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Abstract

We characterized the differentiation of rat bone marrow-derived mesenchymal stem cells (BM-MSCs) into tenocyte-like cells
in response to bone morphogenetic protein-12 (BMP-12). BM-MSCs were prepared from Sprague-Dawley rats and cultured
as monolayers. Recombinant BMP-12 treatment (10 ng/ml) of BM-MSCs for 12 hours in vitro markedly increased expression
of the tenocyte lineage markers scleraxis (Scx) and tenomodulin (Tnmd) over 14 days. Treatment with BMP-12 for a further
12-hour period had no additional effect. Colony formation assays revealed that ,80% of treated cells and their progeny
were Scx- and Tnmd-positive. BM-MSCs seeded in collagen scaffolds and similarly treated with a single dose of BMP-12 also
expressed high levels of Scx and Tnmd, as well as type I collagen and tenascin-c. Furthermore, when the treated BM-MSC-
seeded scaffolds were implanted into surgically created tendon defects in vivo, robust formation of tendon-like tissue was
observed after 21 days as evidenced by increased cell number, elongation and alignment along the tensile axis, greater
matrix deposition and the elevated expression of tendon markers. These results indicate that brief stimulation with BMP-12
in vitro is sufficient to induce BM-MSC differentiation into tenocytes, and that this phenotype is sustained in vivo. This
strategy of pretreating BM-MSCs with BMP-12 prior to in vivo transplantation may be useful in MSC-based tendon
reconstruction or tissue engineering.
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Introduction

Tendon injuries are common in adults, necessitating over

300,000 surgical tendon repairs each year in the United States [1].

Unfortunately, tendons heal poorly due to their limited regener-

ative potential, and many repairs require revision [2]. Moreover,

recovery following tendon repair can be protracted, ranging from

months to years, and at best, healed tendons possess 60% of their

initial mechanical properties [3]. Recent tissue regeneration

strategies aim to improve the outcome of tendon repair. Some

of these approaches utilize adult mesenchymal stem cells (MSCs)

to form new tendon tissues [4]. Adult MSCs are favored for tissue

engineering because of their ease of isolation, rapid propagation,

multilineage differentiation capabilities and low immunogenicity,

among other considerations [5].

Several studies have demonstrated MSC differentiation into

tenocyte-like cells in response to chemical factors including bone

morphogenetic proteins (BMPs), transforming growth factor-b
(TGF-b), and fibroblast growth factor (FGF) [6,7,8,9,10]. BMPs,

members of the TGF-b/BMP superfamily with important

regulatory roles in the development and morphogenesis of

multiple organs and tissues [11,12,13,14], are of particular interest

with respect to tendon differentiation. BMPs 7, 12, 13 and 14 have

been implicated in the neoformation and repair of tendons [8,15],

and of these, BMP-12, the human homologue of mouse growth

and differentiation factor 7 (GDF-7), has been shown to promote

tendon differentiation and formation both in vivo [16] and in vitro

[7,17].

Collectively, these studies highlight a teno-inductive capacity of

BMP-12 that may be exploited therapeutically for tendon repair.

A major concern surrounding the use of BMP-12 in vivo, however,

is that this cytokine can also affect the differentiation of other cell

types including muscle [18], cells of secretary glands in the male

reproductive system [19] and several neuronal cell lineages

[20,21,22]. In the present study, we characterized tenocytic

differentiation of rat bone marrow-derived MSCs (BM-MSCs)

treated with BMP-12 in vitro, and tested whether the tenocyte-like

phenotype would be sustained following implantation in an in vivo

model of tendon damage.
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Materials and Methods

Isolation and culture of MSCs
Sprague-Dawley female rats (5–6 month old) were purchased

from Charles River Laboratories (Wilmington, MA). The animals

were housed in a standard animal facility at Mount Sinai School of

Medicine and all experiments involving animal use were

performed in accordance with the Institutional Animal Care and

Use Committee. BM-MSCs were prepared as described [23].

Briefly, bone marrow was collected by flushing femur and tibia

with medium and single cell suspensions prepared by repetitively

pipetting through 18-gauge needles. After centrifugation, cell

pellets were resuspended in growth medium consisting of

Dulbecco’s modified eagle medium (DMEM, Invitrogen), 10%

fetal bovine serum (FBS, Gibco), 100 U/ml penicillin, and

100 mg/ml streptomycin, (1% P/S, Invitrogen), then seeded and

incubated in complete medium. The medium was replaced

24 hours later, and every 2 to 3 days thereafter during a total 2

Figure 1. Effects of BMP-12 on the rat BM-MSC differentiation toward tenocyte lineage in vitro. (A) BMP-12-induced expression of Scx
and Tnmd in monolayer cultures. Rat BM-MSCs at passage 1 were plated, and 24 hours later were treated with 10 ng/ml of BMP12 for 12 hours (‘‘1-
hit’’) or for 24 hours (12 hours plus another 12 hours). Following BMP-12 stimulation, cells were cultured in the absence of BMP-12 for the indicated
times. mRNA levels were determined by qRT-PCR. Data are expressed as mean 6 S.D. (n = 3). * represents p,0.05. (B, C) BMP-12-mediated tenocytic
differentiation of rat BM-MSC in collagen scaffolds. BM-MSCs (2.56105 cells) were seeded onto sterilized 5 mm62 mm collagen sponge scaffolds and
incubated in growth media. After 24-hour culture, cells were left untreated or treated with 10 ng/mL of BMP-12 for 12 hours. The media was then
replaced with fresh growth medium and the scaffolds were cultured in the absence of BMP-12 for 14 days. At the end of culture, cells were stained
with methylene blue (B, left panels, 20X magnification) or subjected to immunohistochemical staining for analysis of Scx and Tnmd protein (Middle
and right panels, 20X magnification). Cells were also lysed with Trizol and gene expression was determined by qRT-PCR (C). Data shown in (B) are
representative of 3 independent experiments. Data in (C) are expressed as mean 6 S.D. (n = 3). * represents p,0.05.
doi:10.1371/journal.pone.0017531.g001

Table 1. Effect of BMP-12 on Scx and Tnmd protein expression in colonies derived from rat BM-MSCs.

Gene Treatment Duration Positive colonies per well Total colonies per well % Positive colonies

Scx 0h 2.561.3 66.865.2 3.74

12h 58.864.0* 67.864.4 86.72

12h+12h 60.065.2* 68.464.6 87.72

Tnmd 0h 2.361.3 68.566.9 3.36

12h 59.063.2* 68.863.0 85.75

12h+12h 57.463.9* 68.465.6 84.16

Colony forming assays were performed on untreated cells, or on cells treated with BMP-12 for 12 h (‘‘1-hit’’) or for 12h + 12h. Total, Scx-positive and Tnmd-positive
colonies were counted on Day 14 after plating. Data are presented as mean 6 S.D. (n = 6); * represents P,0.05 for BMP-12 treated cells compared to untreated controls.
doi:10.1371/journal.pone.0017531.t001
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week culture, after which cells were detached by trypsinization and

replated for experiments.

BM-MSCs were cultured in growth medium to approximately

80,90% confluence, then starved for 12 hrs in DMEM

supplemented with 1% FBS followed by treatment with 10 ng/

ml recombinant BMP-12 (R&D Systems) in the same low-serum

medium for either 12 or 24 hours. After treatments, BM-MSCs

were cultured in growth medium in the absence of BMP-12 for

extended periods.

Single CFU-F assay
BM-MSCs at passage 1 were plated at a density of 26102/

35 mm dish and treated with different concentrations of BMP-12

for 12 h (1-hit) or 12 h+12 h, as described. After 14 days, media

was removed and the cultures were immunostained for Scx and

Tnmd using anti-Scx (Abcam) and anti-Tnmd (Santa Cruz),

respectively, followed by anti-rabbit secondary antibody (Dako;

code no. K1015) and chromagenic detection. Negative controls

were prepared using irrelevant isotype matched primary antibod-

ies (Dako; code no. X931 or X0936) in place of authentic primary

antibody. Total, Scx-positive and Tnmd-positive colonies were

counted microscopically at 40X magnification by a phase contract

microscope. Colonies containing more than 50 cells were scored.

Differentiation of cells in scaffolds
BM-MSCs were suspended in growth medium at 16106 cells/

mL and 0.25 mL was seeded onto sterilized 5 mm62 mm

collagen sponge scaffolds (Zimmer Dental). Cell-seeded scaffolds

were placed in culture dishes and incubated for 2 hours in a

minimum volume of growth medium, after which more medium

was applied to submerge the scaffolds. After an additional 24-hour

culture, cells seeded in scaffolds were treated with 10 ng/mL of

recombinant BMP-12 for 12 hours. The medium was then

replaced with fresh growth medium and scaffolds were either

cultured for an additional 7 days or immediately implanted into

partial calcaneal tendon defects in rats.

Figure 2. Fomation of tendon-like tissues by BMP-12-treated rat BM-MSCs in calcaneal tendon defects in vivo. (A) Exposed rat
calcaneal tendon of the left hind-limb (Left panel). Scaffolds were implanted into half-width, 5 mm-long partial calcaneal tendon defects using 10-0
nylon (Middle panel). A schematic drawing highlights the spatial relationship between the tendon and the implant (Right panel). ‘‘T’’ denotes tendon;
‘‘Im’’ denotes implant; arrows denote the tendon-implant interface. Note that 5 interrupted 10-0 nylon sutures were used to secure the implant in the
defect and that the implant completely filled in the 5 mm62 mm calcaneal tendon defect. (B) Cells were cultured and treated as described for Fig. 1B,
C. Scaffolds with or without cell seeding were implanted as in Fig. 2A. After 3 weeks, implants and Achilles tendons from naı̈ve animals were dissected
and subjected to histological analysis (Masson’s Trichrome or H&E staining). Seeded BMP-12-treated implants but not unseeded and non-BMP-12-
treated group exhibited higher cellularity, increased formation of collagen, and organized fibrous structures, indicating robust formation of tendon-
like tissues. 20X magnification.
doi:10.1371/journal.pone.0017531.g002
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In vivo implantation
Animals were anesthetized with isoflurane gas (2–3% by

volume, 0.4 L/min) and the skin overlying the left calcaneal

tendon was shaved and sterilized with alcohol and betadine pads.

A longitudinal incision was made in the left hindlimb to expose the

calcaneal tendon, and a 5 mm long, half-width partial defect was

created on the lateral border of the tendon. A scaffold that was

either (1) unseeded [control, n = 8], (2) seeded with BM-MSCs

without BMP-12 treatment [n = 8], or (3) seeded with BMP-12

treated BM-MSCs [n = 8] was sutured into the defect using 10-0

nylon suture (Ethicon). The skin incision was then closed with 4-0

vicryl (Ethicon) and the animals were returned to their cages and

allowed to resume normal activity. Buprenorphine (0.015 mg/kg)

was administered subcutaneously for post-operative pain analge-

sia. During the 3-week experimental period, no infections, animal

deaths or body weight losses were observed.

Histological analysis
Scaffolds cultured in vitro and dissected calcaneal tendon tissues

were fixed in 10% neutral buffered zinc-formalin and embedded

in polymethyl methacrylate [22]. For standard histological

evaluation, sections were stained with methylene blue, hematox-

Figure 3. Enhanced cell alignment following BMP-12-treatment of scaffolds seeded with BM-MSCs. Rat BM-MSCs were cultured and
implanted as in Fig. 2. (A) Toluidine blue staining (20X magnification) revealed increased cell elongation and cellular alignment/organization, within
the BMP-12-treated BM-MSCs implants. (B) Nuclear aspect ratio (width vs length of nucleus), and (C) Angular deviation (angle between individual
nuclear axis and longitudinal axis based on general alignment). A smaller value of nuclear aspect ratio and nuclear orientation angle indicated greater
cellular elongation and alignment in cells treated with BMP-12, as compared to untreated cells. * represents p,0.05.
doi:10.1371/journal.pone.0017531.g003

Figure 4. Increased expression of Scx and Tnmd proteins in seeded BMP-12-treated implants. Implants as in Fig. 2 and naı̈ve Achilles
tendons were dissected and tissue sections were immunohistochemically stained with specific anti-Scx or anti-Tnmd antibodies as described in
Material and Methods. Data shown are representative of three independent experiments (20X magnification).
doi:10.1371/journal.pone.0017531.g004
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ylin and eosin (H&E), Masson’s Trichrome, or toluidine blue. For

immunohistochemical staining, sections were incubated overnight

at 4uC with either anti-Scx (1:150, Abcam), anti-Tnmd (1:150,

Santa Cruz) or nonimmune antiserum (1:150, negative control),

followed by a 30 minute incubation with a secondary antibody

conjugated with horseradish peroxidase [anti-rabbit (1:1000, Santa

Cruz)] in 0.1% TBST. Sections were counterstained with 0.1%

methylene blue and image analysis was carried out with Axiovision

v4.6 software (Zeiss).

Quantitative PCR
Total RNA was extracted from seeded scaffolds cultured in vitro

and flash-frozen, pulverized implants from the left calcaneal tendons

using the QIAshredder (Qiagen, Valencia, CA) and RNeasy Minikit

(Qiagen) according to manufacturer’s instructions. Isolated RNA

was reverse transcribed with Super Script II reverse-transcriptase

and Oligo(dT)12–18 primers (Invitrogen) and the cDNA was

subjected to real-time PCR with SYBR Green PCR Master Mix

(Applied Biosystems). The primers used for PCR were Scx

(NM_001130508 - f: ctggcctccagctacatttc, r: ccgtctttctgtcacggtct);

Tnmd (NM_022290 - f: ccagacaagcaagcgagga, r: aacttcctatta-

gactctcc); Tn-C (U15550 – f: cagaagccttggccatgtg, r: gcact-

ctctcccctgtgtagga); Col Ia1 (Z78279 – f: ggagagtactggatcgaccctaac,

r: ctgacctgtctccatgttgca); GAPDH (BC059110 - f: acagcaa-

cagggtggtggac, r: tttgagggtgcagcgaactt); b-actin (NM_031144 – f:

cacccgcgagtacaaccttc, r: cccatacccaccatcacacc). GAPDH and b-

actin levels were used as internal controls. Differences in mRNA

levels were assessed by one-way ANOVA followed by post-hoc

Tukey test using StatView v5.0 (SAS Institute). p#0.05 was

considered significant.

Results

BMP-12 stimulates the expression of Scx and Tnmd in rat
BM-MSC cultures

Scx and Tnmd are two genes predominantly expressed in

tendons, and are considered the most reliable phenotypic markers

of the tenocytic lineage. To test the feasibility of using BMP-12 as

an inducer of BM-MSC tenocyte differentiation, we first

compared the effects of a single 12 hour treatment and 2

sequential 12 hour treatments with 10 ng/ml BMP-12 on the

expression of Scx and Tnmd in rat BM-MSC monolayer cultures.

Following BMP-12 treatment, all cells were cultured in the

absence of BMP-12, and then collected at different times for gene

expression analysis. qPCR showed that a single 12 or 24 hour

exposure to BMP-12 enhanced expression of both Scx and Tnmd.

Scx mRNA expression was highest on day 2 and decreased

thereafter, but still remained above basal levels (Figure 1A, left

panel). Tnmd expression lagged behind Scx, and increased

continuously over the 7-day culture period (Fig. 1A, right panel).

Interestingly, no differences in Scx and Tnmd expression were

observed between single and double BMP-12 treatments (Fig. 1A).

Similar results were obtained when tenocyte differentiation was

assessed by CFU assays. Fourteen days after either single or double

BMP-12 treatment, over 80% of colonies expressed both Scx and

Tnmd (Table 1). These results indicate that once induced, Scx and

Tnmd expression remain elevated for an extended period of time

in the absence of BMP-12.

BMP-12 accelerates BM-MSC tenocyte differentiation in
3D collagen scaffolds in vitro

We next explored the effect of BMP-12 treatment on the

differentiation of BM-MSCs-seeded in three-dimensional collagen

sponge scaffolds. Tenocyte differentiation was evaluated based on

cellular morphology and organization, as well as the expression of

tenocyte-lineage marker genes. Methylene blue staining showed that

BM-MSCs treated with BMP-12 after seeding in collagen scaffolds

displayed increased cell numbers and elongation compared with

untreated cells after 7 days of in vitro incubation (Fig. 1B, left panels).

In addition to these histological changes, enhanced staining of Scx

and Tnmd proteins was observed in seeded-BMP-12-treated samples,

but not in those without BMP-12 treatment (Fig. 1B, middle and right

panels). Finally, mRNA levels of Scx, Tnmd, and two other genes

expressed by tendon cells, type I collagen (Col I) and tenascin-C (Tn-

C) were increased in BMP-12-treated cells (Fig. 1C).

BMP-12-treated BM-MSCs augment tendon-like tissue
formation in calcaneal tendon defects in vivo

Having shown that BMP-12-treated BM-MSCs acquired

several phenotypic properties of tenocytes in vitro, we next tested

Figure 5. Induction of tendon cell-related genes by BMP-12 in rat BM-MSC implants in calcaneal tendon in vivo. Samples were
collected as described in Methods and Materials. mRNA levels were determined by qRT-PCR and normalized against samples of the non-BMP-12-
treated group. The gene expression of all experimental groups was determined as fold changes relative to native tendon samples. While unseeded
implants expressed minimal Scx, Tnmd, Col I, and Tn-C, BMP-12-treated implants had significantly increased expression of these genes compared to
non-BMP-12-treated implants. Data are expressed as mean 6 S.D. (n = 3). * represents p,0.05.
doi:10.1371/journal.pone.0017531.g005
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whether these changes would also be observed in vivo. For this

purpose, BM-MSCs seeded in collagen scaffolds treated in vitro

with either BMP-12 or vehicle were implanted into surgically

created defects (5 mm62 mm) in calcaneal tendons (Fig. 2A).

Unseeded scaffolds were also implanted as additional controls.

Three weeks after implantation, animals were sacrificed and the

implants were recovered for morphological and gene expression

analysis. A histological analysis demonstrated that all implants,

including those not seeded with BM-MSCs, contained abundant

numbers of cells, (Figs. 2B and 3A), and that all the implants

showed qualitative evidence of vascularization. However, the

organization of both cells (visualized mainly by H&E staining) and

matrix (seen by H&E, Masson Trichrome and toluidine blue) was

most pronounced in the implants where cells had been treated

with BMP-12. The BMP-12-treated cells were largely spindle-

shaped and like the fibrous matrix, were generally well aligned/

organized along the longitudinal (tensile) axis of the tissue (Fig. 2B,

Fig. 3A). By contrast, the specimens from the non-BMP-12-treated

and unseeded groups exhibited minimal development of tendon-

like morphology, and instead remained poorly organized (Fig. 2B,

Fig. 3A). We found that the nuclei of BMP-12-treated cells

exhibited morphological features resembling the organization of

cells in native tendons, while untreated MSCs did not. The BMP-

12-treated/seeded group had a slightly higher value of both

nuclear aspect ratio (width vs length of nucleus) (Fig. 3B) and value

of nuclear orientation angle (angle of nuclear axis from tissue/cell

longitudinal axis or general alignment) than the naı̈ve group, but

those values were significantly lower as compared to the control

groups (Figs. 3B, C).

Immunohistochemical analysis showed greatly enhanced stain-

ing of Scx and Tnmd proteins in sections prepared from seeded

BMP-12-treated implants compared to unseeded or non-BMP-12-

treated groups (Fig. 4). The expression levels of both Scx and

Tnmd in BMP-12-treated scaffold implants were even higher than

in the naı̈ve tendons (Fig. 4). Consistently, RT-PCR analysis

revealed that cells from the seeded/BMP-12-treated implants

expressed much higher mRNA levels of Scx, Tnmd, Col I, and

Tn-C than control samples (Fig. 5). These differences in vivo were

even greater than those observed in 3D cultures in vitro. Taken

together, these data suggest that rat BM-MSCs pretreated with

BMP-12 have acquired full tenogenic capability, thus being able to

form tendon-like tissues after implantation in vivo.

Discussion

The results of this study show that BMP-12 is a highly effective

inducer of tenocyte-like cell differentiation in BM-MSCs, and that

the phenotype induced by BMP-12 appears to be sustained both in

vitro and in vivo without the need for further exposure to exogenous

BMP-12. The basis for this persistent BMP effect is so far unclear.

It seems unlikely that BMP-12 induces its own synthesis in BM-

MSCs; rather, BMPs more often may downregulate their own

expression or induce production of antagonists [24]. Perhaps

direct cellular responses to BMP-12 induction are intrinsically

long-lived, possibly reflecting changes (e.g. in chromatin organi-

zation) that are characteristic of a new state of differentiation [25].

These findings suggest that use of BMP-12 to ‘‘pre-differentiate’’

tenocytes from stem cell populations seeded into collagen scaffolds

in vitro could be an effective approach to engineer artificial tissues

for tendon repair.

Because no single phenotypic marker is known to identify

mature tenocytes conclusively, we utilized a combination of

genetic and morphologic traits to assess tenocytic differentiation in

response to BMP-12. Scx is a transcriptional regulator first

expressed in progenitors of tendon cells [6], while the transmem-

brane protein Tnmd is expressed by more mature tenocytes and

has been implicated in regulating their proliferation and matrix

organization [26]. Further study found that expression of Scx is

essential for subsequent expression of Tnmd [27]. Consequently,

the sequential expression of Scx and Tnmd in this study is

consistent with progressive differentiation of these cells along a

single, likely tenocytic pathway. Moreover, the expression pattern

of Scx and Tnmd in response to BMP-12 was linked to changes in

cellular morphology (elongation) and overall cellular organization

(increasing side-by-side alignment within collagen scaffolds) similar

to the tendon-like tissues produced in other systems in response to

morphogens or mechanical stimuli [8,28].

BM-MSCs are multipotential and can be induced to

differentiate into a range of cell types including osteoblasts,

chondrocytes and adipocytes [4]. The high percentage of BM-

MSC colonies expressing tenocytic markers in response to BMP-

12 induction (over 85% were positive for Scx and Tnmd) not only

demonstrates its effectiveness as an inducer of tenocyte differen-

tiation, but also indicates that the tenocyte pathway of

differentiation is preferred under the conditions of this experi-

ment. Furthermore, the finding that a single dose of BMP-12 was

sufficient to induce BM-MSC differentiation is consistent with the

activities of other BMP family members like BMP-2, where

single, short-term administration is highly effective in cartilage

and bone induction [29,30].

Not only do BM-MSCs exhibit multipotentiality, mature cells of

mesenchymal lineage exhibit a degree of phenotypic plasticity, and

can dedifferentiate and redifferentiate along alternate pathways

[31]. The phenotypic stability of tenocytes following in vitro

induction by BMP-12 is of particular interest for tissue engineering

purposes. The fact that phenotypically mature cells like tenocytes

can dedifferentiate over time raises the possibility that engineered

tissues formed from those cells could not be sustained in vivo. While

the long-term in vivo phenotypic stability of BM-MSCs induced in

vitro with BMP-12 has yet to be fully evaluated, our results

demonstrating sustained cell numbers and tissue organization over

3 weeks of in vivo implantation, without repeated BMP-12

treatments suggest that this approach may be useful and merits

more extensive investigation. Moreover, the use of BMP-12 in vitro

to induce tenocytic differentiation avoids concerns about the

introduction in vivo of large amounts of BMP-12 protein, vectors

carrying the BMP-12 gene, or cells transfected or transduced to

overexpress the BMP-12 gene.

Taken together, our study has demonstrated that rat BM-MSCs

treated with BMP-12 express high levels of tendon-related genes,

undergo differentiation into tenocyte-like cells, and efficiently form

tendon-like tissues in vivo. Therefore, we conclude that a brief

treatment of rat BM-MSCs prior to implantation is sufficient to

induce differentiation toward tenocytic lineage. These data could

be useful in helping develop BM-MSC-based tendon tissue

engineering approaches for tendon repair.
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