culture grade plastic through cation- dependant

and independent receptors but can easily be removed by scraping.

To ensure at least 99% cells were infected virus stocks were

prepared by infecting cells with multiplicity of infection of

approximately 5. The inoculum was removed after 90 minutes

incubation at 37uC in the presence of 5% CO2, replaced with fresh

medium and incubated for a further 48 hours or until character-

istic cytopathic effect (cpe) was observed. Infected cells were

exposed to 3 freeze/thaw cycles, cell debris was removed by low

speed centrifugation and supernatant stored at 280uC. Conven-

tional ultrapurification methods may affect structure and infectiv-

ity of murine norovirus so a further purification step was

performed using polyethylene glycol(PEG) and NaCl precipitation

(BioVision Inc, US) which concentrated the sample 100 times.

Infected cell supernatants and PEG precipitated virus were used in

infectivity assay, Mock infected cells were used as controls

Preparation of sample surfaces
Metal coupons (1061060.5 mm) were degreased in acetone,

stored in absolute ethanol and flamed prior to use as described

previously [24]. The constituents of each metal tested are detailed

in Table 1 and all were supplied by the Copper Development

Association.

Inoculation of metal coupons with MNV-1 (to simulate
wet fomite or dry touch contamination) and assessment
of infectious virus by the detection of cytopathic effect in
murine cell line (plaque assay)

The surfaces of coupons were inoculated with MNV21 56104

plaque forming units (pfu) in 20 mL or 56104 pfu in 1 mL to

represent wet fomite (dries in 30–40 minutes at 22uC) or dry touch

contamination (dries in seconds), respectively. Drying time was

included in the exposure time. For temperatures other than

ambient coupons were allowed to acclimatise for 30 minutes prior

to inoculation. Some modifications were made to the method

previously described for removing bacteria from coupons [24].

Viruses were removed from the coupons at the required timepoint

by vortexing for 15 s (half the time for bacteria to reduce frothing)

in 5 ml complete DMEM with approximately 10062 mm

diameter glass beads (twice the number used for bacteria). A

range of dilutions was prepared immediately in complete DMEM

and 1 mL aliquots were plated onto monolayers of RAW 264.7

that had been seeded with 106 cells per well of 6 well plates

(diameter 3.5 cm) 3 hours previously, and incubated at 37uC and

5% CO2 for 90 minutes. The inoculum was aspirated and overlay

of 3 mL per well of 3% low melting point (LMP) agarose in

complete medium was added to prevent virus spreading to other

cells. Plates were incubated for 15 minutes at 4uC until set and

then at 37uC, 5% CO2 for 72 hours. Monolayers were stained

with 2 mL per well of a filtered 0.01% solution of the supravital

stain, Neutral Red, which is pinocytosed by viable cells and

accumulates in the cell lysosomes staining the cells red, in PBS for

2 hours at 37uC and 5% CO2. Excess stain was removed and the

plates re-incubated for a further hour. Concentrations of stain .

100 mg/mL can be cytotoxic and should not be used. Plates were

stored overnight at 4uC to increase definition of plaques which

were counted and used to calculate pfu recovered per coupon.

The rate of virus inactivation was calculated for the following

time periods: 0–5, 5–10 and 10–30 minutes for ‘dry’ inoculum and

0–30, 30–60 and 60–120 minutes for the ‘wet’ inoculum according

to the following formula:

K~ ln N tð Þ=N 0ð Þð Þ=T

Table 1. Composition of metals used in the study.

Metal type UNSa no. % composition

Cu Zn Sn Ni Fe Cr

copper C11000 100

phosphor bronze
(contains , 0.26% P)

C51000 95 5

copper nickel C70600 89 10 1

cartridge brass C26000 70 30

nickel silver C75200 65 17 18

stainless steel S30400 8 74 18

aUnified Numbering System.
doi:10.1371/journal.pone.0075017.t001
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K~rate of inactivation

N tð Þ~pfu per coupon at end of selected time

N 0ð Þ~pfu per coupon at start of selected time period

T~length of selected time period i:e: rates expressed per minute

The effect of copper chelators and reactive oxygen
species quenchers in infectivity of MNV exposed to
copper and copper alloy surfaces

Incorporation of chelators ethylenediaminetetraacetic acid

(EDTA) (20 mM) and bathocuproine disulfonic acid (BCS)

(20 mM) to chelate Cu(II) or Cu(I), respectively, at the time of

inoculation of virus to the metal surfaces was investigated using

plaque assay. In addition 20 mM D-mannitol and 20 mM 4,5-

dihydroxy-1,3-benzene disulfonic acid (Tiron) were used to

quench hydroxyl radicals and superoxide, respectively. Stainless

steel was used as a control surface and to determine if quenchers

and chelators affect viral replication.

Survival of infectivity of MNV on metal surfaces at 37uC
and 4uC

Metal surfaces were allowed to acclimatise to the test

temperature for 30 minutes prior to inoculation with virus. Virus

was removed from coupons and assessed for infectivity as

described.

Purification of viral RNA and analysis of integrity by
agarose gel electrophoresis

The total RNA of untreated virus or virus exposed to metal

surfaces (5 coupons per test, virus removed from coupons by

pipetting up and down in a small volume, 100 mL) was extracted

using the Qiagen QIAamp viral RNA mini kit according to

manufacturer’s instructions and using carrier RNA provided to

prevent degradation.

Purified RNA fragments were separated on a non-denaturing

1% agarose gel using GelRed Nucleic Acid Prestaining Kit

(Biotium, UK) according to the manufacturer’s instructions. The

staining intensity is reduced because GelRed binds to ssRNA

approximately half as much as double stranded nucleic acid. DNA

ladders were supplied by Bioline. Gels were observed and

photographed using GeneSnap software and a Syngene UV light

box.

Detection and quantification of VPg in MNV exposed to
copper and brass surfaces

cDNA was prepared from the purified viral RNA (RT-

nanoscript) PrimerDesign, UK). Primers were designed to amplify

a 70 bp region of VPg in ORF-1 from complete genome of MNV-

1 CW1 (accession number DQ285629) (PrimerDesign Ltd.,

Southampton, UK)

sense primer GCGAGCGAGAAGAAGAACT (position 2761)

antisense primerTTCAACCCGAAGCCATCC (position 2380).

Amplification was performed on a BioRad iQ5 cycler and

standard curves prepared from known copy number standards to

determine copy number in test samples. A synthesised VPg cDNA

was used to prepare standard curve and calculate copy number in

equivalent volumes virus suspension applied to test surface

samples. PCR products were analysed by gel electrophoresis as

described.

Statistical analysis
Data are expressed as mean 6 standard errors of the mean

(SEM) and are from multiple independent experiments. Differ-

ences between duplicate samples were assessed using the Mann-

Whitney rank t-test. Group comparisons were analysed using the

Mann-Whitney U test where statistical significance was expressed

as p , 0.05. Statistical analyses and graphical representations were

performed using Sigma Plot version 12.

Supporting Information

Figure S1 Linear regression analysis of virus inactiva-
tion rate (0–30 minutes, ‘wet’ inoculum) and percentage
copper in alloys tested resulted in a coefficient of
determination (R2) of 0.926 suggesting a good correla-
tion. The result for phosphor bronze was removed from this

analysis. (including phosphor bronze reduced the R2 to 0.541).

Further investigations into the efficacy of phosphor bronze to

inactivate norovirus are planned including determining the

influence of different metal surface finishes and other metal

constituents.

(TIF)

Figure S2 The entire RNA genome of untreated MNV
(PEG concentrate) was purified as described in the text
and fragments separated by electrophoresis on a non-
denaturing 1% agarose gel (lane 2). Lane 3 shows 18 s and

28 s cellular RNA from uninfected RAW 264.7 cells and lanes 1

and 4 are Bioline Hyperladders I and II, respectively.

(TIF)
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